用户名: 密码: 验证码:
芪蓟肾康颗粒总黄酮对IgA肾病大鼠的治疗及抑制ECM机制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:
     1.本实验采用大孔吸附树脂法纯化了芪蓟肾康颗粒总黄酮,并观察芪蓟肾康颗粒总黄酮对IgA肾病大鼠尿红细胞计数、24小时尿蛋白定量、肾脏病理改变的影响,证明此方治疗由口服牛血清白蛋白所致实验性IgA肾病的有效性;2.采用血管紧张素Ⅱ作为刺激因子,诱导体外培养的大鼠肾小球系膜细胞过度分泌纤维连接蛋白和IV型胶原,使细胞外基质发生积聚。应用血清药理学方法,选择不同的时间点,通过观察芪蓟肾康颗粒总黄酮药理血清对体外培养的肾小球系膜细胞纤维连接蛋白和IV型胶原的影响,探讨芪蓟肾康颗粒总黄酮治疗免疫损伤性肾小球疾病的作用靶点。3.通过检测体外培养的肾小球系膜细胞信号传导通路丝裂原活化蛋白激酶以及核因子-kB的表达,探讨其保护肾脏,治疗免疫损伤性肾小球疾病的作用机制。并为探寻芪蓟肾康颗粒治疗肾小球疾病提供可靠的实验数据,为今后指导临床提供新的思路和方法。
     材料与方法:
     1采用大孔吸附树脂法纯化芪蓟肾康颗粒总黄酮:
     芪蓟肾康颗粒上样,吸附率为1BV·h-1,用2BV水量、3BV的30%乙醇、4BV的50%乙醇洗脱,洗脱流速4BV·h-1,合并30%乙醇和50%乙醇洗脱液,浓缩,即为纯化的总黄酮。纯化后总黄酮含量提高到76%。
     2采用口服牛血清白蛋白复制实验性IgA肾病大鼠模型及分组治疗:
     口服免疫原牛血清白蛋白(BSA)剂量较常用剂量增加1倍,为400mg/kg,隔日1次灌胃,四氯化碳(CCl4)注射方式由既往的腹腔注射改为皮下注射,用诱导肝纤维化1/3的剂量(皮下注射蓖麻油0.5mL+CCl40.10mL,每周1次,持续9周),并联合运用脂多糖(LPS),第6,8周予以0.05mg尾静脉注射复制模型。
     SPF级SD大鼠40只,体重180g-220g,雌雄各半。将大鼠按体重随机分为5组,分别为:正常组、模型组、芪蓟肾康颗粒总黄酮高、芪蓟肾康颗粒总黄酮低剂量组、替米沙坦组,每组8只。正常组、模型组给予生理盐水1ml/100g(体重)每日一次灌胃,芪蓟肾康颗粒总黄酮高、低剂量组分别按生药量60g·kg-1·d、30g·kg-1·d灌胃,替米沙坦组按8mg·kg-1·d灌胃,每日一次。于实验第12周末次给药后,收集标本,测定各项指标。
     3应用血清药理学方法,制取正常大鼠、芪蓟肾康颗粒总黄酮高、低剂量组的药理血清
     芪蓟肾康颗粒总黄酮高、低剂量组按生药量30g·kg-1·d、15g·kg-1·d灌胃,每天一次;正常组灌服等量的生理盐水。连续灌胃5天,末次给药1小时后,腹主动脉取血。血液使用离心机,1500rpm离心5分钟,吸取上清液。经56℃水浴,30min灭活处理。用0.22μm的滤器过滤除菌,置-20℃保存备用。
     4采用血管紧张素Ⅱ作为刺激因子,诱导体外培养的大鼠肾小球系膜细胞,使其发生细胞外基质的积聚。
     将肾小球系膜细胞接种于25cm2培养瓶中,加入含10%FBS的DMEM培养液,放置于37℃、5%CO2孵箱中进行培养。约2-3天换一次液,待细胞达到80%-90%融合后,按2×104个·孔-1的浓度接种于24孔培养板,每组设置5个复孔。用含0.5%FBS的DMEM培养24小时后,更换含10%药理血清DMEM培养液继续培养24h、48h、72h,分别在不同时间点收集细胞待测。
     5采用终点法测定IgA肾病大鼠24小时尿蛋白定量
     末次给药后将大鼠置于代谢笼中单笼饲养(禁食,不禁水),用代谢笼收集24小时大鼠尿液。24小时候后准确记录每只大鼠24小时的总尿量,并留取尿样5ml,以备测定尿红细胞计数和24小时尿蛋白定量。实验条件:温度:37℃、波长:600nm、光径:1.0cm、吸光度范围:0-2A、反应时间:5min、样品:试剂=1:604。
     6肾脏组织病理学评价指标
     将病变的肾组织使用20%甲醛固定,常规石蜡包埋切片,经HE染色,观察IgA肾病病理改变。
     7免疫荧光染色
     用直接法进行染色,取大鼠肾皮质常规冰冻切片3μm,用电吹风干燥,切片经丙酮固定5min,PBS液冲洗3次,每次5min,滴加羊抗鼠免疫荧光IgA、IgM和C31:10稀释荧光标记(异硫氰的荧光素标记)的抗体于组织切片上,置温度37℃中孵育45min,取出切片置于PBS液中洗3次,每次5min,取出切片用缓冲液甘油封片。
     8应用免疫酶联吸附法测定纤维粘连蛋白、IV型胶原的分泌量,丝裂原活化蛋白激酶以及核因子-kB的表达。
     (1)分别设置空白孔、标准品孔、待测样品孔。在酶标包被板上标准空中加入标准品50μl;在酶标包被板上待测样品孔中先加样品稀释液40μl,然后再加待测样品10μl轻轻晃动均匀,37℃温育30分钟。(2)弃去液体,甩干,每孔加满稀释后洗涤液,震荡30秒,甩去洗涤液,用吸水纸拍干。重复5次,拍干。(3)每孔加入酶标试剂50μl,空白孔除外。轻轻晃动均匀,37℃温育30分钟。(4)弃去液体,甩干,每孔加满稀释后洗涤液,震荡30秒,甩去洗涤液,用吸水纸拍干。重复5次,拍干。(5)每孔先加入显色剂A50μl,再加入显色剂B50μl,轻轻晃动均匀,37℃避光显色10分钟。(6)取出酶标板,每孔加入终止液50μl,终止反应(此时蓝色立转黄色)。(7)测定:以空白孔调零,在450nm波长下测量各孔的吸光度值(OD值)。测定在加终止液后15分钟内进行。(8)根据标准品的浓度及对应的OD值计算样品浓度。
     结果:
     1.与正常组(26.30±10.64个/μl,168.38±55.71mg/24小时)比较,模型组大鼠的尿红细胞计数(113.57±32.5个/μl)和24小时尿蛋白排出量(593.51±114.01mg/24小时)显著高于正常组,p<0.05;经芪蓟肾康颗粒总黄酮高、低剂量和替米沙坦治疗5周后,各治疗组大鼠的尿红细胞计数(高剂量组48.42±22.27个/μl,低剂量组51.38±25.94个/μl,替米沙坦组59.15±11.01个/μl)和24小时尿蛋白排出量(高剂量组286.46±134.33mg/24小时,低剂量组358.43±167.79mg/24小时,替米沙坦组263.91±126.42mg/24小时)显著降低,与模型组比较均有统计学差异(p<0.05),各治疗组间比较无统计学差异。结果提示,芪蓟肾康颗粒总黄酮能有效的减轻IgA肾病大鼠血尿和蛋白尿的症状。
     2.肾脏组织病理形态学观察:正常组肾小球结构正常,模型组可见肾小球肿胀、体积增大及重度弥漫性系膜增生,染色显示有部分肾小球呈分叶状,系膜细胞增多,系膜基质增宽。而芪蓟肾康颗粒总黄酮高剂量组系膜增生较轻。芪蓟肾康颗粒总黄酮低剂量组肾小球肿胀,中度系膜增生。替米沙坦组肾小球肿胀较轻,伴中、轻度系膜增生。
