用户名: 密码: 验证码:
有机无机复混肥优化化肥养分利用的效应与机理
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
有机无机复混肥料具有消纳有机废弃物、增加土壤有机质含量和优化化学肥料养分高效利用的作用,逐渐受到产业界的重视。本研究采用团粒法工艺,利用味精厂制糖形成的糖渣(A)、糠醛厂的有机废弃物糠醛渣(B)和味精厂污水处理形成的污泥有机废弃物(C)作为有机原料,与化学氮肥(尿素)、化学磷肥(磷酸一铵)和化学钾肥(硫酸钾)复混分别制成有机无机复混氮肥、有机无机复混磷肥和有机无机复混钾肥。运用大型土柱栽培试验研究了有机无机复混肥对作物产量和养分吸收利用的影响;利用淋洗试验、土壤培养试验等系统研究了有机物料与化学肥料复混对化学肥料养分释放模式、转化过程以及损失等的影响,揭示有机物料与化学肥料复混优化化肥养分高效利用的效应与机理。主要结果如下:
     (1)有机物料与化学肥料复混形成有机无机复混肥,相比化肥具有明显的增产效果。等养分投入,在低氮、中氮和高氮水平下,施用有机无机复混氮肥处理平均玉米籽粒产量分别比单施化肥氮提高19.1%、9.0%和5.6%;在低磷、中磷和高磷水平下,施用有机无机复混磷肥处理平均玉米籽粒产量平均分别比单施化肥磷提高19.1%、11.3%和37.8%;在低钾、中钾和高钾水平下,施用有机无机复混钾肥处理平均玉米籽粒产量平均分别比单施化肥钾提高27.8%、-3.2%和10.8%。本试验条件下,总体看,有机无机复混肥中随有机物料含量比例提高,对增产效应有一定的促进作用,但效果不是很有规律和十分明显。另外,等氮量投入下,有机氮(有机物料处理)比无机氮减产。
     (2)在等化肥氮量投入情况下,无论是低氮、中氮还是高氮投入水平,有机无机复混氮肥比对应有机物料处理的玉米增产幅度都较化肥氮处理比对应不施氮肥(CK1)处理的增产幅度高;低氮、中氮和高氮水平下,有机无机复混氮肥处理平均玉米籽粒产量分别比单施化肥氮提高12.4%、4.8%和5.4%。有机无机复混氮肥比化肥表现出明显的增产效果。
     (3)有机物料与化学肥料复混具有明显促进养分吸收的效应。等氮量投入,低氮、中氮和高氮水平下,有机无机复混氮肥处理平均玉米植株氮素吸收量比化肥处理分别提高27.9%、14.6%和7.3%;等化肥氮投入,低氮、中氮和高氮水平下,有机无机复混氮肥处理平均玉米植株氮素吸收量比化肥处理分别提高29.0%、21.6%和18.9%。等全磷投入,低磷、中磷和高磷水平下,有机无机复混磷肥处理平均玉米植株磷素吸收量比化肥处理分别提高12.6%、2.8%和33.4%。等全钾投入,低钾、中钾和高钾水平下,有机无机复混钾肥处理平均玉米植株钾素吸收量比化肥处理分别提高31.3%、-9.1%和16.1%。
     (4)有机物料与化学肥料复混具有优化化学肥料养分利用和提高肥料利用率的效果。等氮量投入,低氮、中氮和高氮投入水平下,有机无机复混氮肥处理平均氮肥表观利用率分别较化肥处理提高了35.4、13.1和4.9个百分点。此外,等氮量条件下,有机氮(有机物料处理)的氮肥利用率不及无机氮的高。等尿素氮投入,低氮、中氮和高氮投入水平下,有机无机复混氮肥处理平均的化肥氮(尿素N)的表观利用率分别比化学肥处理(尿素N)提高了33.5、11.6和13.0个百分点。等磷投入条件下,低磷、中磷和高磷投入水平,有机无机复混磷肥处理平均其化肥磷的表观利用率分别比化肥处理提高了16.2、0.8和15.7个百分点。等钾投入条件下,低钾、中钾和高钾投入水平,有机无机复混钾肥平均其化肥钾的表观利用率分别比化肥处理提高了55.1、-3.3和2.1个百分点。
     (5)玉米收获后测定,有机无机复混肥料对土壤有机质增加作用不明显;土壤全氮含量比相应化肥处理略有增加。由于有机无机复混肥料促进了作物对养分的吸收,在等养分投入下,有机无机复混氮肥和有机无机复混磷肥处理的土壤速效磷含量比相应化肥处理的偏低;有机无机复混钾肥处理的土壤速效钾含量比对应化肥处理的稍有增加。相比单施化肥处理,有机无机复混肥料处理土壤微生物量碳、量氮没有体现出明显的增加趋势。
     (6)等化肥磷施入条件下,相比化学磷肥处理,有机无机复混磷肥处理的土壤速效磷含量显著增加,提高了磷肥的供肥性。与化肥处理比较,有机无机复混磷肥明显提高了土壤Ca2-P、Ca8-P含量和比例,却显著降低土壤Al-P的含量。
     (7)等化肥钾投入条件下,相比化学钾肥处理,糠醛渣(B)和污泥(C)有机无机复混钾肥的钾素淋洗总量略有增加,而糖渣(A)有机无机复混钾肥钾素淋洗总量略有减少。有机无机复混钾肥没有明显降低钾素在土壤中的运移性。相比化学钾肥处理,糖渣(A)和糠醛渣(B)有机无机复混钾肥的土壤速效钾含量有所提高,而钾的固定量(K)分别减少了42mg/kg和39mg/kg。
