用户名: 密码: 验证码:
水相悬浮氯化聚丙烯的制备与表征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
针对聚丙烯(PP)粘合性差、纤维较难染色、低温呈脆性、收缩率大等缺陷,本文采用工艺简单、污染较少的水相悬浮法对等规聚丙烯(IPP)进行氯化改性,探讨氯化机理并建立动力学模型,研究氯化工艺规律,为工业制备氯化等规聚丙烯(CIPP)树脂打下基础。
     聚丙烯在水中的良好分散是水相悬浮氯化法的必要条件。500mL玻璃釜中的分散研究表明,降低氯化温度、提高搅拌转速,减小固液比、增加PP粒径和分散剂用量都有助于聚丙烯在水相中的悬浮分散。在一定温度和固液比下,存在着上、下两临界搅拌转速。低于下临界转速时,即使加分散剂也不能使PP在水中分散;高于上临界转速时,无需加分散剂,单靠搅拌所提供的剪切力就足以使PP在水中分散;在氯化时,应使搅拌转速高于下临界转速。离子型表面活性剂十二烷基苯磺酸钠优于十二烷基硫酸钠和非离子型表面活性剂聚乙烯吡咯烷酮。
     聚丙烯的热氯化属自由基链式反应,在消除外扩散影响以后,水相悬浮氯化过程可分为表面反应控制和内扩散控制两阶段,并建立了相应的动力学模型:和。由于等规聚丙烯的高规整性和高结晶度,整个氯化过程受内扩散过程控制,氯化程度从粒子表层到中心递减。
     PP等规度越低、熔融指数越高、粒径越小、PP接枝马来酸酐(MAH),氯化速率越快、氯含量越高、氯化越均匀。体系添加惰性溶胀剂、粉碎和氯化交替进行增强粒子的表面更新能促进氯化,提高了产物CIPP的氯含量及均匀性、溶解性能。金属离子的存在则抑制氯化。添加分散剂、提高通氯速率和搅拌转速,可以强化氯气在气液相的传质扩散,消除外扩散的影响。温度的提高有助于氯自由基的产生和反应活性的提高,而且能加快气体扩散传质的速度。但温度也不能过高,否则容易发生副反应,聚丙烯容易降解,氯气在水中的溶解度会减少,不利于反应和产品性能。采用热引发的方式,氯化前期表面反应的活化能E=30.69kJ/mol,频率因子A=3.015s~(-1)。紫外光照和热同时引发IPP时,能促
    
    浙江大学硕士学位论文
    进氯化,提高了产物氯含量,连续光照优于间歇光照。表面反应控制阶段,其
    活化能E=28.10IcJ/mol,指前因子A=51.025一’。
     从结构、熔点、结晶度、溶解性能和降解等方面对氯化聚丙烯的性能进行
    了表征,发现随着氯化程度的深入,等规聚丙烯三种氢的取代顺序为仲氢、叔
    氢和伯氢,a晶型没有变化,但是结晶度逐渐减小,熔点缓慢降低。在氯含量
    约为63%时,结晶破坏完全,能全溶于甲苯溶剂(20w七%)。与IPP相比,CIPP
    的热稳定性降低,在空气环境中容易降解变色。
Chlorinated isotatic polypropylene (CIPP) is a modified product of. polypropylene (IPP) and has better adhesion and fire resistance. This paper was devoted to the chlorination of IPP by aqueous suspension process, which was simple and produced little pollution. The chlorination laws were investigated and the chlorination mechanism and kinetics model were proposed. The results will provide the basement for industrial preparation of CIPP.
    Chlorination of IPP in aqueous suspension required well dispersion of IPP in water. Study of aqueous dispersion in 500mL flask showed that reducing temperature and solid/liquid ratio, rising agitation speed and particle size benefited aqueous dispersion of IPP. When temperature and solid/liquid ratio were fixed, the system had upper and lower critical agitation speeds. Dispersants had no function on aqueous dispersion of IPP when the agitation speed was less than lower critical agitation speed. IPP could be well dispersed in water with no surfactants by agitation when the agitation speed was greater than upper critical agitation speed. So, agitation speed should be greater than lower critical agitation speed in chlorination process. The dispersion effect of sodium dodecyl benzyl sulfate (SDBS) was better than that of sodium dodecyl sulfate (SDS) and polyvinyl pyrrolidone (PVPP).
    The thermal-initiated chlorination process of IPP could be divided into two steps: surface reaction-control stage (about within 1hr) and ash layer diffusion-control stage (about after 1hr). A surface reaction-control model and a ash layer diffusion-control model were proposed and conversion equations were obtained:
    chlorination process was controlled by ash layer diffusion. The chlorine content decreased from particle surface to center.
    The chlorination rate and uniformity could be improved by decreasing the actic index, molecular weight and particle size of IPP, and surface grafting of MAH onto IPP. Adding of inertia swelling agent, and alternate crushing and chlorination, could accelerate particle surface renewal and increase the chlorine content, uniformity and solubility of products. Metal ion inhibited the chlorination. Adding of dispersant, raising the feeding rate of chlorine and agitation speed could promote diffusion of
    