     3.免疫荧光检查示:正常组肾小球系膜区IgA、IgG、IgM和C3均呈阴性。模型组全部大鼠肾小球内均有IgA沉积,其强度为++~+++,主要在肾小球系膜区呈颗粒状沉积,个别还波及毛细血管壁并伴有IgG、IgM和C3沉积。治疗后各组IgA沉积荧光强度均有不同程度的减弱,尤其是芪蓟肾康颗粒总黄酮高剂量组效果更显著,部分IgA荧光强度在±~-。
     4.正常组大鼠肾小球系膜细胞分泌了少量的Ⅳ胶原和纤维粘连蛋白,表明在正常情况下,体外培养的肾小球系膜细胞具有分泌Ⅳ胶原和纤维粘连蛋白的功能。经血管紧张素Ⅱ刺激后,Ⅳ胶原和纤维粘连蛋白的分泌量显著增加,约为正常组的2倍,与正常组比较有显著性差异(p<0.01),提示血管紧张素Ⅱ能明显促进系膜细胞分泌Ⅳ胶原。芪蓟肾康颗粒总黄酮高、低剂量组在24小时、48小时、72小时不同时间点,Ⅳ胶原和纤维粘连蛋白的含量均显著降低,与血管紧张素Ⅱ组比较有显著差异(p<0.01),并且呈现出一定的量效关系。但各治疗组间比较无统计学差异。芪蓟肾康颗粒总黄酮抑制细胞外基质积聚的作用从24小时开始已经显现,并延续至72小时。
     5.血管紧张素Ⅱ激活了丝裂原活化蛋白激酶以及核因子-kB的信号转导通路,丝裂原活化蛋白激酶(3.365±0.265)以及核因子-kB(3.355±0.265)的含量与正常组(MAPK,1.805±0.065, NF-kB1.660±0.100)比较有统计学差异,(p<0.01)。给予芪蓟肾康颗粒总黄酮提取物和氯沙坦干预48小时后,两条通路的信号转导受到了抑制,二者(MAPK高剂量组:2.590±0.150,低剂量组:2.465±0.285,氯沙坦组:2.215±0.015;NF-kB高剂量组:2.435±0.165,低剂量组:2.450±0.160,氯沙坦组:1.995±0.095)的含量显著降低,同时纤维粘连蛋白和Ⅳ型胶原的含量也显著降低,与血管紧张素Ⅱ组比较均有统计学意义,p<0.01,虽然各治疗组间比较无统计学差异,但是氯沙坦组的作用要稍优于芪蓟肾康颗粒总黄酮高、低剂量组。
     结论:
     1.芪蓟肾康颗粒总黄酮能效地降低IgA肾病大鼠尿红细胞计数,减少24小时尿蛋白的排出量,减轻肾脏病理改变,减少免疫复合物的沉积。证实了芪蓟肾康颗粒总黄酮对实验性IgA肾病具有一定的治疗作用。2.芪蓟肾康颗粒总黄酮可以抑制AngⅡ诱导的肾小球系膜细胞细胞外基质—IV型胶原、纤维粘连蛋白的过度表达,通过抑制细胞外基质的过度表达来延缓免疫损伤性肾小球疾病的发展,明确了芪蓟肾康颗粒总黄酮的作用靶点。也为芪蓟肾康颗粒应用于临床治疗肾小球疾病提供了实验数据。
     3.芪蓟肾康颗粒总黄酮有效的抑制了丝裂原活化蛋白激酶和核因子-kB两条信号转导通路的转导,减少细胞外基质的过度积聚,减轻肾小球的损伤,从而防止免疫损伤性肾小球疾病的进一步发展,对肾脏起到保护作用。
Purpose:
     This experiment use macroporous purification Qiji shenkang granule extract flavonesadsorption resin method, and to observe the effects of Qiji shenkang granule flavonoidsextracts on urine red blood cell count、24hour urinary protein quantitative、pathologicalchanges in kidney and renal immunofluorescence examination in rats with IgA nephropathy,proving the Qiji shenkang granule can treat the rats with IgA nephropathy.The angiotensin IIas a stimulating factor, rat glomerular mesangial cells cultured in vitro, induced excessivesecretion of fibronectin and collagen type IV, leading to the extracellular matrix accumulationoccurs. Choose a different time point, by observing Qiji shenkang granule effect on thesecretion of fibronectin and collagen type IV, to investigate the role of the target by Qijishenkang granule of total flavonoids extract on glomerular disease. The signal transductionpathway through glomerulus mesangial cell in vitro, to detect the expression of activatedmitogen activated protein kinase and nuclear factor kappa b, and to explore the role ofprotecting kidney and the mechanism of prevention and treatment of glomerular diseases.And to provide reliable experimental data for the treatment of diseases of glomerular by Qijishenkang granule, in order to guidance clinical provide new ideas and methods in future.Material and method:
     1Using purification technology of total flavonoids from Qiji shenkang granule bymacroporous resin
     The sample of Qi ji shen kang granule was passed through the column with flow rate of1BV·h-1,eluted by2BV water,3BV30%ethanol,4BV50%ethanol respectively,elutionflow rate was2BV·h-1.Combined30%and50%ethanol elutes were concentrated to yield thepurification of total flavonoids. The purity of total flavonoids was up to76%.
