用户名: 密码: 验证码:
生物菌剂的构建及其在污水处理中的生物强化效能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
东北地区是我国石化行业发展的重点区域,部分企业由于长期环保投入不足和技术落后,已经成为重大的工业污染源。另外,低气温、低水温是影响东北寒冷地区新建城市污水处理厂启动周期的主要因素。通过生物菌剂的投加,生物强化技术可显著缩短污水生化处理系统的启动周期,改善生化处理系统的运行效果和稳定性。本研究运用微生物生理生态学、分子生态学与环境工程学的方法与理论,系统地阐明了生物菌剂构建的原则、生产工艺及评价方法。同时依托工程实践,以优化生物强化工艺设计和实现生物强化技术产业化为目标,开展了投加生物菌剂的生物强化技术在城市污水生化处理工艺低温快速启动以及石化废水生化处理设施升级改造的工程应用研究。
     通过对东北三省32家城市污水处理厂运营现状的调查,确定城市污水处理生物菌剂的构建目标主要是实现城市污水生化处理系统在低温条件下的快速启动与稳定运行;通过对出水污染物含量比重、有机物COD贡献值和可生物降解性三个方面的分析,确定石化废水中处理生物菌剂构建的目标主要是提高石化废水生化处理系统对难降解有机污染物的降解效果和抵抗水质水量冲击负荷的能力。
     基于微生物协同代谢原则、生态位分离原则及微生物的自适应原则,通过反复进行菌株的筛选、重组和驯化,分别针对石化废水特征污染物高效降解菌和城市污水低温快速启动所需冷适应菌进行了生物菌剂的构建。经评价,所构建的生物菌剂安全无毒、经济适用性好,城市污水处理生物菌剂能很快在低温条件下实现城市污水处理系统各项指标的达标;而投加生物菌剂的石化废水处理中试装置在进水水质波动较大(COD=370~910mg/L,NH_4~+-N=10~70mg/L)、水温低于13℃时,出水COD和NH_4~+-N平均浓度分别在80mg/L和8mg/L左右,出水中的有机物种类由未进行生物强化的69种减少到经过强化处理后的32种。
     基于生物菌剂在石化废水生化处理系统中的稳定存在及效能发挥,对生物强化系统的工艺及生物接触氧化系统的挂膜方法进行了对比研究。结果表明,生物强化体系中固定化生物膜工艺在污染物去除效果和微生物的活性上均优于传统的活性污泥工艺及经过生物强化的活性污泥工艺。另外,采取间接挂膜法,即采用投加颗粒状物质活性炭、电气石及酵母粉的方式,对聚氨酯泡沫球形载体进行预挂膜后,再投加生物处理剂的挂膜方法可有效地避免载体的堵塞问题,从而在石化废水进水COD和NH_4~+-N浓度在280~420mg/L和5~25mg/L时,出水COD和NH_4~+-N浓度分别稳定在70mg/L和3mg/L以下。无机颗粒载体和有机颗粒营养物质的投加为有机污染物的生物降解创造了良好的条件。
     在小试及中试试验的基础上,将原有传统活性污泥A/O工艺升级为以聚氨酯泡沫悬浮球为填料的二级A/O接触氧化工艺,并对系统实施了投加生物菌剂的生物强化技术。PCR-DGGE分析结果表明,生物强化系统内形成了稳定而多样性丰富的微生物群落结构,生化处理系统对难降解有机污染物的去除效果及抗冲击负荷能力都显著增强。同时,石化废水生化处理系统启动所需时间也缩短了10d左右。
     采用投加生物菌剂的生物强化技术,在水温低于15°C的条件下,成功解决了黑龙江省3个不同工艺类型城市污水生化处理系统的低温快速启动问题,在系统启动后的12~15d,3个污水厂的出水水质均达到甚至优于《城镇污水处理厂污染物排放标准》(GB18918-2002)一级B的标准。工艺成功启动后,3个生化处理系统的出水水质并未随温度变化出现剧烈的波动,不同工艺类型的生物强化系统在低温条件下维持相似的微生物代谢活性。冬季及春季的生化处理系统中约有50%的微生物与系统低温快速启动时期投加的生物强化菌株相似,主要包括金黄杆菌属(Chryseobacterium)、生丝微菌属(Hyphomicrobium)、硝化螺菌属(Nitrospira sp.)、黄单胞菌属(Xanthomonadaceae)、黄杆菌纲(Flavobacteriales)及拟杆菌属(Bacteroides sp.)。生物强化系统中,有36%与变形细菌亚群的β和γ-Proteobacteria相似,有18%与拟杆菌门的Flavobacteria和Sphingobacteria相似,有23%与硝化螺菌目(Nitrospirales)相似,这些菌群始终在系统中占有绝对的优势,代表了生物强化系统的优势菌群结构。同时,为了适应不同的工艺类型及水质水量等环境条件的变化,某些种群的优势度始终呈现动态波动的状态。优势菌的长期存在以及潜在功能菌的出现保证了冬季低温运行期及季节过渡期城市污水的稳定达标排放。
     本文大量的工程实践经验以及理论研究成果系统地阐述了生物菌剂的构建原则、生产工艺及评价方法、生物强化系统工艺类型的选择和优化以及工艺参数的调控,为生物强化技术的推广应用提供了有力的指导和借鉴。生物菌剂的应用出色地完成了不同工艺类型城市污水生化处理工艺的低温快速启动和石化废水生化系统的升级改造任务,为污水处理厂节约了大量的调试启动费用和工艺升级改造投资,对于寒冷地区污水处理厂污水的稳定达标排放,尤其是东北地区冰封期的污染物削减意义重大。
Northeast China is the main area for petrochemical industry development. Due to long-term shortage of environmental investments and laggard technology, some enterprises had become vital industrial pollution soures. Besides, low ambient and wastewater temperature is the key factor influencing the start-up of the newly-builted municipal wastewater treatment plants (WWTPs). Through the addition of bacterial agent, bioaugmentation could effectively shorten the start-up of biological wastewater treatment systems and improve its performances and stability. Based on methods and theories of microbial physiological ecology, molecular ecology and envrionmental engineering, the present study gave a systematic expatiation on bacterial agent construction. Furthermore, practical bioaugmenation projects were conducted in the low-temperature rapid start-up of the municipal WWTPs and the upgrade of petrochemical wastewater biological system.