As a new type of fertilizer, organic-inorganic compound fertilizer has been gaining increasing interests in China. In this study, organic-inorganic compound N, P, and K fertilizers were made by combining each of the organic waste materials (including sugar residue, furfural residue, and bio-solids from the production of monosodium glutamate) with urea, ammonium phosphate and potassium sulfate, respectively. The leaching experiments, incubation experiments, and potted plants experiments were conducted to investigate effects of these organic-inorganic compound fertilizers on crop yield, nutrient uptake, nutrient use efficiency, soil fertility, and the cycling of nutrients in soils. The major conclusions are as follows:
     (1)Organic-inorganic compound fertilizers increased maize grain yield. At the low, medium, and high N application rate, organic-inorganic compound N fertilizer application increased maize grain yield by 19.1%, 9.0% and 5.6%, respectively, compared to the urea treatment. Similarly, compared to inorganic P fertilizer, organic-inorganic compound P fertilizer increased maize grain yield by 19.1%, 11.3% and 37.8%, respectively, at the low, medium, and high P application rate. As with organic-inorganic compound K fertilizer, it also tended to increase maize grain yield compared to inorganic K fertilizer. In the current study, an increase in the ratio of organic material to inorganic components of organic-inorganic compound fertilizer tended to increase crop yield to a limited degree. Given that the same amounts of N were applied, however, organic-N application decreased maize yield relative to inorganic-N treatment.
     (2)At the same urea N application rate, the relative increase of maize grain yield of the organic-inorganic compound N fertilizer treatment to those of the corresponding organic material treatment was greater than that of the inorganic N fertilizer treatment to no N fertilizer treatment. At the low, medium, and high N application rate, organic-inorganic compound N fertilizer increased maize grain yield by 12.4%, 4.8% and 5.4%, respectively, relative to the urea treatment.