     2. The use of oral bovine serum albumin replication of experimental IgA nephropathy modelrats and the treatment group
     The dose of oral immunogen bovine serum albumin (BSA) increased one times (400mg·kg-1every other day), the method of injecting carbon tetrachloride CCl4was subcutaneousinjection instead of intraperitoneal injection, which dose was one third of content to induce hepatic fibrosis (benne oil0.5ml once a week and CCl40.10ml once a week, continue9weeks). Combined with0.05mg lipopolysaccharide once a everyday, at the sixth and ninthweek once.
     forty SD rats (specific pathogen free), in which the half was male and the other half wasfemale and200±20g body weight. The rats were randomly divided into five groups, namely:the control group, model group, the Qiji shenkang granule total flavonoids high does group,the Qiji shenkang granule total flavonoids low does group.the telmisartan group. N=8.Thenormal group, model group were given normal saline1ml/100g (weight) once daily. the Qijishenkang granule total flavonoids high does group was treated by60g·kg-1of Qiji shenkanggranule total flavonoids everyday and Qiji shenkang granule total flavonoids low does groupby30g·kg-1of Qiji shenkang granule total flavonoids everyday. The telmisartan group wastreated by8mg·kg-1of telmisartan everyday. In the twelfth week, after the last administration,collection of samples, determination all kinds of indexs.
     3. Through the pharmacology of serum method,we got the control group,the Qiji shenkanggranule total flavonoids high does group, the Qiji shenkang granule total flavonoids low doesgroups’ pharmacological serum.
     The Qiji shenkang granule total flavonoids high does group was treated by30g·kg-1·d ofQiji shenkang granule total flavonoids and Qiji shenkang granule total flavonoids low doesgroup by15g·kg-1·d of Qiji shenkang granule total flavonoids. The normal group was givennormal saline1ml/100g (weight) once daily for five days.1hour after the last administration,blood was taken from the abdominal aorta. Blood using a centrifuge, condition is1500rpmcentrifugation for5minutes, taking supernatant. After56℃water bath,30min inactivation.By filter sterilization of0.22μ m,-20℃preservation reserve.
     4. The angiotensin II as a stimulating factor, rat glomerular mesangial cells in vitro, make itsproduce extracellular matrix accumulation.
     The glomerular mesangial cells were cultured in25cm2culture flask, with mediumcontained10%FBS DMEM. The cells were incubated at37℃in humidified5%CO2-95%air. The cell medium was left untouched for2-3days and changed every other day untilconfluence. Glomerulus mesangial cell were grown to80%-90%confluence, washed oncewith serum-free DMEM.According to the concentration of2x104cells/hole, MCs cells was seeded in24well plates, each set of5hole. Cells were made arrested in0.5%FBS DMEM for24h to synchronize the cell growth. After this time period, the media was changed to DMEMcontaining10%pharmacological serum for24h、48h、72h, Cells were collected at differenttime points to be measured。
     5.24hour urinary protein quantitative was determined by end-point method。
     After the last administration, rats were placed in metabolic cages with single cagefeeding (fasting, but the water), collected24hours urine of rats in metabolic cage.24hourslater, accurate records of each rat urinary total24hours of content, and collected the urine5ml, for determination of urine red blood cell count and24hour urinary protein quantitative.Experimental conditions: Temperature:37°C, wavelength:600nm, optical diameter:1.0cmthe absorbance range to:0-2A, reaction time:5min Sample: Reagents=1:604.
     6. Pathological evaluation of renal tissue
     The renal lesions using20%formalin-fixed, paraffin embedded sections, and throughHE, to object pathological changes of IgA nephropathy.
     7. Immunofluorescence staining
     A direct method for dyeing, and renal cortex of rats with routine frozen sections of3μ m,with a hair dryer drying, sections by acetone fixed5min, PBS liquid rinse3times, each time5min, drop of sheep anti-mouse immune fluorescence IgA, IgM and C31:10dilutionfluorescence labeling (labeled with fluorescein isothiocyanate.) antibody in tissue section, thetemperature of37℃incubating45min, remove the slices in PBS solution and wash3times,each time5min, remove the slices with buffer glycerol.
     8. The secretion of fibronectin、collagen type Ⅳand the expression of mitogen activatedprotein kinase、nuclear factor-kappa b were tested by enzyme-linked immunosorbentassay(ELISA).
     (1)add the standard: according to the order on board hole concentration in50μlstandard product configured. add samples: a blank hole(blank respectively controlled holewithout samples, affinity,and standard reagents, the rest of the enzyme each step for the sameoperation), sample hole. The enzymes standard bag was board to be added sample and then40μl add meat10μl Sample billogical. And when the Sample billogical and in a sample ofenzyme panels at the bottom of the hole, try not to touch the hole wall, gently shaking blending. Incubate: After closing plate with Closure plate membrane, incubate for30min at37℃.(2)Configurate liquid:30-fold wash solution diluted30-fold with distilled water andreserve. washing: Uncover Closure plate membrane dry by swing, add washing buffer toevery well, still30s then drain, repeat5times, dry by pat.(3)add enzyme: Add ELISAreagents50μl to each well, except the blank well.(4)Uncover Closure plate membrane dryby swing, add washing buffer to every well, still30s then drain, repeat5times, dry by pat(.5)color: add color reagent A50μl and color B50μl to each well. Gently mix, incubate for15min at37℃.(6)Stop the reaction:Add Stop Solution50μl to each well, Stop the reaction(the blue color change to yellow color Immediately).(7)assay: take blank well as zero,measure the optical densit(OD)at450nm after Adding Stop Solution and within15min.(8)To calculate the sample concentration according to the standard concentration and thecorresponding OD.