     Based on a survey of 32 municipal WWTPs in Northeast China, the construction objective of bacterial agent for municipal wastewater treatment was to realize the rapid start-up and stable operation of the biological systems under low temperatures. According to the analysis of pollutants contents, COD contribution of organics and their biodegradability, the construction objective of bacterial agent for petrochemical wastewater treatment was to enhance the degradation of refractory organics and the resistence to shock loadings.
     Based on microbial cometabolism, niche separation and self-adaptive acclimatization and through repeated selection, combination and acclimatization, bacterial agents against the refractory organics in petrochemical wastewater and low temperature municipal wastewater were constructed. It showed that the constructed bacterial agents were safe and economical. Besides, with the addition of bacterial agent, municipal wastewater treatment met the discharge standands rapidly; in biaugmented pilot-scale petrochemical wastewater treatment facility, the average concentration of effluent COD and NH_4~+-N was around 80mg/L and 8mg/L, respectively. The number of the organics in the effluent of the bioaugmented system reduced to 32 compared to 69 of the original A/O process without bioaugmentation.
     Based on the stable existence and efficient performance of the bacterial agent for petrochemical wastewater treatment, efficiencies of different bioaugmented process type and biofilm formation methods of the contact oxidation system were compared. The bioaugmented immobilized biofilm system was superior to the bioaugmented activated sludge system both in pollutants removal and microbial activity. The indirect biofilm formation methods, which delivered granular substances like activated carbon, tourmaline and yeast for the pre-coating of the carrier, could effectively avoid the clogging of the carrier with the attachment of abundant active microorganisms within the pores. When the concentrations of the influent COD and NH_4~+-N varied between the range of 280~420mg/L and 5~25mg/L, the corresponding effluent could keep stable below 70mg/L and 3mg/L, respectively. The addition of inorganic granular carriers and organic granular nutrients provided favorable environment for the degradation of organic pollutants in the petrochemical wastewater.
     Based on lab-scale and pilot-scale tests, the conventional A/O process was upgraded to a two-stage bioaugmented oxidation process with polyurethane foams as its carrier. PCR-DGGE results showed that under the same operational conditions, stable and diverse microbial community was formulated in the bioagumented system. Remarkable improvements were achieved on pollutants removal efficiency and shock loadings resistance ablility. Period for system start-up was also shortened to about 10 d.
     By applying bioaugmentation with the addition of bacterial agent, three different types of municipal WWTPs were started rapidly within 12~15d as temperature lower than 15℃. Their effluent quality was stable with varied temperature and the biological systems kept similar metabolic activity. Different bioaugmented biological system showed similar metabolic activity under low temperatures. 50% microorganisms in the biomass samples from winter and spring were similar to the stains diliveried during the bioaugmentation, which mainly included Chryseobacterium, Hyphomicrobium, Nitrospira sp., Xanthomonadacea, Flavobacteriales, and Bacteroides sp.. Among all the cloned sequences, 36% were similar toβ- andγ-Proteobacteria, 36% were similar to Flavobacteria and Sphingobacteria and 23% were similar to Nitrospirales. These bacteria were always predominant in the biological systems. Besides, the predominances of some bacteria in different biological processes were dynamic with the variations of wastewater quanlity and quality and other environmental conditions. The coexistence of predominant bacteria and potential functional bateria was vital for the stable operation of municipal WWTPs in cold winter and seasonal transition periods.
     Engineering practical experiences and theoretical achievements presented in the present study systematically elaborated upon the contruction, production and evaluation methods of the bacterial agent, the selection and optimization of bioaugmentation process, the regulation and control of operational parameters, which provided powerful guidance and reference for spreading the application of bioaugmentaion technology. Bioaugmentation with bacterial agent could remarkablely shorten the start-up period and improve the pollutants removal and shock loading resistence ability of the biological wastewater treatment systems. Besides, a great many cost for start-up and upgrade was saved. The application of bacterial agent reduced the discharge of pollutants in Northeast China, especially in frozen periods, which was a fesible and effective pathway for the wastewater treatment and control of the Northeast China.
