用户名: 密码: 验证码:
磁场—趋磁细菌处理重金属离子废水
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着电镀、制革、防腐和染料等工业的发展,含重金属的废水对人体和环境造成的危害越来越严重,有效去除废水中重金属离子成为当前十分迫切的任务。本文提出全新的磁场-趋磁细菌复合工艺综合治理重金属废水,对趋磁细菌混合菌的组成进行了研究,并对处理重金属废水进行深入研究,确定了复合工艺最佳操作条件。
    本文首先对菌种进行驯化、培养和筛选,研究趋磁细菌的组成,并对其进行了较为细致的生物实验。实验表明:实验用的混合菌是由9种不同的细菌组成,其中7种革兰氏阴性细菌和2种革兰氏阳性细菌,并测定了各个菌种的一些特性。
    同时通过对各种不同的重金属离子进行静态的吸附实验,从而确定了适合用该细菌处理的金属的种类,并对处理各种金属的操作条件进行了研究,为以后的动态实验提供操作条件。实验表明:带有磁性的金属,Fe2+,Cr3+和Ni2+都适合用该菌种处理,而Cu2+则不适合于处理。
    通过对磁化技术处理的生物吸附重金属离子行为的研究发现,生物吸附受pH值影响较大,而且存在最佳pH值范围,不同的重金属离子种类最佳pH值也不相同;生物吸附主要是细胞表面的吸附,在很短的时间内即可达到吸附平衡;生物吸附对在室温下影响不明显。
    最后应用复合工艺流程连续处理重金属废水,按照静态实验确定的操作条件,发现复合工艺处理废水的出水浓度远远低于排放标准。
With the development of galvanization, tannage, antisepsis, and dye etc, people’s body and environment had been damaged badly by metal-bearing wastewater, so it has been the urgent assignment to wipe off heavy metal ion effectively. In this paper, a novel magnetotactic complex technology to dispose wastewater containing heavy metal ion was put forward. And it was studied deeply in sides of continuous working conditions, treating result and working mechanism.
    In this paper, first, the mixed bacteria were domesticated, trained and selected. Then, the components of the mixed bacteria were studied carefully. It was found that there are 9 kinds of bacteria. Among them, 7 are gram-negative bacteria and 2 are gram-positive bacterium. Some characters had been determined.
    On the same time, different kinds of heavy metal ions had been absorbed under static situation. As the result, the kinds of heavy metal ions that were suit for being treated by magnetotactic bacteria were determined. Then, the operation situation had been studied so that the dynamic experiments’ operation situation could be offered. The experiments showed: some magnetic metal ion, such as iron(II), chromium(III), nickel(II), were suit for being treated by magnetotactic bacteria.
    Through the study of microbe’ absorbing heavy metal ions with magnetic technical treatment, it was found that the microbe’ absorption was affected greatly by pH value and there was an optimum pH value scope. And the optimum scopes of different ions had different ones. The absorption was mainly on the surface of the microbe so it could reach the absorption equilibrium soon. The absorption was also affected by temperature, but, the effect was small.
    Lastly, under the optimum operation situation, with composite technical flow treating heavy metal ions wastewater, it was found that the outlet heavy metal ion concentration was far blow the outlet standard.
引文
[1] 余必敏 工业废水处理与利用,北京:科学出版社,1979,28~32
    [2] 孟祥和,胡国飞,重金属废水处理,北京:化学工业出版社,2000,5~12
    [3] U.弗斯特纳,G.T.W.维特曼,水环境的金属污染(Metal pollution in the aquatic environment),北京:海洋出版社译,1987,3~55
    [4] Venugopal B, Luckey T D, Toxicology of non-radioactive heavy metals and their salt, In: Heavy Metal Toxicity, Safety and Hormology, (eds) Stuttgart: Thieme 1975, 4~7
    [5] 王绍文,姜凤有,重金属废水治理技术,北京:冶金工业出版社,1993:20~118
    [6] 罗道成,易平贵,陈安国等,腐植酸树脂对电镀废水中重金属离子的吸附,材料保护,2002,35(4):17~20
    [7] 区保雪,朱立红,芦春莲等, 活性炭的发展、起源和应用,河北农业大学报,2002,17(1):88~90
    [8] 陶庆生, 污水净化的电化学方法, 武汉:武汉大学出版社,1988:27~36
    [9] 宋卫峰, 倪亚明, 何达文,电解法水处理技术的研究进展,化工环保,2001, 21(1):11~15
    [10] 吴涓,李清彪,邓旭等,重金属生物吸附的研究进展,离子交换与吸附,1998,14 (2):180~187
    [11] 陈勇生,孙启俊,陈钧等,重金属的生物吸附技术研究,环境科学进展,1997,5(6):34~43
    [12] Beveridge T J, Fyfe W S, Metal fixation by bacterial cell walls, Journal of Earth Science, 1984, 22(12): 1893~1898
    [13] Kuyucak N, Volesky B, Nature of gold binding on a new biosorbent, Precious Metals 1987, Proceedings of the Eleventh International Precious Metals Institute Conference, 1987 Sponsored by: Int Precious Metals Inst, Allentown, PA, USA, 571~580
    [14] Murray R G E, Beveridge T J, Site of metal deposition in the cell wall of Bacillus Subtilis, 1980, 141: 876~887
    [15] Volesky B, May H, Holan Z R, Cadmium biosorption by Saccharomyces cerevisi, Biotechnology and Bioengineering, 1993, 41(8): 826~829
    [16] Romanenko V I, Patent specification (11), 1475369, the patent office, London, 1977.
