用户名: 密码: 验证码:
3,5,6-三氯吡啶-2-醇钠合成新工艺研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
3,5,6-三氯吡啶-2-醇钠(STCP)是合成杀虫剂毒死蜱和除草剂绿草定的重要中间体。目前工业上合成STCP的主要工艺路线是三氯乙酰氯(TCAC)法。该方法主要缺点是STCP收率较低(一般不超过60%),污染比较严重。本文结合TCAC法的反应机理,提出了一条以TCAC为原料改进的合成STCP的新路线,STCP的总收率可达75%以上。
     所提出的改进工艺路线是:(1)TCAC首先与甲醇发生酯化反应生成三氯乙酸甲酯(MTCA);(2)MTCA再与丙烯腈(AN)进行加成反应生成2,2,4-三氯-4-氰基丁酸甲酯(MTCB);(3)MTCB在POCl_3作用和加压条件下合成2,3,5,6-四氯吡啶(TCP);(4)TCP在碱性条件下水解最终制取STCP。
     论文在考察各步反应中主要影响因素的基础上,确定了每步反应的适宜工艺条件,并对反应机理进行了探讨。研究表明,TCAC与甲醇的酯化反应是一个定量反应,MTCA收率可达100%;由于CH_3O-的引入,供电性的CH_3O-基团比吸电性的氯原子更有利于[C(Cl)_2]~+碳正离子的稳定性,使得加成反应由自由基反应机理向SN1反应机理转变,从而使得MTCA与AN的加成反应更易进行,MTCB收率可达87%以上;但是,CH_3O-取代氯原子后,使得在无POCl_3存在时环化反应难以进行。在POCl_3存在时,MTCB可以高效环化生成TCP,收率可达90%。机理分析表明,在POCl_3作用下的MTCB环化反应可能是POCl_3首先与MTCB进行酯交换反应生成2,2,4-三氯-4-氰基丁酸氯,再经环化生成TCP。
     TCP水解制取STCP也是影响TCAC工艺的一个重要因素。论文研究STCP在超(近)临界水中稳定性的基础上,实验考察了TCP碱解转化为STCP的工艺条件。结果表明,STCP在280℃以下的高压水中具有良好的稳定性;在加压条件下TCP水解的速度远高于常压条件下的水解速度,STCP收率可达95%以上。此外,还考察了TCP在常压下醇类溶液中的水解规律。结果表明,由于TCP在醇类溶剂中的良好溶解性,使得水解反应为均相反应,水解速度明显高于常压水溶液中的水解速度。在各种低级脂肪醇中,在正丁醇中的水解效果最好。
     STCP生产过程中的工业废水具有污染性强和难降解的特性。论文采用连续管式反应器考察了STCP废水的超临界氧化降解效果。结果表明,STCP降解率可达99%以上。FT-IR分析表明降解产物主要为H_2O、CO_2和相应的无机铵盐等。
Sodium 3,5,6-trichloropyridin-2-ol(STCP) is an important intermediate for the production of chlorpyrifos(an extensively used pesticide) and triclopyr(a herbicide). STCP is conventionally synthyzed by TCAC route in which trichloroacetyl chloride (TCAC) is used as the starting material.A major disadvantage of this process is low STCP yield(usually lower than 60%).In this thesis,a modified method for STCP synthesis using TCAC as the starting material is proposed with high STCP yield of 75%above.
     The proposed process is that:(1) TCAC firstly reacts with methanol to produce methyl trichloroacetate(MTCA);(2) MTCA is followed to react with acrylonitrile(AN) and affords methyl 2,2,4-trichloro-4-cyanobutyrate(MTCB) in the presence of CuCl catalyst under ambient pressure condition;(3) 2,3,5,6-tetrachloropyridine(TCP)is synthyzed by cyclization of MTCB in the presence of POCl_3;and finally(4) TCP is alkalized to STCP.
