用户名: 密码: 验证码:
从华北平原地下水系统中古环境信息研究地下水资源演化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
全球变化研究和大陆水循环研究是当前地学研究领域的热点问题。地下水是全球水循环的重要组成部分,具有地质环境变化最直接的信息内涵。本项研究以华北平原地下水作为古地质环境有机组成部分的“地质体”和古环境变化的“信息载体”,利用同位素和化学组分作为古环境变化的标记,应用自然地理、第四纪地质、气候学、水文地球化学、同位素水文学、古水文地质学及数学等领域的研究方法,识别出了华北平原地下水系统中三万年来和三百年来不同时间尺度的古气候变化记录,进而研究地下水形成演化。研究发现地下水的形成具有阶段性、突变性的特征,并划分了末次冰期以来的补给期,重建了华北平原晚更新世末期以来地下水形成演化过程,对全新世以来地下水的形成演化对气候变化的响应进行了模拟研究,根据与古气候相联系的地下水形成演化过程,重新区分了深层地下水资源的属性。提出了地下水资源可持续开发的管理建议,在理论研究和实际应用上具有重要意义。
“Global change”and “terrestrial hydrologic cycle”are the key problems of many resent earth scientific research programs, which require interdisciplinary and collaboration with other fields. Scientists mainly study these problems from ocean, land and atmosphere. The studies, however, are paid less attention to groundwater in the hydrologic chain from ocean—atmosphere —surface water and groundwater —ocean. In fact, groundwater that distributes widely in terrestrial area, as an important part of hydrologic cycle, plays an important role on mass and energy transfer among spheres, and is the potential achievement which can directly store the information of environmental change. Thus, groundwater provides an unique information carriers for studying the global change and terrestrial hydrologic cycle.
    Taken groundwater as information carriers of ancient geological environment changes, the purposes of present work are to establish aquifer archive, reconstruct the processes of groundwater resource formation and evolution, provide a new information source for study of global change and terrestrial cycle, and guide to groundwater resource sustainable development.
    This paper focus on three problems: (1) identify the information of paleoclimate from groundwater system in the North China Plain (2) understand groundwater evolution and its response to climatic change during the past 30,000 years in the North China Plain; ( 3 ) discuss the attribute of groundwater resource in deep confined aquifer for groundwater sustainable development.
    The present work regarded the regional groundwater system as an unity of subsystems, which are connected by isotopes in hydrological cycles. Quantity and quality studies are carried out by comprehensive analysis methods. Taken the North China Plain as a case study area, selected isotopic compositions in groundwater as paleoenvironmental indicators, the groundwater formation and evolution on regional and time scale are studied by using hydrogeochemistry, isotopic hydrogeology and paleohydrogeology methods on the basis of plenty of information stored in groundwater.
    In the study, the groundwater stratification in spatial and time is considered. Meanwhile, the features of current groundwater system circulation are regarded as the basic insight into groundwater evolution. By establishing groundwater cross section of age sequence and analyzing the paleoenvironmental parameters, the pattern of regionalgroundwater evolution over the last 30,000 years has been established. Furthermore, the attribute of groundwater in deep confined aquifer also has been redefined. The following results are obtained from the present study. 