引文
1张真真,王龙,姜瑞雪等.小城镇污水处理实用技术研究.水科学与工程技术, 2006, (6): 48~50
    2马悠怡.小城镇污水处理实用工艺分析.环境保护科学. 2006, 32(6): 44~46
    3中华人民共和国年鉴编辑部. 2008年中国环境状况公报.北京:中华人民共和国年鉴社, 2009, 4~21
    4余杰,田宁宁,王凯军等.中国城市污水处理厂污泥处理、处置问题探讨分析.环境工程学报, 2007, 1(1): 82~86
    5张志斌,张晓全,陶俊杰等.我国城市污水处理中存在的问题及对策.山东建筑大学学报, 2007, 22(2): 174~176
    6邵晓玲,马军,文刚.松花江流域某自来水厂中内分泌干扰物的调查.环境科学, 2008, 29(10): 2723~2728
    7王西琴,张艳会.辽宁省辽河流域污染现状与对策.环境保护科学, 2007, 33(3): 26~29
    8张力,徐志金,滕志坤.松花江流域面源污染特征与防治对策.环境科学与管理, 2008, 33(7): 55~57
    9中国工程院“东北水资源”项目组.东北地区有关水土资源配置生态与环境保护和可持续发展的若干战略问题研究.中国工程科学, 2006, 8(5): 1~24
    10吴成强,杨金翠,杨敏.运行温度对活性污泥特性的影响.中国给水排水, 2003, 19(9): 5~7
    11 I. Mahara, P. Elefsiniotis. The Role of HRT and Low Temperature on the Acid-phase Anaerobic Digestion of Municipal and Industrial Wastewaters. Bioresource Technology, 2001, 76 (3): 191~197
    12傅金祥,腾险峰,李彤岩.低温下DAT-IAT工艺污水处理活性污泥培养驯化.沈阳建筑大学学报(自然科学版), 2005, 21(1): 43~46
    13李亚峰,王文光,房安富等.低水温低有机负荷条件下CAST工艺城市处理厂的启动调试及活性污泥培养.沈阳建筑大学学报(自然科学版), 2006, 22(6): 795~798
    14韩洪军,梁杰,马文成.寒冷地区SBR设计参数的修正.环境工程, 2006, 24(20): 84~88
    15 L. C. Juang, D. H. Tseng, S. C. Yang. Treatment of Petrochemical Wastewater by UV/H2O2 Photodecomposed System. Water Science and Technology, 1997, 36(12): 357~365
    16 C. K. Lin, T. Y. Tsai, J. C. Liu et al.. Enhanced Biodegrationgion of Petrochemical Wasterwater Using Ozonation and BAC Advanced Treatment System. Water Research, 2001, 35(3): 699~704
    17 J. A.álvarez, I. Ruiz , M. Gómez et al.. Start-up Alternatives and Performance of an UASB Pilot Diluted Municipal Wastewater at Low Temperature. Bioresource Technology, 2006, 97 (14):1640~1649
    18 H. Van Limbergen, E. M. Top, W. Verstraete. Bioaugmentation in Activated Sludge: Current Features and Future Perspectives. Applied Microbiology and Biotechnology, 1998, 50(1): 16~23
    19 N. Boon, E. M. Top, W. Verstraete et al.. Bioaugmentation as a Tool to Protect the Structure and Function of an Activated-sludge Microbial Community Against a 3-Chloroaniline Shock Load. Applied and Environmental Microbiology, 69(3): 1511~1520
    20张自杰,戴爱临.国内城市污水低温生物处理试验(上).环境工程, 1983, (3): 19~22
    21张自杰,戴爱临.国内城市污水低温生物处理试验(下).环境工程, 1984, (3): 11~16
    22 X. C. Quan, H. C. Shi, H. Liu. Removal of 2,4-dichlorophenol in a Conventional Activated Sludge System Through Bioaugementation. Process Biochemistry, 2004, 39(11): 1701~1707
    23 A. Dhouib, N. Hamad, I. Hassa?ri et al.. Degradation of Anionic Surfactants by Citrobacter braakii. Process Biochemistry, 2003, 38(8): 1245~1250
    24 N. Boon, J. Goris, P. de Vos et al.. Bioaugmentation of Activated Sludge by an Indigenous 3-chloroaniline-degrading Comamonas testosterone strain I2gfp. Applied and Environment Microbiology, 2000, 66(7): 2906~2913
    25 C. Kennes, R. Mendez, J. M. Lema. Methanogenic Degradation of p-cresol in Batch and in Continuous UASB Reactors. Water Research, 1997, 31(7): 1549~1554
    26 S. V. Mohan, N. C. Rao, K. K. Prasad et al.. Bioaugmentation of an Anaerobic Sequencing Batch Biofilm Reactor (AnSBBR) with Immobilized SulphateReducing Bacteria (SRB) for the Treatment of Sulphate Bearing Chemical Wastewater. Process Biochemistry, 2005, 40 (8): 2849~2857
    27 C. Liu, X. Huang, H. Wang. Start-up of a Membrane Bioreactor Bioaugmented with Genetically Engineered Microorganism for Enhanced Treatment of Atrazine Containing Wastewater. Desalination, 2008, 231 (1~3):12~19
    28 R. Ravatn, A. J. B. Zehnder, J. R. van der Meer. Low Frequency Horizontal Transfer of an Element Containing the Chlorocatechol Degradation Genes from Pseudomonas putida F1 to Indigenous Bacteria in Laboratory-scale Activated-sludge Microcosms. Applied and Environment Microbiology, 1998, 64 (6): 2126~2132
    29 E. M. Top, D. Springael, N. Boon. Catabolic Mobile Genetic Elements and Their Potential Use in Bioaugmentation of Polluted Soils and Waters. FEMS Microbiology Ecology, 2002, 42(2):199~208
    30张力,于洪峰,程树培等.跨界原生质体融合工程菌株改进合成制药废水生物处理的有效性研究.江苏环境科技, 2004, 17(4): 11~12
    31 S. Bathe, N. Schwarzenbeck, M. Hausner. Bioaugmentation of Activated Sludge Towards 3-chloroaniline Removal with a Mixed Bacterial Population Carrying a Degradative Plasmid. Bioresource Technology, 100 (12): 2902~2909
    32 S. Bathe, T. V. K. Mohan, S. Wuertz et al.. Bioaugmentation of a Sequencing Batch Biofilm Raector by Horizontal Gene Transfer. Water Science and Technology, 2004, 49 (11~12): 337~344
    33 G. Buitron, A. Gonzalez. Characterization of the Microorganisms from an Acclimated Activated sludge Degrading Phenolic Compounds. Water Science and Technology, 1996, 34(5~6): 289~294.