     The effects of process parameters such as reaction temperature,time and ratio of raw materials,were investigated systematically.The appreciate process conditions were given and the reaction mechanism was also discussed.The experimental results showed that the esterification of TCAC with methanol was a quantative reaction with a MTCA yield of 100%.Due to the higher electron-donating ability of CH_3O-than Cl-,carbonium ion ([C(Cl)_2]~+) became more stable after the substitution of CH_3O- group of Cl atom.As a result,the addition reaction of MTCA and AN transformed from radical reaction mechanism towards SN1 mechanisum and easily took place with a MTCB yield of more than 87%.Nonetheless,the cyclization of MTCB was difficult to occur in the absence of POCl_3.With POCl_3,however,MTCB could be efficiently converted to TCP with a yield of more than 90%.It seems that transesterification reaction occurred between MTCB and POCl_3 and afforded 2,2,4-trichloro-4-cyano-butyryl chloride,which was transformed to TCP by cyclization.
     Hydrolysis(or alkalization) of TCP to STCP has large effect on the TCAC process. On the basis of the investigation of the stability of SCTP in super-/subcritical water,the alkalization of TCP to STCP was studied experimentally.It was found that SCTP was highly stable when the temperature was lower than 280℃.Hydrolysis rate of TCP under elevated pressure,with STCP yield higher than 95%,much faster than ambient pressure.In addition,hydrolysis process was investigated in alcohols under atmosphere pressure.The result indicated that hydrolysis reaction in alcohols was homogeneous reaction and hydrolysis rate of TCP evidently faster than in water due to TCP good solubility in alcohols.N-butanol behaved best hydrolysis performance in different lower alcohols.
     In the process of STCP production,however,large amount of wastewater containing STCP is discharged,which is refractory hazardous organic wastes and causes severe environmental concerns.The supercritical water oxidation experimetnts of STCP in a continuous tubular reactor indicated that degradation rate of STCP higher than 99%.FT-IR analysis showed that major degradation products were H_2O,CO_2 and corresponding inorganic ammonium salts.
引文
[1]Qin,J H,Zeng,Z X,Xue,W L.Experimental Measurement and Correlation of Solubility of Pentachloropyridine and Tetrachloropyridine in Methanol,Ethanol,and 2-Propanol[J].J.Chem.Eng.Data,2006,51(1):145-147.
    [2]孙致远,卢建华,赵风革,等.毒死蜱的合成[J].农药,1998,37(7):13-14.
    [3]徐振元,徐丹倩,戴金贵,等.毒死蜱合成研究[J].农药,1998,37(1):15-17.
    [4]张柏青,周曙光,胡军,等.毒死蜱的合成研究[J].农药,1999,38(7):4-6.
    [5]杨浩,肖国民.杀虫剂毒死蜱的合成进展[J].应用化工,2003,32(2):9-11.
    [6]李培国,张柏青.3,5,6-三氯吡啶-2-醇钠的合成[J].浙江化工,2004,35(3):16-18.
    [7]杨先贵,刘绍英,李建国,等.毒死蜱中间体三氯吡啶酚的合成[J].现代农药,2005,4(5):8-9.
    [8]许丹倩.毒死蜱及其中间体的合成述评[J].浙江化工,1995,26(1):4-8.
    [9]王丽红,方云进.农药中间体3,5,6-三氯吡啶-2-醇钠的合成进展[J].河北化工,2006,29(11):27-29.
    [10]程春生,汪灿明,王凤宇,等.3,5,6-三氯吡啶-2-醇钠的合成[J].农药,1998,37(10):17.
    [11]金炼铁,余红杰.三氯吡啶酚及其钠盐的合成[J].精细化工,2002,19(8):474-476.
    [12]徐保明,秦勇,张绍春,等.高收率毒死蜱的合成工艺研究[J].四川化工,1996(4):1-3.
    [13]张新忠,范钱君,陈建强.毒死蜱的合成研究[J].浙江化工,2004,35(12):9-11.
    [14]中国化工信息中心.三氯吡啶酚应用在农药中市场发展前景看好[J].农化新世纪,2007(8):31.
    [15]冯忖,包文娟,吴永果,等.几种卤代吡啶类农药中间体的合成与应用[J].农药,2007,46(12):793-799.
    [16]李卓林.毒死蜱合成新工艺[J].广州化工,2006,34(1):38-40.
    [17]李培国.3,5,6-三氯吡啶-2-醇钠合成实验和工艺研究[D]:[硕士学位论文].杭州:浙江大学材料与化学工程学院,2003.