     Results:
     1Compared with the normal group,(the urine red blood cell count:26.30±10.64/μ L,24hour urine protein:168.38±55.71mg/24hours), the urine red blood cell count of modelgroup rats (113.57±32.5/μ L) and24hour urine protein excretion (593.51±114.01mg/24hours) was significantly higher than that in normal group, p<0.05; The Qiji shenkang granuletotal flavonoids high, low dose and telmisartan treatment after5weeks, urine red blood cellcount of rats in all treatment groups (the high dose group48.42±22.27/μ L, the low dosegroup51.38±25.94/μ L, the telmisartan group59.15±11.01/μ L) and24hour urine proteinexcretion (the high dose group was286.46±134.33mg/24hours, the low dosage group was358.43±167.79mg/24hours, the telmisartan group263.91±126.42mg/24hours) decreasedsignificantly, which has statistical difference compared with model group (p <0.05), thetreatment group showed no statistical difference. The results suggest that, Qiji Shenkanggranule total flavonoids can effectively improve the rat IgA nephropathy hematuria andproteinuria symptoms.
     2. Pathological observation: normal group kidney glomerular structure normal, model groupshowed glomerular swelling, enlargement and severe diffuse mesangial proliferation,glomerular staining showed some lobulated, mesangial cells, mesangial matrix increased. Total flavonoids of Qiji Shenkang granula high dose group mesangial proliferative lighter.Total flavonoids of Qiji Shenkang granule low dose group glomerular swelling, moderatemesangial proliferation. Telmisartan group glomerular swelling and lighter, with moderate,mild mesangial proliferation.
     3. Immunofluorescence examination showed: normal group glomerular mesangial areas IgA,IgG, IgM and C3were negative. The model group rats were all glomerular IgA deposition, itsstrength is+++, mainly in the mesangium granular deposition, the individual also affectedthe capillary wall and associated with IgG, IgM and C3deposition. Each IgA depositiondecreased fluorescence intensity of treatment in different degree, especially the totalflavonoids of Qiji Shenkang granule effect of high dose group was more significant, part ofthe IgA fluorescence intensity in±~-.
     4. The normal rat glomerular mesangial cells can secrete a small amount of collagen type IVand fibronectin, show that under normal circumstances, glomerular mesangial cells in vitrocan secrete collagen type IV and fibronectin. After the angiotensin II stimulation, the ratglomerular mesangial cells secretion of collagen IV and fibronectin increased significantly,about2times the normal group, there was significant difference compared with the normalgroup (p <0.01), suggesting that angiotensin II can obviously promote mesangial cellssecrete collagen type IV and fibronectin. At different time points, the Qiji Shenkang granuletotal flavone high, low dose group the content of collagen type IV and fibronectin weresignificantly reduced in24hours,48hours,72hours, compared with angiotensin II group,there were significant differences between them (p <0.01), and showing a certaindose-effect relationship. But the treatment group showed no statistical difference. Inhibitionof extracellular matrix accumulation effect by Qiji shenkang granule total flavonoids hasemerged from the24hours, and continued to72hours.
     5. Ang II activates mitogen-activated protein kinase and nuclear nuclear factor kappa b signaltransduction pathway. The contents of mitogen-activated protein kinase (3.365±0.265)andnuclear factor kappa b(3.355±0.265)compared with the normal group(mitogen-activatedprotein kinase1.805±0.065, nuclear factor kappa b1.660±0.100), there were significantdifferences (p <0.01). Given the Qiji shenkang granule total flavonoids and losartan intervention for48hours, two signal transduction pathways were inhibited in glomerulusmesangial cell in vitro. The content of mitogen-activated protein kinase(the high group2.590±0.150, the low group2.465±0.285, the losartan group2.215±0.015) and nuclearnuclear factor kappa b(the high group2.435±0.165, the low group2.450±0.160, the losartangroup1.995±0.095) were significantly decreased, at the same time content of fibronectin andcollagen type IV was significantly lower. Compare with the angiotensin II group, all of themwere statistically significant, p <0.01. Although every treatment group showed no statisticaldifference between them, but the effect of losartan group is better than the Qiji Shenkanggranule total flavonoids high and low dose group.
     Conclusion:
     1. Qiji shenkang granule total flavonoids can effectively reduce urinary red blood cell countin and the excretion of urine protein in24hours in rats with IgA nephropathy. Reduce therenal pathological changes, reduce the deposition of immune factors. Confirm the QijiShenkang granule total flavonoids have a certain therapeutic effect on experimental IgAnephropathy.
     2. Qiji Shenkang granule total flavonoids can inhibit Ang II induced glomerular mesangialcell extracellular matrix–fibronectin and collagen type IV expression. Through inhibitexcessive expression of extracellular matrix to delay the occurrence and development of renaldisease. The target was clear about Qiji Shenkang granule total flavonoids. Also providingexperimental data, the aim is useing Qiji Shenkang granule in clinical treatment of glomerulardisease.
     3. Both of the mitogen-activated protein kinase and nuclear factor kappa b two signaltransduction pathways were effectively inhibited by Qiji Shenkang granule total flavonoids,and it prevent the excessive accumulation of extracellular matrix, meanwhile reduce theglomerular injury. Play a role in renal protection. Qiji Shenkang granule total flavonoidsprevent the occurrence of glomerular disease and further development of glomerular disease.
引文
[1]Donadio JV,Grande JP.IgA nephropathy.N Engl J Med,2002,347:738-748.
    [2]Strippoli G,Maione A,Tognoni G,et al.IgA Nephropathy:A Disease in search ofa Large-Scale Clinical to Reliably Inform Practice.Am J Kidney Dis,2009,53:5-8.
    [3]Hsu SI,Ramirez SB,Winn MP,et al.Evidence for genetic factors in thedevelopment and progression of IgA nephropthy.Kidney Int,2000,57:1818-1835.
    [4]陈惠萍,曾彩虹,胡伟新,等.10594例肾活检病理资料分析.肾脏病与透析肾移植杂志,2000,9:501-509.
    [5]Bracke M,Lammers JW,Coffer PJ,et al.Cytokine-induced inside-out activationof FcαR(CD89)is mediated by a single serine residue(S263)in the intracellulardomain of the receptor.Bllod,2001,97:3478-3483.