    34 B. Y. Chen, S. Y. Chen, M. Y. Lin et al.. Exploring Bioaugmentation Strategies for Azo-dye Decolorization Using a Mixed Consortium of Pseudomonas luteola and Escherichia coli. Process Biochemistry, 2006, 41 (7): 1574~1581
    35罗国维,杨丹菁,林世光.投菌接触氧化法处理洁霉素废水的机理研究.环境科学, 1994 , 15 (6): 20~32
    36 S. C. Chen, S. L. Chen, H. Y. Fang. Study on EDTA-degrading Bacterium Burkholderia Cepacia YL-6 for Bioaugmentation. Bioresource Technology, 2005, 96 (16): 1782~1787
    37 A. Farrell, B. Quilty. The Enhancement of 2-chlorophenol Degradation by a Mixed Microbial Community When Augmented with Pseudomonas Putida CP1. Water Research, 2002, 36 (10): 2443~2450
    38 T. J. Gentry, D. T. Newby, K. L. Josephson et al.. Soil Microbial Population Dynamics Following Bioaugmentation with a 3-chlorobenzoate-degrading Bacterial Culture: Bioaugmentation Effects on Soil Microorganisms. Biodegradation, 2001, 12 (5): 349~357
    39 Y. Y. Qu, J. T. Zhou, J. Wang et al.. Population Dynamics in Bioaugmented Membrane Bioreactor for Treatment of Bromoamine Acid Wastewater. Bioresource Technology, 2009, 100(1): 244~248
    40 Y. Kasai, Y. Kodama, Y. Takahata et al.. Degradative Capacities and Bioaugmentation Potential of an Anaerobic Benzene-degrading Bacterium Strain DN11. Environmental Science and Technology, 2007, 41 (17): 6222~6227
    41 B. Z. Fathepure, V. K. Elango, H. Singh et al.. Bioaugmentation Potential of a Vinyl Chloride-assimilating Mycobacterium sp., Isolated from a Chloroethene-contaminated Aquifer. FEMS Microbiology Letters, 2005, 248 (2): 227~234
    42 S. V. Mohan, C. Falkentoft, Y. V. Nancharaiah et al.. Bioaugmentation of Microbial Communities in Laboratory and Pilot Scale Sequencing Batch Biofilm Reactors Using the TOL Plasmid. Bioresource Technology, 2009, 100 (5): 1746~1753
    43 J. L. Wang, X. C. Quan, L. B. Wu et al.. Bioaugmentation as a Tool to Enhance the Removal of Refractory Compound in Coke Plant Wastewater. Process Biochemistry, 2002, 38 (5):777~781
    44 S. Siripattanakul, W. Wirojanagud, J. M. McEvoy et al.. Atrazine Removal in Agricultural Infiltrate by Bioaugmented Polyvinyl Alcohol Immobilized and Free Agrobacterium Radiobacter J14a: A Sand Column Study. Chemosphere, 2009, 74 (2): 308~313
    45 E. Marrón-Montiel, N. Ruiz-Ordaz, C. Rubio-Granados et al.. 2,4-D-degrading Bacterial Consortium Isolation, Kinetic Characterization in Batch and Continuous Culture and Application for Bioaugmenting an Activated Sludge Microbial Community. Process Biochemistry, 2006, 41 (7): 1521~1528
    46 M. Z. Wang, G. Q. Yang, H. Min et al.. Bioaugmentation with the Nicotine-degrading Bacterium Pseudomonas sp. HF-1 in a Sequencing Batch ReactorTreating Tobacco Wastewater: Degradation Study and Analysis of its Mechanisms. Water Research, 2009, 43(17): 4187~4196
    47瞿福平,张晓健,何苗等.氯苯类同系物共基质条件下相互作用研究.环境科学, 1998, 19(4): 52~55
    48张晓健,瞿福平,何苗等.易降解有机物对氯代芳香化合物好氧生物降解性能的影响.环境科学, 1998, 19(5): 25~28
    49王景.应用生物强化技术处理焦化废水难降解有机物.城市环境与城市生态, 2000, 13(6): 42~44
    50 P. Adrians, D. D. Focht. Cometabolism of 3,4-dichlorobenzoate by Acinefobacter sp. Strain 4 - CB1. Applied and Environment Microbiology, 1991, 57(1): 173~179
    51 T. Bouchez, D. Patureau, P. Dabert et al.. Ecological Study of a Bioaugmentation Failure. Environmental Microbiology, 2002, 2(2): 179~190
    52 A. M. Anselmo. Degradation of Phenol by Immobilized Mycelium of Fusarirm in Continuous Culture.Water Science and Technology, 1993, 25(1): 161~168
    53吴立波.自固定化焦化菌种强化处理焦化废水研究.中国给水排水, 1999, 15(5): 124.
    54 H. L. Wang, G. S. Liu, P. Li et al.. The Effect of Bioaugmentation on the Performance of Sequencing Batch Reactor and Sludge Characteristics in the Treatment Process of Papermaking Wastewater. Bioprocess Biosystems Engineering, 2006, 29(5~6): 283~289
    55 R. Saravanane, D. V. S. Murthy, K. Krishnaiah. Treatment of Anti-osmotic Drug Based Pharmaceutical Effluent in an Upflow Anaerobic Fluidized Bed System. Water Management, 2001, 21 (6):563~568
    56 R. Saravanane, D. V. S. Murthy, K. Krishnaiah. Bioaugmentation and Treatment of Cephalexin Drug-based Pharmaceutical Effluent in an Upflow Anaerobic Fluidized Bed System. Bioresource Technology, 2001, 76 (3): 279 ~281
    57 J. V. Chamber. Improving Waste Removal Performance Reliability of a Wastewater Treatment System through Bioaugmentation. Waste Conf. Purdue University. Proc. 36th Ind. West Lafayette: Waste Conf. Purlue University, 1981: 631
    58秦振清.生物强化技术在焦化污水处理中的应用.柳钢科技, 2004, (4): 44~48