     (3) Organic-inorganic fertilizers increased nutrients uptake. At the low, medium and high N application rate, organic-inorganic compound N fertilizer increased N uptake of maize plant by 27.9%, 14.6%, and 7.3%, respectively, compared to inorganic N treatment. At the low, medium and fertilizer N application rate, organic-inorganic compound N fertilizer application increased N uptake of maize plant by 29.0%, 21.6%, and 18.9%, respectively, compared to fertilizer N treatment. Similarly, compared to inorganic P treatment, organic-inorganic compound P fertilizer increased P uptake of maize plant by 12.6%, 2.8%, and 33.4%, respectively, at the low, medium, and high P application rate. At the low, medium and high K application rate, organic-inorganic compound K fertilizer increased K uptake of maize plant by 31.3, -9.1, and 16.1%, respectively, compared to K fertilizer treatment.
     (4) Organic-inorganic fertilizers increased nutrient use efficiency. At the low, medium and N application rate, organic-inorganic compound N fertilizer increased N apparent recovery by 35.4, 13.1, and4.9%, respectively, compared to fertilizer N treatment. However, organic N use efficiency was lower than that of inorganic N when the same amounts of N were applied. In the case of the same amount of urea N applied, organic-inorganic compound N fertilizer application increased N apparent recovery by 11.6-33.5%, compared to urea treatment. At the low, medium and high P application rate, organic-inorganic compound P fertilizer increased P apparent recovery by 16.2, 0.8, and 15.7%, respectively, compared to fertilizer P treatment. Similarly, compared to K fertilizer treatment, organic-inorganic compound K fertilizer increased K apparent recovery by 55.1, -3.3, and 2.1%, respectively, at the low, medium and high K application.
     (5)Compared with inorganic fertilizer treatment, organic-inorganic compound fertilizer application increased total N concentration in soils and soil available K concentration, whereas it did not impose significant effects on soil organic matter content. In comparison, organic-inorganic compound P fertilizer reduced soil available P concentration compared to inorganic P fertilizer. In addition, organic-inorganic compound fertilizers did not increase soil microbial C and N from a statistical perspective, compared to chemical fertilizers.
     (6)Compared to chemical P fertilizer, organic-inorganic compound P fertilizer increased the concentrations of soil available P, Ca2-P, and Ca8-P, whereas it reduced soil Al-P concentration.
     (7) Compared to chemical K fertilizer, organic-inorganic compound K fertilizer containing furfural residue and bio-solid increased the amount of K leached, whereas organic-inorganic compound K fertilizer containing sugar residue decreased the amount of K leached. Also, organic-inorganic compound K fertilizer containing sugar residue and furfural residue increased soil available K concentration, and decreased the amount of K fixed by soil components on the basis of chemical K fertilizer.
引文
1.鲍碧娟.有机、无机复混肥的应用和效果[J].磷肥与复肥, 2000, 15(3): 68~70
    2.鲍士旦.土壤农化分析(第三版)[M].北京:中国农业出版社, 2000
    3.边秀举,巨晓棠,张福锁.尿素与有机物料在土壤中的分解转化特征研究[J].河北农业大学学报, 2000, 23(2): 3~4
    4.蔡阿兴,宋荣华.糠醛渣防治碱土及增产效果的初步研究[J].农业现代化研究, 1997, 18(4): 240~241
    5.陈剑慧,曹一平,许涵等.有机高聚物包膜控释肥氮释放特性的测定与农业评价[J].植物营养与肥料学报, 2002, 8(1): 44~47
    6.陈同斌.尽快实施有机肥料产业化工程[J].中国农技推广, 2004, 5: 42~43
    7.陈倩,穆环珍,黄衍初,杨问波.木质素对土壤磷素形态转化及对磷有效性的影响.农业环境科学学报[J], 2003, 26(6): 745~748
    8.成绍鑫.重新认识腐植酸对化肥的增效作用及有关对策[J ].腐植酸, 1998(3): 1~8
    9.成绍鑫.面向21世纪的国外腐植酸农业应用研究与技术开发-文献浏览与思考[J].腐植酸, 2000, (4): 9~17
    10.成绍鑫.高效植物生长调节剂(FA-3)及其液肥(FA-L) [J].腐植酸, 2000, 3: 48.