    [6]Martens S,Mithofer A.Flavones and flvone synthases [J]. Phytochemistry,2005,66(20):2399-2407。
    [7]蒋文功,李幼姬.骨碎补类黄酮对系膜增殖性肾小球肾炎大鼠模型的抑制作用[J].中国中西医结合肾病杂志,2006,7(8):382-385。
    [8]胡翠云,戴敏,陈君君,等.黄蜀葵花总黄酮对大鼠湿热型慢性肾炎的作用及其对红细胞免疫黏附功能的影响[J].安徽中医学院学报,30(1):57-61。
    [9]南丽红,彭卫华,方泰惠,等.筋骨草总黄酮治疗系膜增生性肾小球肾炎大鼠的实验研究[J].中国中医急症,2009,18,(11):1849-1850、1855。
    [10]南丽红,彭卫华,郑省兰,等.筋骨草总黄酮对慢性血清病肾炎大鼠自由基损伤的影响[J].中国中西医结合肾病杂志,2009,10(10):867-870。
    [11]冯媛,刘敏,张苗,等.黄蜀葵花总黄酮对单侧输尿管梗阻大鼠肾间质纤维化的影响[J].中国中西医结合肾病杂志,2010,11(11):1006-1008。
    [12]朱春玲,陈康.黄葵胶囊对单侧输尿管梗阻大鼠模型肾间质SDF-1表达的影响[J].中国中西医结合肾病杂志,2011,12(1):76-77。
    [13]曾雪姣,张胜容.黄葵胶囊对慢性肾衰竭模型肾纤维化的影响[J].中国中西医结合肾病杂志,2008,9(9):804-805。
    [14]谢红东,杨珂,穆焕德,等.黄芩提取物对大鼠肾间质纤维化的作用及其抗氧化机制[J].中国中西医结合肾病杂志,2009,10(3):240-242。
    [15]刘海霞,郭明好,刘云等.黄芩苷对人肾小管上皮细胞转分化的影响[J].中国中西医结合肾病杂志,2011,12(10):864-866。
    [16]舒红,王俭勤,王雅,等.黄芪毛蕊异黄酮对转化生长因子β1诱导内皮细胞转分化的影响[J].中华中医药杂志,2012,27(3):753-755。
    [17]黄志勤,李洪亮,程齐来.细梗胡枝子总黄酮对慢性肾功能衰竭大鼠的影响[J].山东医药,2011,51(8):40-41。
    [18]蒋文功,出蒲照国,方敬爱,等.骨碎补类黄酮对氯化汞所致的急性肾衰竭大鼠模型的保护作用[J].中国中西医结合肾病杂志,2006,7(2):69,75-79。
    [19]蒋文功,方敬爱,孟民杰,等.骨碎补总黄酮对急性肾衰竭大鼠ICAM-1基因表达的影响[J].中国中西医结合肾病杂志,2008,9(10):856-859。
    [20]罗颖,蒋文功,崔淑兰.骨碎补总黄酮对大肠杆菌脂多糖诱导的急性肾衰竭大鼠ICAM-1基因表达的影响[J].河北医学,3013,19(1):12-16。
    [21]王娟,阚全程,齐跃东,等.醋柳黄酮对大鼠肾缺血再灌注损伤的保护作用[J].郑州大学学报(医学版),2011,46(4):587-590。
    [22]尚立芝,王峰,王建人,等.葛根黄酮预处理对大鼠肾脏缺血再灌注损伤的保护作用[J].河南中医学院学报,2007,22(133):16-17。
    [23]陈雄,程学文,徐美荣.山楂叶总黄酮对大鼠肾缺血/再灌注损伤的保护作用[J].实用儿科临床杂志,2007,22(5):359-360。
    [24]罗仕华,符诗聪,张凤华,等.木芙蓉叶有效组分对大鼠肾缺血再灌注损伤中TNF-α的影响[J].中国中西医结合杂志,2005,25(S1):78-81。
    [25]陈雄,程学文,徐美荣.山楂叶总黄酮对大鼠肾缺血/再灌注损伤的保护作用[J].实用儿科临床杂志,2007,22(5):359-360。
    [26]朱家军,夏安周,王永万,等.银杏叶总黄酮对急性肾缺血再灌注损伤大鼠的肾保护作用及机制[J].山东医药,2010,50(39):8-10。
    [27]朱家军,夏安周,王妍妍,等.银杏总黄酮对肾缺血再灌注大鼠p-JNK表达的影响[J].实用临床医药杂志,2011,15(3):11-14。
    [28]王妍妍,董晨,夏安周,等.银杏叶总黄酮对肾缺血-再灌注损伤大鼠p38MAPK活性的影响[J].江苏医药,2011,37(15):1759-1761。
    [29]吴文燕.肿节风总黄酮对溴酸钾诱发小鼠肾损伤的保护作用[J].海峡药学,2012,24(8):33-35。
    [30]江涛,黄杰昌,郑洁静,等.知母总黄酮对溴酸钾诱导小鼠肾损伤的保护作用[J].中国药理学通报,2006,22(12):1517-1521。
    [31]屠晓钢,王舒然,乔凌.银杏黄酮对卡铂所致大鼠肾损害的防护作用[J].中国实用医药,2006,1(4):34-36。
    [32]黄庆红,罗明英,王岐本,等.藤茶总黄酮对四氯化碳所致大鼠肾损伤保护作用的初步研究[J].现代生物医学进展,2009,9(13):2454-2455。
    [33]Kent D,Asada L,Peter ST Y,et al. Journal of Clinical Investigation[J].AnnArbor,2009,119(10):2868-2879。
    [34]奚百顺,黄培志,童朝阳,等.核因子κB在黄芩苷对脓毒症大鼠肾脏保护中的作用[J].中国临床医学,2011,18(4):469-472。
    [35]HUANG LiMing,LIANG Heng,TIAN Zhen. Effects of Astragali radix on RenalFunction and its Protein Expression of IgA Nephropathy in Mice[J]. ChineseJournal of Natural Medicines2009,7(1):54-59。
    [36]苏上贵,韦玉兰,黄艳,等.金樱子水-醇提取物保护IgA肾炎肾脏功能的实验研究[J].时珍国医国药,2008,19(6):1365-1366。
    [37]全红梅,尹秀梅,张学武.漏芦对实验性IgA肾病小鼠治疗作用的研究[J].陕西中医,2005,26(12):1386-1387。
    [38]周玖瑶,王霞,余应嘉,等.三叶人字草对IgA肾病模型大鼠的治疗作用[J].中药新药与临床药理,2009,20(6),533-536。
    [39]甄仲,金川,王勋,等.肾络宁对IgA肾病肾小球硬化大鼠治疗作用的实验研究[J].辽宁中医杂志,2012,39(3):545-547。
    [40]孟昱林,夏滨祥.肾络康冲剂对IgA肾病模型大鼠的治疗作用[J].实用医学杂志,2010,26(11):1922-1925。
    [41]曾安平,孙伟,王钢,等.健肾片对IgA肾病模型大鼠的治疗作用[J].中国中医基础医学杂志,2004,10(3):44-46。