    59 K. K. Chin, S. L. Ong, L.H. Poh et al.. Wastewater Treatment with Bacterial Augmentation. Water Science and Technology, 33 (8): 17~22
    60 E. Belia, P. G. Smith. The Bioaugmentation of Sequencing Bactch Reactor Sludges for Biologcial Phophorus Removal. Water Science and Technology, 1997, 35(1): 19~26
    61 Z. T. Yu, W. W. Mohn. Bioaugmentation with Resin-acid-degrading Bacteria Enhances Resin Acid Removal in Sequencing Batch Reactors Treating Pulp Mill Effluents. Water Research, 2001, 35(4): 883~890
    62李娜,王暄,吕晓龙.优势菌技术处理难降解石化废水研究.天津工业大学学报, 2008, 27(4): 41~45
    63 S. R. Guiot, K. Tawfiki-Hájji, F. Lépine. Immobilization strategies for bioaugmentation of Anaerobic Reactors Treating Phenolic Compounds. Water Science and Technology, 2000, 42 (5~6): 245~250
    64 Z. T. Yu, W. W. Mohn. Bioaugmentation with the Resin-acid-degrading Bacterium Zoogloea resiniphila DhA-35 to Counteract pH Stress in an Aerated Lagoon Treating Pulp and Paper Mill Effluent. Water Research, 2002, 36 (11): 793~801
    65 Y. Y. Qu, J. T. Zhou, J. Wang et al.. Microbial Community Dynamics in Bioaugmented Sequencing Batch Reactors for Bromoamine Acid Removal. FEMS Microbiology Letters, 2005, 246(1): 143~149
    66曾丽璇,罗国维.优势菌处理印染废水的工艺及脱色机理研究.环境科学进展, 1999, 7(2): 92~96
    67 S. V. Mohan, N. C. Raoa, P. N. Sarma. Low-biodegradable Composite Chemical Wastewater Treatment by Biofilm Configured Sequencing Batch Reactor (SBBR). Journal of Hazardous Materials, 2007, 144 (1~2): 108~117
    68 Y. T. Hung, D. B. Shah, F. L. Horsfall. Effect of Bioaugmentation on the Performance of Activated Sludge Reactors. Process Biochemistry, 1987, (7): 68~73
    69 M. W. Britt, L. N. Jeppe, K. Kristian. Influence of Microbial Activity on the Stability of Activated Sludge Flocs. Collids and Surfaces B: Biointerfaces, 2000, 18(2): 145~156
    70 G. Bridoux, P. Dhulster, J. Manem. Grease Analysis on Municipal Wastewater Treatment Plants. TSM-L’eau, 1994, (89): 257~262
    71 L. Mendoza-Espinosa, T. Stcphenson. Grease Biodegradation: Is Bioaugmentation More Effective than Natural Populations for Start-up. Water Science and Technology, 1996, 34(5~6): 303~308
    72 W. Mongkolthanaruk, S. Dharmsthiti. Biodegradation of Lipid-rich Wastewater by a Mixed Bacterial Consortium. International Biodeterioration & Biodegradation, 2002, 50 (2): 101~105
    73 P. M. Makinen, T. J. Theno, J. F. Ferguson et al.. Chlorophenol Toxicity Removal and Monitoring in Aerobic Treatment: Recovery from Process Upsets. Environmental science and Technoogy, 1993, 27(7): 1434~1439
    74 S. R. O. Kyoung, R. W. Babcock, M. K. Stenstrom. Demonstration of Bioaugmentation in a Fluidized-bed Process Treating 1-naphthylamine. Water Research, 1997, 31(7): 1687~1693
    75 X. C. Quan, H. C. Shi, J. L. Wang et al.. Biodegradation of 2,4-Dichlorophenol in Sequencing Batch Reactors Augmented with Immobilized Mixed culture. Chemosphere, 2003, 50 (8): 1069~1074
    76 N. M. Chong, S. L. Pai, C. H. Chen. Bioaugmentation of an Activated Sludge Receiving pH Shock Loadings. Bioresource Technology, 1997, 59(2~3): 235~240
    77 E. Belia, P. G. Smith. The Bioaugmentation of Sequencing Batch Reactor Sludges for Biological Phosphorus Removal. Water Science and Technology, 1997, 35(1):19~26
    78李建政,任南琪.污染控制微生物生态学.哈尔滨:哈尔滨工业大学出版社, 2005: 52~55
    79 R. Y. Morita .Psychrophilicbacteria. Bacteriological Reviews,1975, 39:144~167
    80 V. Vckocski, D. Schlatter, H. Zuber. Stucture and Function of L-Lactate Dehydrogenases from Themophilic, Neophilic and Psychophilic Dehyfrogenase Genes of the Paychophilic Bacteria, Identification, Isolation and Nucleotide Sequence of Two L-Lactate Dehydrogenase Genes of the Paychophilic Bacterium Bacillus psychrosaccharoluticus. Biological Chemistry Hoppe-Seyler, 1990, 371(1): 103~110
    81 J. R. Hazel. Thermal Adaptation in Biological Membranes: Is the Homeoviscous Adaptation the Explanation? Annual Review of Physiology, 1995, 57: 19~42
    82 R. N. Weinstein, P. O.Montiel, K. Johnstone. Influence of Growth Temperature on Lipid and Solubale Carbohydrate Synthesis by Fungi Isolated from Fellfield in the Maritime Antarctic Mycologia, 2000, 92(2): 222~229
    83 M. R. Ray, T. Aitaramamma. Occurrence and Expression of cspA, a cold-shock gene, in Antactic psychotrophic bacteris. FEMS Microbiology Letters, 1994, 116(1): 55~60
    84 R. Margesin, G. Feller, C. Gerday et al.. Cold-adapted Microorganisms: Adaptation Strategies and biotechnological Potential. The Encyclopedia of Environmental Microbiology, 2002, 2: 871~885