1. Establish the 14C-age cross section for groundwater in deep confined aquifer, the North China Plain. Along the groundwater flow path of Taihang mountains —Shijiazhuang —Hengshui—Cangzhou—Bohai Sea, the 14C ages of groundwater increase from modern to 30kaB.P.. Therefore, groundwater samples in different location represent different time, and compose a groundwater ages sequence section like stratum sequence. 14C age for groundwater west from Shulu is younger than 10kaB.P., while it ranges between 1 0—2 5 kaB.P in east from Shulu. They reflects that groundwater in deep confined aquifer was recharged at different periods during the past 30ka. Groundwater system with different 14C age is the information carriers of paleoenvironment. 2. Establish the paleoclimatic archive over the past 30,000 years and 300 years from deep confined aquifer and unsaturated zone profile, respectively. The δ18O and δD plot against 14C ages for deep confined aquifer in the North China Plain show that two distinct stage of δ18O and δD, respectively. The δ18O and δD value of groundwater with 14C ages from 30 ka B.P to 10 ka B.P. was lighter than those of groundwater with 14C ages younger than 10 kaB.P.. The heavier and lighter δ18O and δD stages are corresponding to the isotope stage 1 and stage 2 of deep sea sedimentary core, respectively. The observed shift to lighter isotopic content during the Pleistocene is consistent with a decrease in the mean annual temperature, reflected that the climate in late Pleistocene was colder than that in Holocene. 30 ka B.P—13 ka B.P., δ18O and δD values are relatively light, implied that this period was the last glacial period and the climate was cold. The lightest δ18O value at about 18kaBP and δD at 17kaB.P. reflect the last glacial maximum (LGM) which extent to 15kaB.P.. The mean surface air temperature calculated by isotopes was 4 ℃in the last glacial maximum, which was cooled by 6 ℃to 9 ℃. 13kaB.P. —11kaB.P., the δ18O and δD values increased with fluctuation and reached the highest of the glacial period at about 11kaB.P. , indicating the unstable climate in the transition from last glacial period to Holocene. The glacial climate tended
    to end after 15kaB.P. 11kaB.P. —present, the δ18O and δD values were significant heavier than that in the last glacial period, reflecting that climate in this period was warmer. The amount effect of isotope, however, suppresses the temperature effect because of prevailing summer monsoon. From 8ka B.P. to 5ka B.P, the δ18O and δD of groundwater showed relative low value over the Holocene, probably indicated a prevailing summer monsoon situation, warmer climate and increase in rainfall. In contrast, higher δ18O and δD value after 5kaB.P. corresponded to weak summer monsoon period, cool climate and decrease in rainfall. The changes of δ13C value in the groundwater over the last 30kaB.P. indicate that no substantially changes in vegetation cover. In this case, δ13C values reflected the changes of rainfall and temperature. The δ13C values are depleted during 11 —13kaB.P. and indicate the cold climate and lack of rainfall. Contrary, the relative enriched δ13C values indicated the warm, humid climate and increasing rainfall. Cl concentration in groundwater will be controlled by the climatic conditions. The