    [42]米绪华,栾森,马行一,等.青蒿琥酯对IgA肾病模型大鼠肾组织MCP-1及其mRNA表达的影响[J].四川大学学报,2009,40(5):821-825。
    [43]黄艳明,舒雨雁,韦玉兰,等.金樱子对实验性IgA肾病大鼠MCP-1mRNA表达的影响[J].时珍国医国药,2007,18(9):2154-2155。
    [44]王月华,潘利敏,边东,等.肾炎宁对IgA肾病TGF-β1、CTGF的影响[J].中国中医基础医学杂志,2009,15(10):759-761。
    [45]肖汇颖,陈小华,戎曙欣,等.肾炎宁对IgA肾病模型大鼠肾脏组织肿瘤坏死因子-α表达的影响[J].新中医,2012,44(7):159-160。
    [46]沈莲莉,邓跃毅,陈以平.肾平颗粒对IgA肾病小鼠肾组织病理及TGF-β1的影响[J].辽宁中医杂志,2007,34(11):1652-1653。
    [47]张丹娣,赵森莹,许健.复方仙草颗粒对IgA肾病小鼠IL-13及IL-17的影响[J].中华中医药杂志(原中国医药学报),2012,27(1):223-226。
    [48]黄国东,许健,姜云,等.复方仙草颗粒对IgA肾病肾小球硬化大鼠TGF-β/Smads信号通路的影响[J].时珍国医国药,2010,21(11):2822-2824。
    [49]丁樱,张霞.清热止血颗粒对IgA肾病模型大鼠TGF-β1/Smad信号转导通路的影响[J].中国中医基础医学杂志,2008,14(8):608-609。
    [50]郭登洲,王月华,边东,等.肾炎宁对IgA肾病大鼠TGF-β1/p38MAPK的影响[J].北京中医药大学学报,2010,33(3):175-178。
    [51]张国珍,吴小川,彭晓杰,等.黄芪对实验性IgA肾病大鼠肾小管间质损害及NF-kB、MCP-1表达的影响[J].中国当代儿科杂志,2008,10(2):173-178。
    [52]宋纯东,丁樱.肾必宁颗粒对IgA肾病小鼠肾小球系膜细胞凋亡的影响[J].陕西中医,2004,25(10):951-952。
    [53]万启军,吴正治,何永成,等. IgA肾病小鼠肾脏系膜细胞凋亡及其调控基因Bax和Bcl-2表达的变化及益肾汤对其的影响[J].中国现代医学杂志,2008,18(13):1849-1852。
    [1]谢雪,张宏达,陈昱竹,等.大孔吸附树脂纯化愈肾颗粒中总黄酮工艺[J].中国实验方剂学杂志,2011,17(20):8-10。
    [2]谢雪,张宏达,陈昱竹,等.愈肾汤总黄酮的成分组成和活性研究[J].中国中药杂志,2012,37(23):358-359,3590。
    [3]汤颖,娄探奇,成彩联,等.实验性IgA肾病模型的改进[J].中山大学学报:医学科学版,2006,27(2):184-187。
    [4]Jonathan Barratt,John Feehally.IgA Nephropathy[J].J. Am. Soc. Nephrol,2005,16:2088-2097。
    [5]D’Amico G.Natural history of idiopathic IgA nephropathy:role of clinivaland histological prognostic factors[J].Am J Kidney Dis,2000,36:227-237。
    [6]Sarafidis PA.Proteinuria:natural course,prognostic implications andtherapeutic considerations[J].Minerva Med,2007,98:693-711。
    [7]Wartiovaara J,Ofverstedt LG,Khoshoodi J.Nephrin strands contribute to aporous slit diaphragm scaffold as re-vealed by electron tomography[J].J ClinInvest,2004,114:1475-1483。
    [8]Halimi JM,Hadjadj S,Aboyans V,et al.Microalbuminuria and urinary albuminexcretion:clinical practice guidelines[J].Nephrol Ther,2007,3:384-391。
    [9]马竹旭,张宏,王素霞,等.IgA肾病合并原发性膜性肾病二例并文献复习[J].中华内科杂志,2006,45:472-474。]
    [10]Donadio JV,Bergstralh EJ,Grande JP,et al. Proteinuria patterns and theirassociation with subsequent end-stage renal disease in IgAnephropathy[J].Nephrol Dial Transplant,2002,17:1197-1203。
    [11]Ibels LS,Gyory AZ,IgA nephropathy:analysis of the natural history,importantfactors in the progression of renal disease,and a review of the literature[J].Medicine(Baltimore),1994,73:79-102。
    [12]Nicholls KM,Fairley KF,Dowling JP,et al. The clinical course of mesangialIgA associated nephropathy in adults[J]. Q J Med,1984,53:227-250。
    [13]Jennette JC. The immunohistology of IgA nephropathy[J]. Am J Kidney Dis,1988,12:348-352。
    [14]Chen N,Nusbaum P,Hallbwachs-Mecarelli L,et al. Light-chain compositionof serum IgA1and in vitro IgA1production in IgA nephropathy[J]. NephrolTransplant,1991,6:846-850。
    [15]Chui SH,Lam CW,Lewis WH,et al. Light-chain ratio of serum IgA1nephropathy[J].Clin Immunol,1991,11:219-223。