    85 R. Margesin, P.-A. Fonteyne, B.Redl. Low-temperature Biodegradation of High Amounts of Phenol by Rhodococcus spp. and Basidiomycetous yeasts. Research in Microbiology, 2005, 156 (1): 68~75
    86 N. Perron, U. Welander. Degradation of Phenol and Cresols at Low Temperatures Using a Suspended-carrier Biofilm Process. Chemosphere, 2004, 55(1): 45~50
    87 T. K. Jarvinen, E. S. Milln, J. A. Puhakka. High-rate Bioremediation of Chlorophenol-contaminated Groundwater at Low Temperature. Environmenal Science and Technology, 1994, 28(13): 2387~2392
    88 R. Margesin, F. Schinner. Biodegradation of the Anionic Surfactant Sodium Dodecyl Sulfate at Low Temperatures. International Biodeterioration&Biodegradation, 1998, 41 (2): 139~143
    89张敏.降解非离子表面活性剂-嗜冷菌的筛选及其降解性能.科技进展, 2003, 25(4): 228~232
    90 R. Margesin, F. Schinner. Low-temperature Bioremediation of a Wastewater Contaminated with Anionic Surfactants and Fuel Oil. Applied Microbiology and Biotechnology,1998, 49 (4): 482~486
    91 M.A. Head, J. A. Oleszkiewicz. Bioaugmentation for Nitrification at Cold Temperatures. Water Research, 2004, 38(3): 523~530
    92 C. Helmer, S. Kunst. Simultaneous Nitrification and Denitrification in an Aerobic Biofilm System. Water Science and Technology, 1998, 37(45): 1832~1871
    93孟雪征,曹相生,姜安玺等.利用耐冷菌处理低温污水的研究.山东建筑工程学院学报, 2001, 16(2): 39~44
    94 M. A. Simon, J. S. Bonner, C. A. Page et al.. Evaluation of Two Commercial Bioaugmentation Products for Enhanced Removal of Petroleum from a Wetland. Ecological Engineering, 2004, 22 (4~5): 263~277
    95 L. Loperna, M. D. Ferrari, V. Saravia et al.. Performance of a Commercial Inoculum for the Aerobia Biodegradation of a High Fat Content Ddairy Wastewater. Bioresource Technology , 2007, 98(26): 1045~1051
    96 D. Park, D. S. Lee, Y .M. Kim et al.. Bioaugmentation of Cyanide-degrading Microorganismsin a Full-scale Cokes Wastewater Treatment Facility. Bioresource Technology, 2008, 99(6): 2092~2096
    97 S. El Fantroussi, S. N. Agathos. Is Bioaugmentation a Feasible Strategy for Pollutant Removal and Site Remediation? Current Opinion in Microbiology, 2005, 8(3): 268~275
    98尤勇军,安立超,潘伯宁.冷冻固定化硝化菌去除废水中氨氮的研究.化工环保, 2004, 24(5): 316~319
    99 V. V. Mohan, N C. Rao, K. K. Prasad et al.. Bioaugmentation of an Anaerobic Sequencing Batch Biofilm Reactor (AnSBBR) with Immobilized Sulphate Reducing Bacteria (SRB) for Treating Sulphate Bearing Chemical Wastewater. Process Biochemisty, 2005, 40 (8): 2849~2857
    100 S. V. Mohan, G. Mohanakrishna, S. V. Raghavulu et al.. Enhancing Biohydrogen Production from Chemical Wastewater Treatment in Anaerobic Sequencing Batch Biofilm Reactor (AnSBBR) by Bioaugmenting with Selectively Enriched Kanamycin Resistant Anaerobic Mixed Consortia. Internation Journal of Hydrogen Energy, 2007, 32 (15): 3284~3292
    101 X. Hu, A. Li, J. Fan et al.. Biotreatment of p-nitrophenol and Nitrobenzene in Mixed Wastewater through Selective Bioaugmentation. Bioresource Technology, 2008, 99 (10): 4529~4533
    102国家环保局.污水综合排放标准(GB8978-1996).中国环境科学出版社, 1996: 3~4
    103国家环保局.城镇污水处理厂污染物排放标准(GB18918~2002).中国环境科学出版社, 2002, 3~5
    104 K. Smalla, U. Wachtendorf, H. Heuer. Analysis of Biolog GN Substrate Utilization Patterns by Microbial Communities. Applied Environmental Microbiology, 1998, 64(4): 1220 ~1225
    105《水和废水检测分析方法》编委会.《水和废水检测分析方法》.第四版.北京:中国环境科学出版社, 2002: 88~285
    106任南琪,马放,杨基先.污染控制微生物学实验.哈尔滨:哈尔滨工业大学出版社, 2002: 107~109
    107 A. T. Classen, S. I. Boyle, K. E. Haskins. Community-level Physiological Profiles of Bacteria and Fungi Plate Type and Inculbation Temperature Influences on Constrating soils. FEMS Microbiology and Ecology, 2003, 44 (3): 319 ~328
    108 E. Sahinkaya. Microbial Sulfate Reduction at Low (8℃) Temperature Using Waste Sludge as a Carbon and Seed Source. International Biodeterioration & Biodegradation, 2009, 63(3): 245~251
    109 E. J. M. Thomassin-Lacroix, M. Eriksson et al.. Biostimulation and Bioaugmentation for On-site Treatment of Weathered Diesel Fuel in Arctic Soil. Appllied Microbiology and Biotechnology. 2002, 59(4~5): 551~556
    110 G. C. Banik, R. R. Daugue. ASBR Treatment of Low strength Industrial Wastewater at Psychrophilic Temperatures. Water Science and Technology, 1997, 36(2~3): 337~344
    111 R. W. M. Jr., C. R. Baillod, J. R. Mihelcic. Low-temperature Inhibition of the Activated Sludge Process by an Industrial Discharge Containing the Azo Dye Acid Black. Water Research, 2005, 39: 17~28.