relative high chloride value from 30kaB.P. to 10kaB.P. suggested that the climate was arid and rainfalls reduction in the last glacial maximum. Conversely, low chloride concentration from 10kaB.P. to present showed that the climate humid and rainfall increased, especially in Holocene climatic optimum from 8kaB.P. to 5 kaB.P.. Two chloride profiles of unsaturated zone at piedmont plain of Taihang Mountains suggested that there are three climatic cycles showing the cold-dry or wet-warm conditions over the psat 300 years. The wet-warm periods were 1702—1725A.D., 1761—1825A.D., 1876—1892A.D., respectively. 3. The groundwater evolution was characterized by periodicity and gradual and sudden change over the last 30,000 years. It has a close relationship with paleoclimatic and paleoenvironmental changes. The statistic frequency of 14C ages for 149 groundwater samples indicated that groundwater recharge mainly occurred before 20 kaB.P., and the period of 105.5 kaB.P.. Groundwater evolution in late Pleistocene was influenced by precipitation which was controlled by temperature changes, while it changed to be influenced by precipitation which was controlled by the rising of summer monsoon during Holocene. The isotopic records of groundwater shows different climatic change from that in the North Europe. This reflects the particularity of groundwater formation and evolution in North China Plain. Groundwater recharge in Holocene showed that continually recharged from 11kaB.P. to 6kaB.P. with maximum at about 6kaB.P. After this period, recharge
    alternatively occurred and significant recharge was at about 4kaB.P. , which corresponded to pluvial and arid periods The chloride concentration of soil water in northern Shangdong revealed that chloride accumulated from 4kaB.P and reach to peak value at about 3kaB.P.. Then it decreased and extended to present day. This indicated that there was a hiatus in recharge under arid condition at 3kaB.P.. In addition, another chloride top front occurred from about 8kaB.P. to 6kaB.P., this accumulation in recharge episode probably reflected the dissolution of soil salt by infiltrated water. Therefore, except for the influence of sea level change in littoral plain, the salinity of groundwater in North China Plain originated from dissolution of soil salt and intensive evaporation. The arid climate from 3kaB.P. was responsible for shallow saline groundwater. This has been supported by 14C age about 31kaB.P. for groundwater within the depth of 70m. This result reflects the sudden change of groundwater evolution. Groundwater evolution in North China Plain was characterized by periodically obtaining recharge water from precipitation during the past 300 years. The recharge period and recharge hiatus alternatively changed and corresponded to the climatic changes. Compared to recharge hiatus, the recharge periods were temporary. This suggested that recharge during the past 300 years was relative small on the time scale of 30,000 years. The recharge rate estimated were 1 0 —2 0 mm/a during the recharge period and 3 —7 mm/a during non-recharge period over the past 300 years. 