    [18]Fakhraian H,Moghimi A,Ghadiri H,et al.Reinvestigation of Phase-Transfer-Catalyzed Chlorpyrifos Synthesis[J].Organic Process Research & Development,2004,8(4):680-684.
    [19]Kamei N.Preparation of chloro-2-pyridinols as intermediates for insecticides[P].日本专利,01203363.1989-8.
    [20]Marinak M J,Simonson J L.Production of polychlorinatedpyridine mixtures by liquid phase chlorination of pyridine or pyridine hydroch-loride[P].美国专利,4515953.1985-05-07.
    [21]Marinak M J,Simonson J L.Production of polychlorinatedpyridine mixtures by liquid phase chlorination of beta-picoline or beta-picoline hydrochloride[P].美国专利,4483993.1984-11-20.
    [22]Pierre M,Daniel B.3,3,5-Trichloroglutaric acid imide[P].美国专利,4360676.1982-11-23.
    [23]Niels F,Per F S.Process for the preparation of 2,3,5,6-tetrachloro-pyrodine[P].美国专利,5599939.1997-02-04.
    [24]Adsway,Timothy J,Larry D,et al.Process for the preparation of 3,3,5-trichloroglutarimide[P].美国专利,5688953.1997-12-18.
    [25]Pierre M.3,3,5-trichloroglutaric acid Amine[P].欧洲专利,0030215.1982-12-23.
    [26]Youval S.Production of 2,3,5,6-tetrachloropyridine[P].美国专利,5618942.1997-04-08.
    [27]杨伟.甲基毒死蜱的最新合成工艺[J].农药,1990,29(3):51-52.
    [28]谢思勉,张绍春.三氯吡啶醇合成副产物四氯吡啶的转化研究[J].湖北化工,1996(增刊):60-61.
    [29]Kawamvra M.Preparation of 2-hydroxyhalogeno pyridine[P].日本专利,58154561[P].83-09-14.
    [30]Pew R G,Gall J A.The synthesis of 3,5,6-trichloro-pyridin-2-ol[J].J Org Chem,1994,59(22):6783-6785.
    [31]Yigal B.Production of 3,5,6-trichloropyridin-2-ol and novel intermediates thereof[P].美国专利,5017705.1991-05-21.
    [32]朱小平.工业化制备三氯吡啶醇钠的新方法[P].中国专利,200410014480.3.2005-10-05.
    [33]金炼铁.三氯吡啶酚的合成述评[J].湖北化工,1998(2):1-3.
    [34]崔洪友.超临界一步酯交换法合成碳酸二甲酯的研究[D]:[博士学位论文].北京:清华大学化学工程系,2003.
    [35]刘宁,崔洪友,姚德.紫外分光光度法测定农药中间体2,3,5,6-四氯吡啶[J].农药,2008,47(3):.
    [36]张上玉.紫外分光光度法测定三氯吡啶醇钠的含量[J].浙江化工,1999,30(4):52-53.
    [37]Fakhraian H,Moghimi A,Bazaz A,et al.Reinvestigation of the Rreaction of Trichloroacetyl Chloride and Acrylonitrile in the Preparation of 3,5,6-Trichloropyridin-2-ol[J].Organic Process Research & Development,2003,7(3):329-333.
    [38]徐丹倩,徐振元,戴金贵.3,5,6-三氯吡啶-2-酚的合成[J].浙江工业大学学报,1996,24(1):16-23.
    [39]陶氏化学公司.3,5,6-三氯吡啶-2-醇的改进方法[P].中国专利,90102727.8.1995-01-04.
    [40]徐振元,许丹倩,戴金贵.3,5,6-三氯吡啶-2-酚盐的生产方法[P].中国专利,02157262.3.2004-07-21.
    [41]曹育才,蒋玉仁,薛玉兰,等,3,5,6三氯吡啶-2-酚的合成与波谱特征[J].中南工业大学学报,2000,31(1):24-26.
    [42]张伟,徐杰,孙志强,等.卤代吡啶类化合物的合成及应用[J].精细化工中间体,2006,36(4):1-6.
    [43]朱伟,肖国民.3,5,6三氯吡啶-2-酚的合成[J].精细与专用化学品,2005,13(18):12-14.