    11.成绍鑫,武丽萍,柳玉琴等.腐植酸-脲络合物的工艺开发[J].腐植酸, 1994, 4: 29~32.
    12.成绍鑫,武丽萍,李丽.腐植酸与速效磷肥的作用及HA-P的农化效应[J].腐植酸, 2002, 1: 32~35
    13.成绍鑫.长效腐植酸尿素(UHA)及其有机复合肥料(LEC).腐植酸, 2003, (3): 47
    14.崔桂霞,毕庶春等.含硝基腐植酸DCD的氮肥增效剂对水稻生育性状及质量影响的试验研究[J].腐植酸, 1995, 1: 12
    15.崔敏.有机物质对土壤硝化作用的调控研究[D].南京:南京农业大学硕士论文, 2006
    16.崔玉亭.化肥与生态环境保护[J].北京:化学工业出版社, 1999, 17~26
    17.邓明萌,胡国华,陈全明等.有机复合磷肥的生产.磷肥与复肥[J], 2002, 17(5): 54~56
    18.董燕,王正银.缓控释复合肥料不同形态氮的释放特性研究[J].中国农业科学, 2006, 39(5): 960~967
    19.董燕,王正银.尿素在土壤中的转化与植物利用效率[J].磷肥与复肥, 2005, 20(2): 76~77
    20.杜会英,薛世川,孙忠富等.腐植酸复混肥对葡萄养分吸收利用的影响[J].土壤通报, 2006, 37(3): 546~549
    21.杜建军,毋永龙,田吉林.控缓释肥料减少氨挥发和氮淋溶的效果研究[J].水土保持学报, 2007, 21(2): 50~52
    22.杜建军,廖宗文,王新爱等.高吸水性树脂包膜尿素的结构特征及养分控/缓释性能[J].中国农业科学, 2007, 40(7): 1447~1455
    23.杜建军,廖宗文,宋波等.包膜控释肥养分释放特性评价方法的研究进展[J].植物营养与肥料学报, 2002, 8 (1): 16~21
    24.杜建军,廖宗文,毛小云等.控/缓释肥在不同介质中的氮素释放特性及其肥效评价[J].植物营养与肥料学报, 2003, 9 (2): 165~169
    25.段平.缓效多营养包硫尿素氮溶出速率的实验研究[J].磷肥与复肥, 2000 , 15 (2) : 21~22
    26.窦永恒,刘忠祥,王永芳.腐植酸类肥料在农业上的应用及开发前景[J].甘肃农业科技, 1994, 5: 30~31
    27.樊小林,廖宗文.控释肥料与平衡施肥和提高肥料利用率[J].植物营养与肥料学报, 1998, 4(3): 219~223
    28.范春杰,刘懿善,孟庆春等.新型颗粒生物有机肥的生产工艺研究[J].齐齐哈尔大学学报, 2002, 18(3): 22~24
    29.符建荣.控释氮肥对水稻的增产效应及提高肥料利用率的研究[J].植物营养与肥料学报, 2001, 7(2): 145~152
    30.符长焕,李建荣.有机无机复合肥对茭白产量及品质的影响[J].浙江农业科学, 2002, (4): 169~170
    31.高强,李亚峰,刘振刚等.有机复混肥对土壤及甜菜产量和品质的影响[J].吉林农业大学学报, 2001, 23(4): 75~78
    32.谷洁,高华.施用有机-无机复混肥对夏玉米生长和水分利用的影响[J].西北植物学报, 2004, 24(4): 638~642
    33.顾益初,钦绳武.长期施用磷肥条件下潮土中磷素的积累、形态转化和有效性.土壤[J], 1994, (1): 13~17
    34.关连珠,张佰泉,颜丽等.有机肥配施化肥对土壤有机质组分及其生物活性的影响[J].土壤通报, 1990, 21(4): 180~184
    35.郭智芬,涂书新,李晓华等.石灰性土壤不同形态无机磷对作物磷营养的贡献.中国农业科学[J], 1997, 30(1): 26~32