4. Simulated the responses of groundwater evolution to paleoclimatic changes during the Holocene. Numerical modeling results implied that groundwater evolution depended on the paleoclimatic changes. In natural state, groundwater flow direction has no significant change. The hydraulic gradient tends to decrease from early Holocene to present. Groundwater evolution could be classified into three stages since 12kaB.P.. Stage 1 is early Holocene ( 1 2 —8 kaB.P.) In this period, climate was cold and arid. Precipitation was lower than the average annual precipitation. Groundwater table was at deep depth. Stage 2 is middle Holocene (8 kaB.P.—3.1 kaB.P.). Climate was warm and humid. Precipitation was higher than the average annual precipitation. Groundwater table fluctuated at very shallow depth. In this period, most part of the study area were surface water and marsh. Stage 3 is late Holocene (3.1 kaB.P.—present). Climate was temperate and slight dry. Precipitation fluctuated at the average annual precipitation. Groundwater table changed at a level higher than that of stage 1. 5. Groundwater resource in deep confined aquifers could be regarded as
引文
1. 安芷生,吴锡浩,卢演俦等,最近2 万年中国环境变迁研究。刘东生主编,黄土.第四纪地质.全球变化。北京:科学出版社,1990,第1—26 页。
    2. 陈望和等编著,河北地下水,地震出版社,北京,1999,第一版,539 页。
    3. 陈宗宇,张光辉,徐家明,华北地下水古环境意义及古气候变化对地下水形成的影响。地球学报,1998 年,第19 卷,第4 期,第338—345 页。
    4. 关秉钧等:用环境同位素氚、-14、-13 探讨北京地区地下水运动规律,水文地质技术方法,第十二辑,1985,第1—6 页。
    5. 郭永海等:河北平原京津以南深层地下资源形成规律的研究,地质论评,1996,5, 第410—415 页。
    6. 哈承佑,王瑞久,地下水中蕴藏着海平面变化信息,地学前缘(中国地质大学,北京), 1994 年,第3 卷,第1-2 期,第177-181 页。
    7. 黄春长著, 环境变迁,科学出版社,北京,1998, 第1-209 页。
    8. 孔昭宸等:北京地区距今30000—10000 年的植物群发展和气候变迁,植物学报,1990,20, 第330—338 页。
    9. 黎兴国,常丕兴,高文义等,渭河平原地下水分布特征与环境同位素研究——以白杨水源地为例。地球学报,1994 年,第1—2 期,第177—188 页。
    10. 李培英、夏东兴等,中国东部海岸带黄土成因及冰期渤海沙漠化之探讨,《中国海陆第四纪对比研究》,科学出版社,1991,第50—60 页。
    11. 李文鹏,周宏春,周仰效等著,中国西北典型干旱区地下水流系统。地震出版社,北京,1995,第一版,179 页。
    12. 林瑞芬,卫克勤,新疆玛纳斯湖沉积物氧同位素记录的古气候信息探讨—与青海湖和色林错比较。第四纪研究,1998 年,第4 期,第308-318 页。
    13. 刘存富,王佩仪,周炼,河北平原地下水氢、氧、氯同位素组成的环境意义。地学前缘(中国地质大学,北京),1997 年,第4 卷,第1—2 期,第267—274 页。
    14. 刘存富、王佩仪、周炼, 河北平原第四系地下水36Cl 年龄初探, 中国同位素水文地质学之进展(1988-1993), 天津大学出版社, 1993, 第114-118 页。
    15. 刘存富:地下水14C 年龄校正方法—以河北平原为例,水文地质工程地质,1990,3, 第4—8 页。
    16. 卢耀如等,中国300 万年来地质—生态环境及其今后演化趋势研究,籍传茂主编,人类生存的地质环境问题研究, 1997。
    17. 马锡彬、李玉尧著,地表层水环境的变化及其利用,气象出版社,北京,1997,第一版。
    18. 气象科学研究院, 中国近500 年旱涝分布图集(1470-1979), 地图出版社, 北京, 1982, 第一版,第321-332 页。
    19. 邵益生,内蒙古呼和浩特盆地地下水的环境同位素地球化学。工程勘察,1989 年, 第4 期,第41—43 页。
    20. 施雅风,孔昭宸,王苏民等,中国全新世大暖期的气候波动与重要事件,中国科学(B 辑),1992,12, 第1300——1308 页。
    21. 施雅风,张丕远,孔昭宸等, 中国气候与海平面变化及其趋势和影响,①中国历史气候变化。山东科学技术出版社,济南,1996,第227-282 页。
    22. 施雅风,刘春蓁,张祥松,中国气候与海平面变化及其趋势和影响,④气候变化对西北华北水资源影响,山东科学技术出版社,1995。第1-369 页。
    23. 王东生,中国大气降水氢氧同位素浓度场和环境效应。曲焕林,徐乃安主编,环境地学问题论文集。北京,石油工业出版社,1996,200-207。
    24. 王健民,北京地区大气降水水质初步分析研究,水文地质工程地质,1979,第55-61页。
    25. 王世称,陈永良,夏立显,综合信息矿产预测理论与方法,科学出版社,北京,2000,1-343 页。
    26. 卫克勤,林瑞芬,论季风气候对我国雨水同位素组成的影响。地球化学,1994,23(1) 第33-41 页。
    27. 吴忱主编,华北平原四万年来自然环境演变,中国科学技术出版社,北京,1992,第一版,195 页。
    28. 吴锡浩等,中国全新世气候适宜期东亚季风时空变迁,第四纪研究,1994,1,第24—37 页。
    29. 吴祥定等,历史时期黄河流域环境变迁与水沙变化。气象出版社,北京,1994,第一版,539 页。
    30. 夏东兴,吴桑云,郁彰,末次冰期以来的黄河变迁,海洋地质与第四纪地质。1993,第13 卷, 第2 期,第83—87 页。
    31. 姚足金,华北地热水3 万年以来的古气候记录,地球科学—中国地质大学学报,1995,4,第383—388 页。
    32. 杨怀仁:古季风、古海面与中国全新世大洪水,杨怀仁主编,环境变迁研究,南京:河海大学出版社,1996,第366—374 页。