    112 D. B. Nedwell. Effect of Low Temperature on Microbial Growth: Lowered Affinity for Substrates Limits Growth at Low Temperature. FEMS Microbiology Ecology, 1999, 30(2): 101~111
    113 K. S. Singh, T. Viraraghavan. Start-up and Operation of UASB Reactors at 20°C for Municipal Wastewater Treatment. Journal of Fermentation and Bioengineering, 1998, 85(6): 609~614
    114 M. Motta, M. N. Pons, N. Roche. Monitoring Filamentous Bulking in Activated Sludge Systems Fed by Synthetic or Municipal Wastewater. Bioprocess and Biosystems Engineering, 2003, 25(6): 387~393
    115 J. Rintala. High-rate Anaerobic Treatment of Industrial Wastewaters. Water Science and Technology, 1991, 24(1): 69~74
    116 I. Jubany, J.Carrera, J. Lafuente et al.. Start-up of a Nitrification System with Automatic Control to Treat Highly Concentrated Ammonium Wastewater:Experimental Results and Modeling. Chemical Engineering Journal, 2008, 144(3): 407~419
    117 A. Pu?al, M. Trevisan, A. Rozzi et al.. Influence of C:N ratio on the Start-up of Up-flow Anaerobic Filter Reactors. Water Research, 2000, 34 (9): 2614~2619
    118 P. V. Vadlani, K .B. Ramachandran. Evaluation of UASB Reactor Performance During Start-up Operation Using Synthetic Mixed-acid Waste. Bioresource Technology, 2008, 99(7): 8231~8236
    119薛连海,李磊. A/O法处理城市污水中有机物迁移转化的研究.安全与环境学报, 2003, 3(5): 8~11
    120 M. Ferraris, C. Innella, A. Spagni. Start-up of a Pilot-scale Membrane Bioreactor to Treat Municipal Wastewater. Desalination. 2009, 237(1~3): 190~200
    121 M. Tiranuntakul, V. Jegatheesan, P. A Schneider et al.. Performance of an Oxidation Ditch Retrofitted with a Membrane Bioreactor During the Start-up. Desalination, 2005, 183(1~3): 417~424
    122 J. A.álvarez, E. Armstrong, M. Gómez et al.. Anaerobic Treatment of Low-strength Municipal Wastewater by a Two-stage Pilot Plant Under Psychrophilic Conditions. Bioresource Technology, 2008, 99(15): 7051~7062
    123 I. Bodík, B. Herdoví, M. Drtil. Anaerobic Treatment of the Municipal Wastewater Under Psychrophilic Conditions. Bioprocess Engineering, 2002, 22(5): 385~390
    124 P. Domde, A. Kapley, H. J. Purohit. Impact of Bioaugmentation with a Consortium of Bacteria on the Remediation of Wastewater Containing Hydrocarbons. Environmental Science and Pollution Research, 2007, 14 (1): 7~11
    125 F. M. Bento, F. A. O. Camargo, B. C. Okeke et al.. Comparative Bioremediation of Soils Contaminated with Diesel Oil by Natural Attenuation, Biostimulation and Bioaugmentation. Bioresource Technology, 2005, 96(9): 1049~1055
    126马放,杨基先,金文标.环境生物制剂的开发与应用.北京:化学工业出版社, 2004, 37~42
    127 B. R. Zaidi, S. H. Imam, R. V. Greene et al.. Inoculation of Indigenous and Non-indigenous Bacteria to Enhance Biodegradation of p-nitrophenol inIndustrial Wastewater: Effect of Glucose as a Second Substreate. Biotechnology Letters, 1996, 18(5): 565~570
    128 R. I. Amann, W. Ludwig, K. H. Schleifer. Phylogenetic Identification and in Situ Detection of Individual Microbial Cells without Cultivation. Microbiology Review, 1995, 59(1): 143~169
    129赵立军.低温污水生物强化处理技术应用研究.哈尔滨工业大学博士论学位论文, 2007: 108
    130国家技术监督局.《农药登记毒理学试验方法》(GB15670-1995).北京:中国标准出版社, 2002
    131杨小丽,叶峰,宋海亮等.基于污水厂运行数据的低温生物脱氮强化研究.中国给水排水, 2009, 25(1):82~86
    132 Y. Wen, X. F. Huang, Z. Qiu. Experimental Study on the Mechanism of Oilfield Wastewater Treatment by Using Hydrolysis-acidification with Aerobic Biological Process. Environmenal Science, 2006, 27(7): 1362~1368
    133 W. H. Ling, Y. C. Xiao. Application of Up-flow Anaerobic Sludge Bed in the Pretreatment of High Concentrated Wastewater of Petroleum Chemical Production. Shanghai chemical industry, 2003, 8 (7) :7~10
    134 T. M. Lapara, C. H. Nakatsu, L. M. Pantea et al.. Stability of the Bacterial Communities Supported by a Seven-stage Biological Process Treating Pharmaceutical Wastewater as Rrevealed by PCR-DGGE. Water Research, 2002, 36 (3): 638~646
    135 Q. Tian, J. Chen, H. Zhang et al.. Study on the Modified Triphenyl Retrazolium Chloride-dehydrogenase Activity (TTC-DHA) Method in Determination of Bioactivity in the Up-flow Aerated Bio-activated Carbon Filter. African Journal of Biotechnology, 2006, 5(2): 181~188
    136 M. B. Vareche, M. Zaiat, L. G. T. Vieira. Microbial Colonization of Polyurethane Foam Matrices in Horizontal Flow Anaerobic Immobilizlied Sludge (HAIS) Reator. Applied Microbilolgy and Biotechnology, 1997, 48(4): 538~543
    137 G. Tommaso, M. B. Varesche, M. Zaiat. Morphological Observation and Microbial Population Dynamics in Anaerobic Polyurethane Foam Biofilm Degrading Gelatin. Brazilian Journal of Chemical Engineering, 2002, 19(3): 287~292