    [44]朱伟,肖国民.吡啶法合成3,5,6三氯吡啶-2-酚工艺的研究[C].第一届全国化学工程与生物化工年会.南京:2004.H095.
    [45]Racke K D,Coats J R,Titus K R.Degradation of chlorpyrifos and its hydrolysis product,3,5,6-trichloro-2-pyridinol,in soil[J].Journal of Environmental Science and Health,1988,B23(6):527-539.
    [46]Sardar D,Kole R K.Metabolism of chlorpyrifos in relation to its effect on the availability of some plant nutrients in soil[J].Chemosphere.2005,61:1273-1280.
    [47]Armbrust K L.Chlorothalonil and chlorpyrifos degradation products in golf course leachate[J].Pest Manage.Sci.2001,57:797-802.
    [48]Barcelo D,Durand G,Bertrand N D.Photodegradation of the organophosphorus pesticides chlorpyrifos,fenamiphos and vamidothion in water[J].Toxicol.Environ.Chem.1993,38(3-4):183-199.
    [49]Baskaran S,Kookana R S,Naidu R.Contrasting behaviour of chlorpyrifos and its primary metabolite,TCP(3,5,6-trichloro-2-pyridinol),with depth in soil profiles[J].Aust.J.Soil Res.2003,41(4):749-760.
    [50]Randhawa M A,Anjum F M,Ahmed A,Randhawa M S.Field incurred chlorpyrifos and 3,5,6-trichloro-2-pyridinol residues in fresh and processed vegetables[J].Food Chem.2007,103:1016-1023.
    [51]Li X H,He J,Li S P.Isolation of a chlorpyrifos-degrading bacterium,Sphingomonas sp.strain Dsp-2,and cloning of the mpd gene[J].Res.in Microbiol.2007,158:143-149.
    [52]昝元峰,王树众,段百齐,等.超临界水氧化技术的研究进展[J].石油化工,2004,33(2):184-189.
    [53]刘志敏,张建玲,韩布兴.超(近)临界水中的化学反应[J].化学进展,2005,17(2):265-274.
    [54]Brock E E,Savage P E.Detailed chemical kinetics model for supercritical water oxidation of C_1compounds and H_2[J].AIChE J.1995,41:1874-1888.
    [55]Holgate H R,Tester J W.Oxidation of hydrogen and carbon monoxide in sub-and supercritical water:reaction kinetics,pathways,and water density effects.2.Elementary reaction modeling[J].J.Phys.Chem.1994,98:810-822.
    [56]Dagaut P,Cathonnet M,Boettner J C.Chemical kinetic modeling of the supercritical water oxidation of methanol[J].J.of Supercritical Fluids,1996,9:33-42.
    [57]Webley P A,Tester J W.Fundamental kinetics of methane oxidation in supercritical water[J].Energy Fuels,1991,5:411-419.
    [58]Rice S F,Croiset E.Oxidation of simple alcohols in supercriticalwater.Ⅲ.formation of intermediates from ethanol[J].Ind.Eng.Chem.Res.2001,40:86-93.
    [59]Dinaro J L,Howard J B,Green W H,et al.Elementary reaction mechanism for benzene oxidation in supercritical water[J].J.Phys.Chem.A,2000,104:10576-10586.
    [60]Gopalan S,Savage P E.Phenol oxidation in supercritical water:from global kinetics and product identities to an elementary reaction model[J].ACS Symp.Ser.1995,608:217-231.
    [61]Sullivan P A,Ploeger J M,Green W H,et al.Elementary reaction rate model for MPA oxidation in supercritical water[J].Phys.Chem.Chem.Phys.2004,6:4310-4320.
    [62]Benjamin K M,Savage P E.Detailed chemical kinetic modeling of methylamine in supercritical water[J].Ind.Eng.Chem.Res.2005,44:9785-9793.
    [63]向波涛,王涛,沈忠耀.含乙醇废水的超临界水氧化反应动力学及反应机理[J].化工学报,2003,54(1):80-85.
    [64]Koo M,Lee W K,Lee C H.New reactor system for supercritical water oxidation and its application on phenol destruction[J].Chem.Eng.Sci.1997,52:1201-1214.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700