    36.何萍,杨金,周卫.腐植酸复混肥对番茄产量、品质及生理活性的影响[J].土壤通报, 1997, 25(6): 277~279
    37.何振立,袁可能,朱祖祥.有机阴离子对磷酸根吸咐的影响.土壤学报[J], 1990, 27(4): 377~384
    38.侯翠红.控制释放肥料养分释放特性的研究[J].磷肥与复肥, 1998, 13 (4): 6~8
    39.胡莹莹,张民,宋付朋.控释复肥中磷素在马铃薯上的效应研究[J].植物营养与肥料学报2003, 9(2): 174~177
    40.黄传荣,甘世凡,张怀东.国内外生物复肥的研究现状和进展[J].化肥工业, 2000, 27(1): 32~34
    41.黄激文,肖良荣,曾庆东。颗粒生物有机复混肥的圆盘造粒工艺。广东农机,2003,(1):11~12
    42.季保德.用味精废液沉淀物生产有机复合肥的新工艺[J].磷肥与复肥, 2002, 17(3): 55~57
    43.季保德.尿液喷浆造粒—生产复合肥的一种新工艺[J].安徽化工, 2003, 123(3): 17~18
    44.吉林师范大学地理系泥炭沼泽研究室.腐殖酸类肥料的资源及其土法生产[M].北京:石油化学工业出版社, 1976, 1~4
    45.姜剑平,孙明强,郭玉荣等.腐植酸尿素的中试工艺研究与应用[J].磷肥与复肥, 2006, 21(1):24~26
    46.姜丽娜,符建荣,马军伟等.有机无机复配肥氮肥利用率的15N生物示踪研究[J].浙江农业学报, 2005, 17 (5) : 287~291
    47.介晓磊,李有田,庞荣丽等.低分子量有机酸对石灰性土壤磷素形态转化及有效性的影响.土壤通报[J], 2005, 36(6): 856~860
    48.介晓磊,杨先明,黄绍敏等.石灰性潮土长期定位施肥对小麦根际无机磷组分及其有效性的影响.中国土壤与肥料[J], 2007(2): 53~58
    49.巨晓棠,刘学军,张福锁.尿素与DCD和有机物料配施条件下氮素的转化和去向[J].中国农业科学, 2002, 35(2): 181~186
    50.巨晓棠,刘学军,张福锁.尿素配施有机物料时不同氮素形态的动态及利用[J].中国农业大学学报, 2002, 7(3): 52~56
    51.康天宇,李延,杨卓亚.中国有机肥产业前景广阔[J].福建农业科技, 2000, 4: 44~45
    52.郎晓峰,徐阳春,沈其荣.不同有机无机复混肥对土壤供氮和玉米生长的影响[J].生态与农村环境学报, 2008, 24 (3): 33~38
    53.李冰,王昌全,江连强等.有机辅料对猪粪堆肥中氨气挥发的抑制效应及其影响因素分析[J].植物营养与肥料学报, 2008, 14(5): 987~993
    54.李春九,马国瑞.新型有机无机复肥对土壤及蔬菜产量品质的影响[J].浙江大学学报, 1989, 25(4): 393~396
    55.李闯,周进山,藏振杰.团粒法改尿素熔融喷浆造粒工艺生产复合肥[J].小氮肥, 2001, 10: 17~18
    56.李代伦,林世培,郭升万.利用城市生活垃圾制造有机复合磷肥[P].中国专利: 981121001.4
    57.李法云,宋丽,官舂云等.辽西半干旱区农田水肥耦合作用对春小麦产量的影响[J].应用生态学报, 2000, 11(4): 535~539
    58.李国学,孙英,丁雪梅等.不同堆肥及其制成低浓度复混肥的环境和蔬菜效应的研究[J].农业环境保护, 2000, 19(4): 200~203
    59.李国学,张福锁.固体废物堆肥化与有机复混肥生产[M].北京:化学工业出版社, 2000, 307~327
    60.李海丽.利用挤压造粒工艺生产糖泥有机无机复混肥[J].云南化工, 2001, 28(3): 40~41.