    33. 张茂生,齐加林,环境同位素方法在白杨水源地勘探中的应用。王东生,徐乃安主编,中国同位素水文地质学之进展(1988—1993),天津大学出版社,天津,1993,第174—179 页。
    34. 张之淦,张洪平,孙继朝等, 河北平原第四系地下水年龄、水流系统及咸水成因初探—石家庄至渤海湾同位素水文地质剖面研究。水文地质工程地质,1987 年, 第4 期,第1-6 页。
    35. 张宗祜,沈照理,薛雨群等,华北平原地下水环境演化,地质出版社,北京,2000。第109 页。
    36. 张宗祜,施德鸿,任福弘等:论华北平原第四系地下水系统之演化,中国科学,1997,2,168-173。
    37. 张宗祜等著,中国北方晚更新世以来地质环境演化与未来生存环境变化趋势预测。 地质出版社,北京,1999,307 页。
    38. 章新平,姚檀栋,青藏高原降水中 18O 与温度和降水量的关系,地理学报,1995,15(1)。
    39. 郑淑惠,侯发高,倪葆龄:我国大气降水的氢氧稳定同位素研究,科学通报,1983,28(13),第801—806 页。
    40. 周炼,刘存富:河北沧州地区天然水的氯同位素组成,地球科学—中国地质大学学报,1996,第12 卷,第5 期。
    41. 周炼,刘存富,王佩仪:河北平原第四系咸水同位素组成,水文地质工程地质,1998,3,第4—8 页。
    42. 竺可桢,中国近5000 年来气候变迁的初步研究,中国科学,(2),1973,第291-296页。
    43. 李大通,张之淦等编译,核技术在水文地质中的应用指南(联合国国际原子能委员会技术报告丛No。91)。地质出版社,1990 年第1 版,第186-208 页。
    44. Allison, G.B., and Hughes, M.W., The use of environmental chloride and tritium to estimate total recharge to an unconfined aquifer. Australian Journal of Soil Research, 1978,16, pp.181-195.
    45. Allison, G.B., and Hughes, M.W., The use of natural tracers as indicators of soil water movement in temperate sem-arid region,. Journal of Hydrology, 1983, 60,pp.157-173.
    46. Allison, G.B., Barnes, C.J., Hughes, M.W. and Leaney, F.W.J., The effect of climate and vegetation on oxygen-18 and deuterium profiles in soils. In: Isotope Hydrology 1983. Int. At. Energy Agency, Vienna, 1984, pp.105—125.
    47. Aravena, R., Wassenaar, L.I., Plummer, L.N., Estimating 14C groundwater age in a methanic aquifer. Water Resources Research, 1995, 31 (9), pp. 2307-2317.
    48. Banner J.L., Musgrove M., Asmerom Y.,Edwards R.L.,Hoff J.A., High-resolution temporal record of Holocene groundwater-water chemistry: tracing links between climate and hydrology. Geology, 1996, 24(11), pp.1049-1053.
    49. Barker, J.F., Fritz, P., Brown, R.M., C-14 measurements in aquifers with CH4. In: Isotope Hydrology 1978. IAEA, Vienna, 1979, vol.II., pp.661-678.
    50. Bear, J.,. Dynamics of Fluids in Porous Media. Elsevier, New York, 1972, p.764.
    51. Cederstrom, D.J. Genesis of ground waters in the Coastal Plain of Virginia. Econ. Geol., 1946, 41(3), pp. 218-245.
    52. Chen, Z., Richard, K. W. Jr., Ira, S., Murray, O., Responses of ground water in the Black Mesa basin, northeastern Arizona, to paleoclimatic changes during the late Pleistocene and Holocene. Geology, 1998, Vol.26, No.2, pp.127-130.
    53. Clark, I.D. and Fritz, P., Environmental Isotopes in Hydrogeology. Lewis Publishers, Boca Raton, FL. 1997, Chapters 2 and 3, pp. 36-78.
    54. Clark, J.F., Stute, M., Schlosser, P., Drenkard, S., Bonani, G.,. A tracer study of the Floridian aquifer in southeastern Georgia: Implications for groundwater flow and paleoclimate. Water Resources Research, 1997, 33, pp.281-289.
    55. Cook, P. G.,Edmunds, W.M., Gaye, C.B., Estimating paleorecharge and paleoclimate from unsaturated zone profile. Water Resources Research, 1992, 28,pp. 272-2731.
    56. Craig, H., Isotopic variations in meteoric waters. Science, 1961,133, pp. 1702-1703.
    57. Dansgaard, W., Stable isotopes in precipitation. Tellus. 1964, 16, pp.436-468.
    58. Darling, W.G., Edmunds, W. M., and Smedley, P.L., Isotopic evidence for palaeowaters in the British Isles. Applied geochemistry, 1997, 12, pp.813-829.