    138 D. Hadjiev, D. Dimitrov, M. Martinov et al.. Enhancement of the Biofilm Formation on Polymeric Supports by Surface Conditioning. Enzyme and Microbial Technology , 2007, 40(4): 840~848
    139 C. Guimar?es, P. Porto, R. Oliveira et al.. Continuous Decolourization of a Sugar Refinery Wastewater in a Modified Rotating Biological Contactor with Phanerochaete Chrysosporium Immobilized on Polyurethane foam disks. Process Biochemistry, 2005, 40(2): 535~540
    140 S. Manohar, C. K. Kim, T. B. Karegoudar. Enhanced Degradation of Naphthalene by Immobilization of Pseudomonas sp. Strain NGK1 in Polyurethane Foam. Applied Microbilolgy and Biotechnology, 2001, 55(3): 311~316
    141 P. L. Bishop. Biofilm Structure and Kkinetics. Water Science and Technology, 1997, 36: 287~294
    142 M. R. S. Chaudhry, S. A. Beg. A Review on the Mathematical Modeling of Biofilm Processes: Advances in Fundamentals of Biofilm Modeling. Chemical Engineering and Technology, 1998, 21(9): 701~771
    143 C. R. Woolard. The Advantages of Periodically Operated Biofilm Reactors for the Treatment of Highly Variable Wastewater. Water Science and Technology, 1997, 35(1): 199~206
    144 N. Aghamohammadi, H. bin Abdul Aziz, M. H. Isa. Powdered Activated Carbon Augmented Activated Sludge Process for Treatment of Semi-aerobic Landfill Leachate Using Response Surface Methodology. Bioresource Technology, 2007, 98(18): 3570~3578
    145 A. Akram, D. C. Stuckey. Flux and Performance Improvement in a Submerged Anaerobic Membrane Bbioreactor (SAMBR) Using Powdered Activated Carbon (PAC). Process Biochemistry, 2008, 43(1): 93~102
    146 M. S. Xia, C. H. Hu, H. M. Zhang. Effects of Tourmaline Addition on the Dehydrogenase Activity of Rhodopseudomonas palustris. Process Biochemistry, 2006, 41(1): 221~225
    147蒋侃,马放,孙铁珩.电气石对好氧反硝化菌株反硝化特性的影响.硅酸盐学报, 2007, 35(8): 1066~1069
    148管登高,陈善华,唐科.电气石微粉的研制及其在环境功能材料中的应用.矿产综合利用, 2006, 6: 44~47
    149韩晓云,姜安玺,贲岳.处理低温污水耐冷菌生物膜的研究.哈尔滨工程大学学报, 2007, 28(2): 237~240
    150张雷,姜蔚,徐桂芹.固定化复合耐冷菌特性和效能研究.哈尔滨商业大学学报(自然科学版), 2007, 23(1): 62~66
    151 L. Tijhuis, M. C. M. Van Loosdrecht, J. J. Heijnen. Formation and Growth of Heterotrophic Aerobic Biofilms on Small Suspended Particles in Airlift Reactors. Biotechnology and Bioengineering, 1994, 44(5): 595~608
    152 X. M. Zhan, M. Rodgers, E. O’Reilly. Biofilm Growth and Characteristics in an Alternating Pumped Sequencing Batch Biofilm Reactor (APSBBR). Water Research, 2006, 40(4): 817~825
    153 P. Y. Yang, Z. Q. Zhang, B. G. Jeong. Simultaneous Removal of Carbon and Nitrogen Using an Entrapped-mixed-microbial-cell Process. Water Research, 1997, 31(10), 2617~2625
    154 Q. Fontenot, C. Bonvillain, M. Kilgen et al.. Effects of Temperature, Salinity, and Carbon: Nitrogen Ratio on Sequencing Batch Reactor Treating Shrimp Aquaculture Wastewater. Bioresource Technology, 2007, 98(9): 1700~1703
    155 M. Rodgers, A. Lambe, L. Xiao. Carbon and Nitrogen Removal Using a Novel Horizontal Flow Biofilm System. Process Biochemistry, 2006, 41(11): 2270~2275
    156 E. Vaiopoulou, P. Melidis, A. Aivasidis. An Activated Sludge Treatment Plant for Integrated Removal of Carbon, Nitrogen and Phosphorus. Desalination , 2007, 211(1~3): 192~199
    157韩志胜,刘玉,江雄志.石家庄市桥东污水厂A /O脱氮工艺的调试和优化.中国给水排水, 2007, 23(12):96~98
    158贾俊青,曹建军,李平在.呼和浩特公主府污水处理厂设计及运行调试.内蒙古水利, 2009年, (3):121~123
    159 L. W. Xiao, M. Rodgers, J. Mulqueen. Organic Carbon and Nitrogen Removal from a Strong Wastewater Using a Denitrifying Suspended Growth Reactor and a Horizontal-Flow Biofilm Reactor. Bioresource Technology, 2007, 98(26): 739~744
    160 B. Molinuevo, M. C. Garíc, D. Karakashev et al.. Anammox for Ammonia Removal from Pig Manure Effluents: Effect of Organic Matter Content on Process Performance. Bioresource Technology, 2009, 100(7): 2171~2175
    161 K. C. Chen, S. C. Lee, S. C. Chin et al.. Simultaneous Carbon-nitrogen Removal in wastewater Using Phosphorylated PVA-immobilized Microorganisms. Enzyme and Microbial Technology, 1998, 23(5): 311~320
    162 A. C. Singer, C. J. Van der Gast, I. P. Thompson. Perspectives and Vision for Strain Seletction in Cioaugmentation. Trends in Biotechnology, 2005, 23(2): 74~76
    163 M. Alawi, A. Lipski, T. Sanders et al.. Cultivation of a Novel Cold-adapted Nitrite Oxidizing Betaproteobacterium From the Siberian Arctic. The ISME Journal, 2007, 1(3): 256~264
    164常玉广.基于产絮克隆菌的遗传及产絮特性研究.哈尔滨工业大学博士论学位论文. 2007: 35~55
    165邱兆富,周琪,杨殿海等. A2O工艺城市污水处理厂的启动与调试.给水排水,2005,31(9):30~33
    166江建权,杨殿海,周琪.低温低浓度下城市污水活性污泥自然培养和驯化.苏州科技学院学报(工程技术版), 2005, 18(1):1~4
    167郑秋红,伍永秋,张永光.冰封期河流中污染物损耗估算模型.北京师范大学学报(自然科学版), 2006, 42(6): 615-617
    168王宪恩,董德明,赵文晋等.冰封期河流中有机污染物削减模式.吉林大学学报(理学版), 2003, 41(3): 392~395

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700