    [17] 陈勇生,孙启俊,王大力,啤酒酵母菌、盐泽螺旋藻对重金属离子的吸附研究,上海环境科学,1998,17(7):14~23
    [18] 赵晓红,张敏,李福德,SRV菌去除电镀废水中铜的研究,中国环境科学,1996,16(4):288~292
    
    [19] Sanders W M, Oxygen utilization by slime organisms in continuous culture, Air & Wat. Pollut. International J, 1966, 10: 253~276
    [20] Hoehn R C, Ray A D, Effects of thickness on bacterial film, J. Wat. Pollut. Control Fed. 1973, 45: 2302~2320
    [21] LaMotta E J, Internal diffusion and reaction in biological-film, Environ. Sic. Tech., 1976, 10: 765~769
    [22] Rittmann B E, McCarty P L, Substrate flux into biofilms of any thickness, J. Environ.Eng. ASCE, 1981, 107: 831~850
    [23] Characklis W C, Biofilm Process, In: Characklis W C, Marshall C G ed, Biofilm, John Wiley and sons Inc, 1990.195~231
    [24] Capdeville B, Nguyen K M, Kinetics and modeling of aerobic and anaerobic film growth, Wat.Sci.Technol, 1990, 22: 149~170
    [25] Capdeville B, Nguyen K M, Rols J L, Biofilm modeling:Structural, reactional and diffusional aspects, In: Melo L F, Bott T R, Fletcher M, et al,eds. Biofilms-Science and Technology. Kluwer Academic Publishers, 1992.251~276
    [26] Pirt S J, Principles of microbe and cell cultivation, Blackwell Scientific, London, 1975,25~36
    [27] Trulear M G, Characklis W G, Dynamics of biofilm process, J. Wat. Pollut. Control Fed, 1982, 54: 1288~1301
    [28] Simbins S, Models for Mineralization Kinetics with the Variations of Substrate Concentration and Population Density, Appl. Envi. Microbiol., 1984, 147: 1299
    [29] Tobin J.M., Cooper D.G., Neufeld R.J., Uptake of metal ions by Rhizopus arrbizus biomass, Appl. Environ. Microbiol., 1984, 60: 882~886
    [30] Guibal E, Roulph C, Le Cloirec P, Uranium biosorption by a filamentous fungus Mucor miehei: pH effect on the mechanisms and performances of uptake, Water Research, 1992, 26: 1139~1145
    [31] Morel F M M, Morel-laurens N M L, Trace metals and plankton in the ocean: facts and speculations, NATO Conference Series, (Series) 4: Marine Sciences, Sponsored by: NATO, Scientific Affairs Div; US Office of Naval Research, Washington, DC, USA Plenum Press, 1983, 9: 841~869
    [32] Teszos M, Treatment of Uranium mining and milling wastewater using biological adsorbents, Proceedings of International Specialist Conference on Water Regime in Relation to Milling, Mining and Waste Treatment Including Rehabilitation with Emphasis on Uranium Mining, Sponsored by: Australian Water & Wastewater Assoc, Sydney, 1983, 15: 1~15
    [33] Teszos M, Volesky B, Mechanism of Thorium biosorption by Rhizopus arrhizus, Biotechnology and Bioengineering, 1982, 24(4): 955~969
    [34] Tobin J.M., Cooper D.G., Neufeld R.J., Influences of anions on metal adsorption by R. arrhizus biomass, Biotechnology and Bioengineering, 1987, 30: 882~886
    
    [35] Kuyucak N, Volesky B, The mechanism of Cobalt biosorption, Biotechnology and Bioengineering, 1989, 33: 823~831