    59. Davidson, M. R., and Airey P. L., The effect of dispersion on the establishment of a paleoclimatic record from groundwater. Journal of Hydrology, 1982, 58, pp.131-147.
    60. Dettenger, M.D., Reconnaissance estimates of natural recharge to desert basin in Nevada, USA, by using chloride-mass balance calculations. Journal of Hydrology, 1989, 106, pp.55-87.1989
    61. Dutton, A. R, Groundwater isotopic evidence for paleorecharge in U.S. high plain aquifers. Quaternary Research, 1995, 43, pp.221-231.
    62. Edmunds, W. M., and N. R. G. Walton, A Geochemical and isotopic approach to recharge evaluation in semi-arid zones: Past and present. Arid Zone Hydrol. Invest. Isot. Tech., 1980, pp.47-68.
    63. Edmunds, W. M., Geochemical indicators in the groundwater environment of rapid environmental change. In: Kharaka, H., Chudaev, O.V.,(Eds), Water-Rock Interaction. Published by A.A. Balkema Publishers, Netherlands,1995.pp.3-8.
    64. Eriksson, E., and V. Khunak Sen, Chloride concentration in groundwater recharge rate and rate of deposition of chloride in Israel coastal plain, Journal of Hydrology, 1969, 7, pp.178-197
    65. Fontes, J.-Ch., Garnier, J.M., Determination of intial 14C activity of total dissolved C: a review of the existing models and a new approach. Water Resources Research, 1979, 12, pp.399-413.
    66. Fontes J.C., Andrews, J.N., Edmunds, W.M., Guerre, A., and Travi, Y., Paleorecharge by the Niger river (Mali) deduced from ground water geochemistry. Water Resources Research, 1991, 27, pp.199-214.
    67. Fontes, J. C., Stute, M., Schiosser, P., and Broecker, W. S., Aquifers as archives of paleoclimate. EOS Trans. AGU., 1993, 74, pp.21-22.
    68. Fritz, P., Mozeto, A.A., Considerations on radiocarbon dating of groundwater. In: Interamerican Symposium on Isotope Hydrology, Bogota, 18-22 Aug. 1980. IAEA, VIENNA, 1981, pp.221-224.
    69. Gonfiantini R., Carbon isotope exchange in Katst groundwater. In: Karst hydrogeology and karst environment protection., proceedings. IAHS-AISH Publication. 1988, 176 ,pp.832-837.
    70. Ingerson E., Pearson FJ Jr., Estimation of age and rate of motion of groundwater by the 14C-method. In: Proc. Sugawara Festival on Recent Researches in the Fields of
    Atmosphere, Hydrosphere, and Nuclear Geochemistry. Maruzen, Tokyo, 1964,
    pp.263-283.
    71. Jacobson G, Calf G E, Jankowski J and McDonald P S., Groundwater chemistry and Palaeocharge in the Amadeus Basin, Central Australia. Journal of Hydrology, 1989,109, pp. 237-266.
    72. Junge, C.E., and R.T. Werby,. The concentration of chloride, sodium, potassium, calcium and sulfate in rain water over the United States. Journal of Meteorology, 1957, pp. 417-452.
    73. Levin, I., and Kromer, B., Twenty years of atmospheric 14CO2 observations at Scauinsland Station, Germany. Radiocarbon, 1997, 39(2), pp.205-218.
    74. Liu C.F., and Wang P.Y., The environment significance of isotope composition in groundwater of Hebei Plain. In: Proceedings of international workshop on groundwater and environment Beijing, August 16-18, Seismological Press, 1992, pp.382-386.
    75. Loosli , H.H. and Lehmann, B., Tools used to study paleoclimate help in water management. EOS,1998, Vol. 79, No.47, pp.576-582.