    
    
    chlorine in gas and liquid phase and remove the effect of outer diffusion. Higher temperature benefited producing of chloride radicals, rising of reaction activity and chlorine diffusion. Too high temperature could facilitate the degradation of IPP and reduce product property. The activation energy E was 30.69 kJ/mol and the
    frequency factor A was 3.015 s-1 in the surface reaction stage under thermal
    initiation. Both UV-photo and thermal initiation could promote chlorination. Continuous lighting was better than intermittent lighting. E=28. 10kJ/mol and A =
    51.02 s-1 in the surface reaction stage under both UV-photo and thermal initiation.
    The structure, melting point, crystallization degree, solubility and degradation of CIPP were studied. The results showed that p-, s- and t- hydrogen were substituted in turn as the chlorination proceeded, a crystal wasn't destroyed, but the crystallization degree decreased and melting point reduced gradually. Crystal was destroyed completely and CIPP could be dissolved in methylbenzene (20wt%) when the content of chlorine of CIPP achieved 63%. The thermal stability of CIPP decreased, and it was easy to degradate, as chlorine content increased.
引文
[1] Fujim.,F林治田,氯化聚丙烯的性质和应用,石油化工译丛,1989,10(3):51-58
    [2] 邹丽霞,曾兰萍,氯化聚丙烯与丙烯酸酰氧甲基乙酯接枝共聚胶粘剂研究,山东化工,1998,(6):18-19
    [3] 保全中,聚烯烃的高性能化,塑料加工,1994,000(003):1-4
    [4] Park I H, Jung J C, Polymer(Korea), 1986, 10(3): 227
    [5] 崔小明,氯化聚丙烯的应用与开发,陕西化工,1996,(4):5-7
    [6] 叶庆国,二步光氯化悬浮法制备高氯含量的氯化等规聚丙烯,现代化工,2000,20(3):32-35 .:
    [7] 佟丽萍,朱宝花,值得大力发展的氯化聚丙烯产品,中国氯碱,1998,(2):35-37
    [8] 邹盛欧,氯化聚丙烯和氯化EVA,化工商品科技情报 1995,18(3):61-64
    [9] 我国氯化高聚物发展概况分析,合成材料老化与应用,2001(1):42-43
    [10] Mitani K, Ogata T, Iwasaki M, Chlorine distribution and structure-property relationship of chlorinated polypropylene, J. Polymer Sci.: Polymer Chem. Ed., 1974, 12(8):1653-1669
    [11] 唐薰,吴席信,陈安源,等规聚丙烯氯化工艺研究,湖南大学学报,1997,24(2):24-30
    [12] Mukherjee A K, Patri M, Thermal chlorination of atactic polypropylene, Angewandte Makromolekulare Chemie, 1988, 163 (1): 23-35
    [13] 顿佐夫AA等著,丁振威等译,氯化聚合物,化学工业出版社,1983
    [14] 李伟生,施良和,沈德盐,~(13)C核磁共振研究氯化无规聚丙烯的结构,高分子学报,1989,(3):291—297
    [15] 马继盛,华静,汪传友等,固相法氯化等规聚丙烯的制备,中国胶粘剂,1999,8(4):3-6
    [16] 许健南,塑料材料,中国轻工业出版社,1999
    [18] 邹从炎,青岛化工学院硕士论文,1986
    [19] Puszyski A, Dwornicka J, Chlorination of Polypropylene in Suspension, Die Angewante Makromol. Chem., 1986, 139 (1): 123-128
    