    [16]Ogawa Y,B van der Boog PJ,van Kooten C,de Fijter JW,et al. Role ofmacromolecular IgA in IgA nephropathy[J]. Kidney Int,2005,67:813-821。]。
    [17]Muso E,Yoshida H,Takeuchi E,et al. Enhanced production of glomerularextracellular matrix in a new mouse strain of high serum IgA ddYmice[J].KidneyInt,1996,50(6):1946-1957。
    [18]Miyawaki S,Muso E,Takeuchi E,et al.Selective breeding for high serum IgAlevels from noninbred ddY mice:isolation of a strain with an early onset ofglomerular IgA deposition[J].Nephron,1997,76(2):201-207。
    [19]刘震,周树录,谭建三,等.大鼠系膜增殖性肾小球肾炎模型的改进[J].华西医科大学学报,1996,27(2):182-184。
    [20]黄胜,孙林,叶任高.两种系膜增殖性肾炎大鼠模型的建立比较[J].中国实动物学报,2002,10(4):236-238。
    [21]Woodroffe AJ,Gormly AA,Clarkson AR.Experimental cirrhosis and depositionof glomerular IgA immune complexes[J].Contrid Nephrol,1984,40:51-54。
    [22]聂莉芳.益气滋肾法治疗IgA肾病的系列研究与经验体会[J].中国中西医结合肾病杂志,2011,12(1):4-5。
    [23]潘莉,丁英钧,常风云,等.络病理论在IgA肾病中的应用[J].辽宁中医杂志,2010,37(9):1683-1684。
    [24]徐巍,张玉梅.张琪教授对IgA肾病血尿的认识及辨治经验[J].中国中西医结合肾病杂志,2002,3(4):194-195。
    [25]张君,郭振武,董娜,等.消斑愈肾剂治疗小儿紫癜性肾炎的临床研究[J].中国中西医结合杂志,1994,14(5):298-299。
    [26]王莉,张君,李桂燕,等.消斑愈肾颗粒治疗过敏性紫癜性肾炎的疗效与毒理学研究[J].中医药学刊,2003,21(7):1090-1093。
    [27]张君,姜欣,王莉,等.消斑愈肾颗粒剂对大鼠IgA肾病免疫调节的研究[J].中国实验方剂学杂志,2002,8(4):37-38。
    [28]张君,王莉,郑学民.消斑愈肾颗粒剂对实验性IgA肾病大鼠治疗作用的实验研究[J].中国中西医结合杂志,2003,8(4):112-115。
    [29]于超,张君,王圣治,等.消斑愈肾复方对IgA肾病大鼠肾组织IL-13及血清CIC的影响[J].中国中西医结合儿科学,2013,5(1):9-11。
    [30]张君,于英华,罗立欣,等.愈肾颗粒对血管紧张素Ⅱ刺激大鼠肾小球系膜细胞TGF-β表达的影响[J].中国中西医结合肾病杂志,2005,6(6):354-356。
    [31]董娜,于英华,张君.消斑愈肾剂对大鼠肾小球系膜细胞细胞外基质影响的研究[J].实用中医内科杂志,2003,17(4):450-451。
    [32]张国珍,吴小川,彭晓杰,等.黄芪对实验性IgA肾病大鼠Th1/Th2免疫失衡与核因子-kB表达的影响[J].实用儿科临床杂志,2010,25(5):357-360。
    [33]张国珍,吴小川,彭晓杰,等.黄芪对实验性IgA肾病大鼠肾小管间质损害及NF-kB、MCP-1表达的影响[J].中国当代儿科杂志,2008,10(3):173-178。
    [34]陆慧瑜,蒋小云,陈丽植,等.黄芪对IgA肾病大鼠蛋白尿及肾组织表达nephrin、podocin的影响[J].实用儿科临床杂志,2011,26(17):1318-1321,1324。
    [35]倪兆慧,张庆怡,钱家麒,等.黄芪对人肾小球系膜细胞CD44mRNA表达的影响[J].中国中西医结合肾病杂志,2001,2(1):13-16。
    [36]王宇翎,张艳,方明,等.白花蛇舌草总黄酮的抗炎及抗菌作用[J].中国药理学通报,2005,21(3):348-350。
    [37]杨星昊,崔敬浩,丁安伟.小蓟提取物对凝血、出血及实验性炎症的影响[J].四川中医,2006,24(1):17-19。
    [38]Unger T,Gohlke P,Paul M,et al.Tissue rennin-angiotensin system:fact orfiction?[J].J Cardiovasc Pharmacol.1991,18(Suppl2):S20-25。
    [39]Parving HH.Diabetic nephropathy:prevention and treatment[J]. kidney Int,2001,60:2041-2055。
    [40]Luft FC.Proinflammatory effects of angiotensinⅡ and endothelin:targetsfor progression of cardiovascular ang renal diseases[J].Curr Opin NephrolHypertens,2002,11:59-66。
    [41]Benigni A,Tomasoni S,Gagliardini E,et al.Blocking angiotensinⅡsynthesis/activity preserves glomerular nephrin in rats with severenephrosis[J].J Am Soc Nephrol,2001,12:941-938。
    [42]Bonnet F,Cooper ME,Kawachi H,et al。Irbesartan normalizes the deficiencyin glomerular nephrin expression in a normal of diabetes andhypertension[J].Diabetologia,2011,44:874-877。
    [43]陈金国.细胞外基质组分研究进展[J].国外医学,生理病理科学与临床分册,1999,19:149-251。
    [44]袁发焕.细胞外基质、基质金属蛋白酶及其抑制因子的研究进展[J].国外医学临床生物化学与检验分册,2000,21:62-65.