    76. Lu Y. R., Tong G.B., Guo Y. H. et al., Geological environment types and qualities and prediction on their evolutions in 21st Century in China.In: Zhang Zonghu, E.F.J. DE Mulder et al.(eds.),Geosciences and Human survival,Environment,Natural Hazards,Global Change;Proceedings of the 30th International Geological Congress, Beijing, China, 1997, Vol.2&3. Netherlands: VSP,UTRECHT,117—133.
    77. Matthess, G., Die Beschaffenheit des Wassers, Lehrbuch der Hydrogeologie, 2nd ed. Borntraeger, Berlin, Stuttgart. 1990.
    78. Mook, W.G., On the reconstruction of the initial 14C content of ground water from chemical and isotopic composition, In: Proceedings of the VII International Conference on 14C. Lower Hutt, New Zealand, 1972, pp.18-25.
    79. Mook, K.G., The dissolution-exchange model for dating groundwater with C-14. In: Interpretation of Environmental and Hydrchemical Data in Groundwater Hydrology. IAEA,Vienna, 1976, pp.212-225.
    80. Moser, H., and Rauert, W., Determination of groundwater movement by means of environmental isotopes: State of the art. IAHS Hamburg Symposium, August 1983, IAHS Publ. 1983, No.146, pp.241-257.
    81. Munnich,K.O., Messungen des 14C-gehaltes von hartem Groundwasser. Naturwisenschaften, 1957, 44, pp.32-33.
    82. Murphy, E.M., Ginn, T.R., and Phillips J., Geothemical estimates of paleorecharge in the Pasco Basin: Evaluation of the chloride mass balance technique. Water Resources Research, 1996, 32 ( 9), pp. 2853-2868.
    83. Pearson Jr,, F.J., and White, D.E., C-14 ages and flow rates of water in Carrizo Sand, Atascosa County, TX. Water Resources Research. 1967, 3(1), pp.251-261.
    84. Pearson Jr,, F.J., and Hanshaw, B.B., Sources of dissolved carbonate species in groundwater and their effect on C-14 Dating. In: Isotope Hydrology 1970,(Proc. Symp. 9-13 March 1970). IAEA,Vienna, 1970, pp.271-286.
    85. Phillips F M, Peeters L A, Tansey M K, and Davis S N, Paleoclimatic inferences from an isotopic investigation of groundwater in the Central San Juan Basin, New Mexico. Quaternary Research, 1986, 26, pp.179-193.
    86. Phillips, F.M., and J.L. Wilson, An approach to estimating hydraulic conductivity spatial correlation scales using geological characteristics, Water Resources Research, ,1989, 25, pp.141-143.
    87. Phillips FM., Environmental tracers for water movement in desert soils of the American southwest. Soil Sci. Soc. Am. J. 1994, 58, pp.115-24.
    88. Phillips, F.M., The use of isotopes and environmental tracers in subsurface hydrology, Rev. Geophys. Supp., 1995, pp.1029-1033.
    89. Plummer, L.N., Busby, J.F., Lee, R.W., Hanshaw, B.B., Geochemical modeling of the Madison Aquifer in part of Montana, Wyoming and South Dakota. Water Resources Research, 1990, 26(9), pp.1981-2014.
    90. Plummer L N, Stable isotope enrichment in paleowaters of the Southeast Atlantic coastal plain, United States. Science, 1993, 262, pp. 2016-2020.
    91. Plummer L.N., Prestemon E.C., Parkhurst D.L., An interactive code (NETPATH) for modeling NET geochemical reactions along a flow PATH —Version 2.0. Water-Resources Investigations Rep 94-4169, USGS, Washington, DC., 1994.
    92. Reardon, E.J., Fritz, P., Computer modeling of groundwater 13C and 14C isotope compositions. Journal of Hydrology, 1978, 36, pp.210-224.
    93. Rozanski, K., Deuterium and oxygen-18 in European groundwaters—links to atmospheric circulation in the past. Chemical Geology, 1985, 52, pp.349-363.
    94. Rozanski K, Arans-Aragnas L, and Gonfiantini R, Relation between long-term trends of oxygen-18 isotope composition of precipitation and climates. Science, 1992, 258, pp. 981—984.