    61.李家康,林葆,梁国庆等.对我国化肥施用前景剖析[J].磷肥和复肥, 2001, 16(2): 1~5
    62.李娟,赵秉强,李秀英等.长期有机无机肥料配施对土壤微生物学特及土壤肥力的影响.中国农业科学, 2008, 41(1): 144~152
    63.李伟,戴亨林,蔡国学.有机无机复混肥料的肥料效应初探[J].磷肥与复肥, 2003, 18(6): 67~69
    64.李小建,王德汉,张玉帅等.多介质环境下木质素对化肥N素迁移转化积累的影响[J].农业环境科学学报. 2006, 25(2): 458~463
    65.李兴田.有机无机复混肥的生产工艺与技术[J].化学工业与工程技术, 2005, 26(5): 45~47
    66.李兴田,郭恩伟.尿素熔融喷浆造粒制复混肥[J].硫磷设计与粉体工程, 2004, 4: 21~25
    67.李兴田,张春波,尚伟来等.有机无机复混肥料的生产工艺及检测方法[J].磷肥与复肥, 2003,18(5): 43~44
    68.李秀英,李燕婷,赵秉强等.褐潮土长期定位不同施肥制度土壤生产功能演化研究[J].作物学报, 2006, 32(5): 683~689
    69.李秀英,赵秉强,李絮花等.不同施肥制度对土壤微生物的影响及其与土壤肥力的关系.中国农业科学, 2005, 38(8): 1591~1599
    70.李兆君,马国瑞.腐殖酸尿素的制造及其增产作用机理的研究近况[J].土壤通报, 2004, 35(6): 799~801
    71.李中阳,李菊梅,徐明岗等.外源磷对土壤无机磷的影响及有效性.中国土壤与肥料[J], 2007(3): 32~36
    72.廖宗文.工业废物的农用资源化理论、技术和实践[J].北京中国环境科学出版社, 1996: 49~57,61~62, 126
    73.廖宗文,黄健安,傅显华.糠麸复肥的研制与肥效[J].化肥工业, 1990,(1): 17~19
    74.廖宗文,黄健安,温志平.有机复肥对作物品质的影响初报[J].热带亚热带土壤科学, 1993, 2(1): 20~23
    75.廖宗文,刘可星,卢维盛.利用工农业废物制造有机无机复肥的技术进展[J].磷肥与复肥, 1996, (6): 8~12
    76.廖宗文,刘可星,王德汉等.有机肥-无机肥料的发展回顾与技术前瞻[J].中国农资科技导报, 1999, 4(1): 69~70
    77.廖宗文,卢其明.锰、铁、铝对磷的固定作用的比较研究初探.华南农业大学学报[J], 1996, 16(2): 117~118
    78.廖宗文,王卫红,江东荣等.有机无机复肥系统与肥效关系初探[J].华南农业大学学报, 1995, 16(2): 25~30
    79.廖宗文,杜建军,宋波等.肥料养分控释的技术、机理和质量评价[J].土壤通报, 2003, 34(2): 106~109
    80.廖宗文,温志平.开发工业废料发展有机复肥[J].农业环境保护, 1993, 12(1): 44~45
    81.梁太波,王振林,刘兰兰等.腐植酸尿素对生姜产量及氮素吸收、同化和品质的影响[J].植物营养与肥料学报, 2007, 13(5): 903~909
    82.梁宗存,成绍鑫.腐植酸与尿素作用机理研究进展[J].腐植酸, 1997, 2: 1~4
    83.梁宗存,成绍鑫,武丽萍.煤中腐植酸与尿素相互作用机理的研究[J].燃料化学学报, 1994, 27(2): 176~181
    84.刘勃,孟丽艳,洪卫等.利用减法草浆造纸固体废弃物生产有机-无机复混肥的农田试验[J].磷肥与复肥, 2007, 22(1): 71~72