    [36] Tobin J M, Cooper D G, Neufeld A G, Investigation of the mechanism of metal uptake by denatured Rhizopus arrizus biomass, Enzyme and Microbial Technology, 1990, 12(8): 591~595
    [37] Hosea M, Greene B, McPherson R, Adsorption of metal ions on polyaminated highly porous chitosan chelating resin, Inorganica Chimica Acta, 1986, 20: 161~169
    [38] 王保军,杨慧芳,李文忠,烟草头孢霉F2对氯化汞解毒作用的研究,环境科学学报,1992,12(3):275~281
    [39] Standberg G W, Shumate S E, Parrott J R, Microbial cells as biosorbents for heavy metals: accumulation of Uranium by Saccharomyces cerevisiae and Pseudomonas aeruginosa, Appl. Environ. Microbiol, 1981, 41: 237~245
    [40] Blackwell K J, Singleton I, Tobin J M, Metal Cation uptake by yeast: a review, Appl Microbiol Biotech, 1995, 43: 579~584
    [41] Blackmore R.P. [J]. Science, 1975, 19: 377~379
    [42] R. P. Blackmore. [J]. Ann. Rev microbial, 1982, 36: 217~238
    [43] R. P. Blackmore, Maratea, Wolfe. [J]. J. Microbiology, 1979,140(2): 720~729
    [44] 章勇良,卫扬保,杨清香, 武汉大学学报(自然科学版),1997年12月, 43(6)
    [45] Blackmore R.P. [J]. Science, 1975, 19: 377~379
    [46] R. P. Blackmore. [J]. Ann. Rev microbial, 1982, 36: 217~238
    [47] 潘继承,李如亮,陈少英,微生物学通报,1997, (24): 47~51
    [48] 卫扬保,张洪霞,姜伟,武汉大学学报(自然科学版),1994,6:115~120
    [49] Stolz. J. F. [J]. Journal of General Microbiology, 1993, 139: 1663~1670
    [50] Bean.C.P, Livingston.J.D. J. Appl. Phys, 1959(4): 120~129
    [51] A. S. Bahaj, P. A. B. James. IEEE Transactions on Magnetics, 1993, 29(6):
    3358~3360
    [52] A.S. Bahaj, P.A.B James, F.D Moeschler. [J]. IEEE Transactions on Magnetics, 1996, 32 (5)
    [53] A.S.Bahaj, P.A.B.James, etc. [J]. IEEE Trans. Magn, Nov. 1994, 30(6): 4707~4709
    [54] A.S.Bahaj, P.A.B James, F.D. Moeschler. [J]. IEEE Transactions on Magnetics, 1996, 32(5): 5133~5135
    [55] Jernelov A, Ecological implications of metal metabolism by microorganisms, Swedish Water and Air Pollution Research Lab, 1975, 32~48
    [56] 牛慧,许学书,王建华,非生长产黄青霉吸附铅的研究,微生物学报,1993,33(6):459~463
    [57] Ting Y P, Lawson F, Prince I G, Uptake of Cadmium and Zinc by the alga Chlorella vulgarisⅡ: multi-ion situation, Biotechnology and Bioengineering, 1991, 37(5): 445~455
    [58] Bellot J C, Condoret J S, Modeling of liquid chromatography equilibrium,
    
    
    Process Biochem, 1993, 28: 365~376
    [59] Mckay G, Al Duri B, Prediction of multicomponent adsorption equilibrium data using empirical correlations, Chem Eng J, 1989, 41: 9~23
    [60] Aksu Z, Acikel ü, Kutsal T, Application of multicomponent adsorption isotherms to simultaneous biosorption of iron(Ⅲ) and Chromium(Ⅵ) on C. vulgaris, J Chem Technol Biotechnol, 1997, 70: 368~378
    [61] Aksu Z, Biosorption of heavy metals by microalgae in batch and continuous system, In: Wong Y-S , Tam NFY, editors, Algae for wastewater treatment, Germany: Springer, 1998, 37~53
    [62] Aksu Z, Acikel ü, Modeling of a single-staged bioseparation process for simultaneous removal of iron(Ⅲ) and Chromium(Ⅵ) by using Chlorella vulgaris, Biochem Eng J, 2000, 4: 229~238

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700