    95. Sanford, W.E. and Buapeng, S., Assessment of groundwater flow model of the Bangkok basin, Thailand, using carbon-14-based ages and paleohydrology. Hydrogeology Journal, 1996, 4, pp.26-40.
    96. Shi, D.H., Yin, X., A latitudinal section studied on the evolution of terrestrial water system in northern China since late late Pleistocene. International Geological Congress—Abstracts Congress 30, 1996, 1, pp.92.
    97. Siegel D.I., Evidence for dilution of deep, confined groundwater by vertical recharge of isotopically heavy Pleistocence water. Geology, 1991, 19, pp.433-436.
    98. Sonntag C, Klitzsch E, Lohnert P, Munnich K O, Junghans C, Thorweihe U, Weistroffer K and Swailem F M,. Paleoclimatic information from deuterium and oxygen-18 in C-14 dated north Saharian groundwaters; groundwater formation in the past. In: Isotope Hydrology 1978. International Atomic Agency, Vienna, 1979, pp.569-581.
    99. Stone, W. J., Paleohydrological implications of some soil water chloride profiles, Murray Basin, South Australia. Journal of Hydrology, 1992, 132, pp.201-223.
    100. Stumm, W., Morgan, J., Aquatic chemistry. John Wiley and Sons, Inc., 1996
    101. Stute M and Deak J., Environmental isotope study (14C, 13C, 18O, D, noble gasses) on deep groundwater circulation systems in Hungary with reference to paleoclimate. Radiocarbon, 1989, 31, pp. 902-918.
    102. Stute, M., Schlosser, P., Principles and applications of the noble gas paleothermometer. In: P.K. Swart, K.C. Lohmann, J. Mckenzie, S. Savin (Eds.), Climate change in continental isotopic records. Geophysical Monograph, 1993, 78, pp. 89-100.
    103. Stute, M., Schlosser, P., Clark, J. F., and Broecker, W. S., Paleotemperatures in southwestern United States derived from noble gasses in groundwater. Science, 1992, 256, pp.1000-1003.
    104. Sukhija, B.S., Reddy, D.V., and Nagabhushanam, P., Isotopic fingerprints of paleoclimates during the last 30,000 years in deep confined groundwaters of Southern India. Quaternary Research, 1998, 50, pp. 252-260.
    105. Tamers, M.A., Radiocarbon ages of groundwater in an arid zone unconfined aquifer. In: Iostope Techniques in the Hydrologic Cycle, Geophys. Monogr. Ser., Vol. 11. (Ed.). G.E. Stout. AGU, Washington, D.C., 1967, pp.143-152.
    106. Tamers, M.A., Validity of radiocarbon dates on groundwater. Geophys. Surv, 1975, 2, pp.217-239.
    107. Tyler, S. W., Chapman, J. B., Conrad, S.H., Hammermeister, D.P., Blout, D.O., Miller, J.J., Sully, M.J., and Ginanni, J.M., Soil-water flux in the Southern Great Basin, United States: Temporal and spatial Variations over the last 120,000years. Water Resources Research, 1996, 32, 6, 1481-1499.
    108. Urey, H.C., The thermodynamic properties of isotopic substances. J. Chem. Soc. 1947, 562.
    109. Vogel, J. C., Ehhalt, D. H., The use of C isotopes in groundwater studies. In: Radioisotopes in Hydrology. IAEA, Vienna, 1963, pp.383-396.
    110. Vogel, J.C., Investigation of groundwater flow with radiocarbon. In: Isotopes in Hydrology, IAEA, Vienna, 1967, pp.225-239.
    111. Vogel, J.C., Carbon-14 dating of groundwater, In :Isotope Hydrology 1970, IAEA, Vienna, 1970, pp.225-239.
    112. Wagenbach D, Environmental records in alpine glaciers. In: H Oeschger and C C Langway Jr. (Eds), The environmental record in glaciers and ice sheets. John Wiley and

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700