    85.刘恩科,赵秉强,胡昌浩等.长期施氮、磷、钾化肥对玉米产量及土壤肥力的影响[J].植物营养与肥料学报, 2007, 13(5): 789~794
    86.刘骏,王辉.利用味精废糖渣生产浓缩生物肥料[J].发酵科技通讯, 2007, 36(3): 19~20
    87.刘景福,成瑞喜,徐芳森.土壤对磷的吸附与磷肥用量的研究[J].土壤, 1992, 24(2): 90~92
    88.刘可星,廖宗文.平衡施肥概念的发展及其技术开发[J].磷肥与复肥, 1997, (6): 64~65
    89.刘世亮,介晓磊,李有田等.不同磷源在石灰性土壤中的供磷能力及形态转化[J].河南农业大学学报, 2002, 36(4): 370~373
    90.刘世彬.腐植酸复混肥的生产工艺与技术[J].磷肥与复肥, 2004, 19(6): 45~48
    91.刘小虎,邹德乙,刘新华.长期轮作施肥对棕壤有机磷组分及其动态变化的影响[J].土壤通报, 1999, 30(4): 20~26
    92.刘秀梅,张夫道,冯兆滨等.风化煤腐殖酸对氮、磷、钾的吸附和解吸特性[J].植物营养与肥料学报, 2005, 11(5) : 641~646
    93.刘养清.利用糠醛废渣生产氮、磷、钾复合优质肥料的研究[J].山西师大学报, 1995, 9(2): 41~43
    94.刘玉良,陈文梅,雷明光。我国复肥造粒技术现状与展望[J]。化工装备技术,2000,21(6): 47~49
    95.鲁如坤.土壤磷素化学研究进展.土壤学进展[J], 1990, 18 (6): 1~5
    96.鲁如坤.土壤农业化学分析方法[M].北京:中国农业科技出版社, 2000: 128~129 , 146~195 , 296~315 , 339~385
    97.陆欣.新型脲酶抑制剂的试验研究[J].土壤学报, 1997, (4): 461~466
    98.毛小云,吴平霄,廖宗文.几种改性磷肥肥效研究初报[J].土壤与环境, 1999, 8(4): 318~320
    99.钱惠祥.腐植酸包裹型长效尿素肥效机理初步研究[J].土壤肥料, 2002, 1: 34~36,40
    100.钱惠祥,孙明强.腐植酸包裹型长效尿素中试工艺开发与研究[J].上海农业科技2001, 6: 6~8
    101.钱惠祥,孙明强.长效腐植酸尿素农业应用示范前景[J].上海农业科技, 2002, 1: 11~13
    102.茹铁军,王家盛.腐植酸与腐植酸肥料的发展[J].磷肥与复肥, 2007, 22(4): 51~53
    103.沈道英,钟承生.有机-无机复混肥的性质与肥效研究[J].热带亚热带土壤科学, 1995, 4(4): 93~97
    104.苏芳,丁新泉,高志岭等.华北平原冬小麦-夏玉米轮作体系氮肥的氨挥发[J].中国环境科学2007, 27(3): 409~413
    105.苏阳,刘德林.提高氮肥利用率的方法的研究进展[J].湖南农业科学, 2005, (6):38~40
    106.孙其伟,曲建全.有机-无机复混肥增产效果和改土作用的研究[J].浙江化工,1991,22(4):17~21
    107.孙传范,曹卫星,戴廷波.土壤-作物系统中氮肥利用率的研究进展[J].土壤, 2001, 33(2): 64~69
    108.孙克君,卢其明,毛小云等.复合控释材料的控释性能、肥效及其成膜特性研究[J].土壤学报, 2005, 42(1): 127~133