    [45]Neilson EG,Couser WG,Immunologic renal disease2nd editon,Philadephia,LWW,2006。
    [46]洪练,李竞,高凌,等.高糖培养人肾小球系膜细胞对TGF-β、FN、Smad7表达的影响[J].微循环学杂志,2011,21(2):13-15。
    [47]丁晓欢,张君,杨冠琦,等.愈肾颗粒小复方对大鼠肾小球系膜细胞MMP-3/TIMP-1mRNA表达的影响[J].中国中西医结合肾病杂志,2010,11(5):394-397。
    [48]杨冠琦,张君,丁晓欢,等.黄芪、太子参对大鼠肾小球系膜细胞MMP-2及TIMP-2-mRNA表达的影响[J].中国中西医结合肾病杂志,2011,12(8):673-675。
    [49]王亚利,赵玉庸,陈志强,等.肾络通对大鼠系膜细胞外基质分泌及转化生长因子表达的影响[J].中国中药杂志,2005,2(3):201-203。
    [50]丁跃玲,赵玉庸,陈志强.肾络通对肾小管间质纤维化大鼠肾素-血管紧张素系统的影响[J].中药药理与临床,2004,20(1):28-29。
    [51]Sen R,Baltimore D. Multiple nuclear factors interact with the immunoglobulinenhancer sequences[J].Cell,1986,46(5):705-716。
    [52]May MJ,Ghosh S. Signal transduction through NF-kappa B[J].Immunol Today,1998,19(2):80-88。
    [53]Morrissey J,Klahr S.Transcription factor NF-kappaB regulation of renalfibrosis during ureteral obstruction[J]. Semin NePhrol,1998,18(6):603-611。
    [54]Mosialos G,Hamer P,Capobianco AJ,et al.A protein kinase-A recognitionsequence is structurally linked to transformation by p59v-rel and cytoplasmicretention of p68c-rel[J].Mol Cell Biol,1991,11:5867-5877。
    [55]Li J,Brasier AR. Angiotensinogen gene activation by angiotensin II ismediated by the rel A(nuclear factor-kappaB p65) transcription factor: onemechanism for the renin angiotensin system positive feedback loop inhepatocytes[J].Mol Endocrinol,1996,10,252-164。
    [56]Brasier AR,Li J.Mechanisms for Inducible Control of Angiotensinogen GeneTranscription[J].Hypertension,1996,27:465-475。
    [57]Morrissey JJ,Klahr S. Rapid communication. Enalapril decreases nuclearfactor kappa B activation in the kidney with ureteral obstruction[J].KidneyInter.1997,52(4),926-933。
    [58]Ruiz Ortega M,Bustos C,Herndez Presa MA,et al. Angiotensin II Participatesin Mononuclear Cell Recruitment in Experimental Immune Complex Nephritis ThroughNuclear Factor-B Activation and Monocyte Chemoattractant Protein-1Synthesis[J].J Immunol,1998,161:430-439。
    [59]孙晶,马骥,顾勇,等.过氧化物酶增殖物激活受体γ减少血管紧张素Ⅱ诱导的系膜细胞外基质的积聚及其作用机制[J].中华肾脏病杂志,2006,22(5):297-302。
    [60]Sturgill TW,Ray LB,Anderson NG,et al.Purification of mitogen-activatedprotein kinase from epidermal growth dactor-treated.313-L1fibroblasts[J].Methods Emyrml,1991,200:342-351。
    [61]Hommes DW,PePPelenbosch MP,van Deventer SJ.Mitogen activated protein(MAP)kinase signal transduction pathway sand novel anti-inflammatorytargets[J].Gut.2003,52(l):144-151。
    [62]Strniskova M,Baraneik M,Ravingerova T.Mitogen-activated protein kinasesand their role in regulation of cellular proeesses[J].General physiology andbiophysics.2002,21(3):231-255。
    [63]Boulton TG,Nye SH,Robbins DJ,et al.ERKs:a family ofProtein-serine/threonine kinases that are activated and tyrosine Phosphorylatedin response to insulin and NGF[J].Cell,1991,65(4):663-675。
    [64]Boulton TG,Yancopoulos GD,Gregoy JS,et al.An insulin-stimulated proteinkinases imilar to yeast kinases involved in cell cyele control[J].Science,1990,249:64-67。
    [65]Robinson MJ,Cobb MH.Mitogen-activated protein kinase pathways[J].Currentopinion in cell biology,1997,9(2):180-186。
    [66]Widmann C,Gibson S,Jarpe Mb,et al.Mitogen-activated protein kinase:conservation of a three-kinase module from to human [J]. Physiological review,1999,79(l):143-180。
    [67]Raingeaud J,Whitmarsh AJ,Barrett T,et a1.MKK3and MKK6regulated geneexpression is mediated by the p38mitogen activated protein kinase signaltransduction pathway[J].Mol Cell Biol,1996,16(3):1247-1255。
    [68]Barr RK,Bogoyevitch MA.The c-Jun N-terminal protein kinase family ofmitogen-activated protein kinases(JNK MAPKs)[J].The international journal ofbiochemistey&cell biology,2001,33(11):1047-1063。
    [69]GuPta S,BarrettT,Whitmarsh AJ,et al.Selective interaction of JNK proteinkinase isoforms with transcription factors[J].EMBO journal,1996,15(11):2760-2770。
    [70]Brewster JL,de Valoir T,Dwyer ND,et al.An osmosensing signal transductionpathway in yeast[J].Science,1993,259:1760-1763。
    [71]Chang L,Karin M.Mammalian MAP kinase signalling cascades[J]. Nature,2001,410(6824):37-40。
    [72]Pearson Q,Robinson F,Beers Gibson T,et al.Mitogen-activated protein(MAP)kinase pathways:regulation and physiological functions[J].Endocrine reviews,2001,22(2):153-183。
    [73]Fujita H,Omori S,Ishikura K,et al.ERK and p38mediate high-glucose-inducedhypertrophy and TGF-β expression in renal tubular cells[J].Am J Physiol RenalPhysiol,2004,286:F120-F126。
    [74]Awazu M,Omori S,Hida M.MAP kinase in renal development[J]. Nephrol DialTransplant,2002,17(Supp19):5-7。
    [75]Stambe C,Atkins RC,Hill PA,et al.Activation and cellular localizationof the p38and JNK MAPK pathways in rat crescentic glomerulonephritis[J].KidneyInt,2003,64(6):2121-2132。
    [76]Cheng HF,Wang JL,Zhang MZ,et al.Role of p38in the regulation of renalcortical cyclooxygenase-2expression by extracellular chloride[J].The Journalof clinical investigation,2000,106(5):681-688。
    [77]Bokemeyer D,Guglielmi KE,McGinty A,et al.Activation of extracellularsignal-regulated kinase in proliferative glomerulonephritis in rats[J].TheJournal of Clinical investIgati on,1997,100(3):582-588。
    [78]Bokemeyer D,Panek D,Kramer HJ,et al.In vivo identification of themitogen-activated protein kinase cascade as a central pathogenic pathway inexperimental mesangioproliferative glomerulonephritis[J].J Am Soc Nephrol,2002,13(6):1473-1480。
    [79]Elsa Sánchez-López, Juan Rodriguez-Vita, Cecile Cartier,et al.Inhibitoryeffect of interleukin-1β on angiotensinII-induced connective tissue growthfactor and type IV collagen production in cultured mesangial cells[J].Am JPhysiol Renal Physiol.2008,294:149-160。
    [80]王丽晖,段惠军,史永红,等.缬沙坦对高糖培养的肾小球系膜细胞p38MAPK传导通路的影响[J].中国药理学通,2009,25(4):501-505。
    [81]王丽晖,段惠军,史永红,等. p38丝裂原活化蛋白激酶在糖尿病大鼠肾组织细胞外基质重构中的作用[J].解放军医学杂志,2005,30(4):310-313。
    [82]魏倩萍,邓华聪,赵劼. p38丝裂原活化蛋白激酶对HBZY-1系膜细胞株表达NF-KB和MCP-1的调控[J].中华内分泌代谢杂志,2008,24(3):308-311。

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700