    
    [20] 叶庆国,杨秀英,无溶剂光氯化悬浮法制备低氯含量的等规聚丙烯,精细化工,2000,17(7):388-390
    [21] 葛发祥,氯化等规聚丙烯,安徽化工,1993,(2):6-13
    [22] 张泗文,氯化聚丙烯及其生产工艺研究,化工新型材料,1995,(4),17-19
    [23] 童身毅,解孝林,张良钧,马来酸酐接枝聚丙烯研究,合成树脂与塑料,1994,11(1):15-17,22
    [24] 杨明山,马来酸酐固相接枝PP的研究,塑料工业,1995,23(2):6-9
    [25] Gaylord N G, Mishra M K, Nondegradative reaction of maleic anhydride and molten polypropylene in the presence of peroxides, J. Polym. Sci.: Polym. Lett. Ed., 1983, 21(1): 23-30
    [26] Lee S, Rengarajan R, Parameswaran V R, Solid phase graft copolymerization: Effect of interfacial agent, J.Appl. Polym. Sci, 1990, 41 (7, 8): 1891-1894
    [27] Rengarajan R, Vicic M, Lee S, Solid phase graft copolymerization. I. Effect of initiator and catalyst, J. Appl. Polym. Sci., 1990, 39 (8): 1783-1791
    [28] 施文键,胡树青,PP/PE符合薄膜油墨树脂的合成工艺研究,化学世界,1993,(3):142-145
    [29] Harris J M, Wamser C C, Fundamentals of Organic Reaction Mechanisms, New York, John Wiley Sons, 1976
    [30] Shah Y T, Gas-Liquid-Solid Reactor Design, McGraw-Hill, 1979
    [31] Benoit B, Michel G, Ludwik LAn Analysis of the Reaction-Diffusion Mechanism Governing the Chlorination Process of Poly(vinyl chloride), Journal of Polymer Science:PartB::Polymer Physics , 2000, 38 (24): 3201-3209
    [31] Levenspiel O, Chemical Reaction Engineering, 2nd ed. chapter 12.14., John Wiley, 1972
    [32] 潘祖仁主编,高分子化学,化学工业出版社,北京,1997:32-33
    [33] 徐寿昌,有机化学,高等教育出版社,1984
    [34] 特开平6-100618
    [35] US 2,996,489
    [36] Decker C, Balandier M, Faure J, Photochlorination of Poly(vinyl Chloride) I. Kinetics and
    
    Quantum Yield, J. Macromol. Sci.-Chem., 1981, A16(8):1463-1472
    [37] US 4412898 (PVC)
    [39] Niki E, Kamiya Y, Autoxidation of atactic polypropylene and related alkanes. Rates and reactivities toward peroxy radicals, Bulletin of the Chemical Society of Japan, 1975, 48(11):3226-3229
    [40] (美)J·塞克利著,胡道和译,气—固反应,中国建筑工业出版社,1986:59
    [41] (美)R.H.Perry著,化学反应工程手册,化学工业出版社:3-69
    [42] 陈新志,蔡振云,化工热力学,1999:A-2
    [43] US 5180791 .
    [44] 董炎明,高分子材料使用剖析技术,中国石化出版社,1997
    [45] 王宗明,何欣翔,孙殿卿,实用红外光谱学,石油工业出版社,1982
    [46] 马继盛,杨玉伟,固相氯化法氯化等规聚丙烯结构分析,合成橡胶工业,22(4):233-236
    [47] Nambu K, Studies on chlorinated polyethylenes. I. Infrared spectra of chlorinated polyethylenes, Journal of Applied Polymer Science, 1960, 4(10): 69-73
    [48] 高志纯,压片方法对聚丙烯结晶性能测试结果的影响,中国塑料,2001,15(2):74-76.
    [49] 何义勇,罗筱烈,崔便晓,陈力之,马德柱,不同分子量聚丙烯β晶相的形成,应用化学,2001,18(2):112-115
    [50] 汪昆华、罗传秋、周啸,聚合物近代仪器分析,清华大学出版社,2000:177
    [51] 明斯格尔K C,著.马文杰,黄子诤,译.聚氯乙稀的降解与稳定(Degradation and Stabilization of Poly (vinyl chliride)),北京:轻工业出版社,1985:40,29
    [52] 栗原福次,著.吴三硕,译.塑料的老化(Aging of Plastics),北京:国防工业出版社,1977:237
    [53] 朱诚身,张宜红,王经武,等.气氛对氯化聚丙烯热降解的影响,郑州大学学报:自然科学版,1995,27(2):44-47
    [54] 著.丁振威,齐平一,译,氯化聚合物(Chlorinated Polymer),北京:化学工业出版社,1983:50
    [55] 陆昌伟,奚同康,热分析质谱法,上海:上海科学技术文献出版社,2002:78
    
    
    [56] Hawkins W L,著.吕世光,译.聚合物的稳定化(Polymer Stabilization),北京:轻工业出版社,1981:36
    [57] Geddes W C, Mechanisms of PVC Degradation, Rubber Chemistry and Technology, 1967,40: 177-205

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700