    109.孙克君,赵冰,卢其明.活化磷肥的磷素释放特性、肥效及活化机理研究[J].中国农业科学, 2007, 40(8): 1722~1729
    110.孙克君,毛小云,卢其明等.几种控释氮肥减少氨挥发的效果及影响因素研究[J].应用生态学报, 2004,15(12): 2347~2350
    111.孙瑞娟,王德建,林静慧等.长期施用有机无机肥对太湖流域土壤肥力的影响[J].土壤, 2009, 41(3): 384~388
    112.孙瑞莲,赵秉强,朱鲁生等.长期定位施肥对土壤酶活性的动态变化特征[J].生态环境2008,17(5): 2059~2063
    113.孙文涛,孙占祥.滴灌施肥条件下玉米水肥耦合效应的研究[J].中国农业科学, 2006, 39(3): 563~568
    114.孙志梅,薛世川,杜会英等. HA复合肥的养分释放运移特点与土壤培肥效应研究[J].河北农业大学学报, 2005, 25(3): 19~22
    115.沈仁芳,蒋柏藩.黄淮海地区潮土对磷的吸附和解吸特征[J].土壤, 1993, 25(2) : 68~70
    116.史春余,张夫道,张树清等.有机-无机复合肥对番茄产量、品质和有关生理特性的影响[J].中国农业科学, 2004, 37(8): 1183~1187
    117.史春余,张夫道,张树清等.有机-无机缓释肥对番茄产量和氮肥利用率的影响[J].植物营养与肥料学报, 2004, 10(6): 584~587
    118.涂书新,孙锦荷.氮肥控释的机理与应用评述[J].湖北农业科学, 1999, (5): 30~33
    119.王斌,马兴旺,许咏梅等.腐植酸对灰漠土棉田土壤无机磷形态的影响.新疆农业科学[J], 2007, 44(3): 312~317
    120.王昌全,李廷强,夏建国等.有机无机复合肥对农产品产量和品质的影响[J].四川农业大学学报, 2001, 19(3): 241~244
    121.王德汉,朱兆华,廖宗文.氨氧化木质素对玉米生物量和土壤脲酶活性的影响初报[J].广东造纸. 1999, (3): 5~8
    122.王德汉,彭俊杰,廖宗文.木质素改性产物对钾肥的缓释作用与作物吸钾量的影响[J].植物营养与肥料学报, 2003, 9(3): 308~311
    123.王德强,王辅亚,张惠芬等.绢云母矿钾肥的研制及肥效试验[J].矿物学报, 2001, 21 (3): 409~411
    124.王德权,马忠明.水肥耦合条件下间作小麦光合特性的响应[J].中国农学通报, 2009, 25(15): 215~218
    125.王光龙.表面吸附层对磷矿石磷素释放的影响[J] .土壤学报, 1998, 35 (1) : 65~69
    125王磊.有机-无机复合肥生产工艺[J].石油化工应用, 2007, 26(3): 29~30
    126.王虹,王志英.腐植酸多元复合肥的效应研究[J].腐植酸, 1996, 2: 5
    127.王汝娟,王振林,梁太波等.腐植酸钾对食用甘薯品种钾吸收、利用和块根产量的影响[J].植物营养与肥料学报, 2008, 14(3):520~526
    128.王为民,李锦惠.腐植酸包裹型长效尿素工艺与应用.腐植酸, 2001, (2): 29~30
    129.王永和,曹翠玉,史瑞和.有机肥对石灰性土壤无机磷组分的影响.土壤[J], 1996(4): 180~182
    130.王曰鑫,侯宪文.腐植酸对土壤中无机磷活化效应的研究.腐植酸[J], 2005, (2): 7~14
    131.魏朝富,谢德体,李保国等.土壤有机无机复合体的研究进展[J].地球科学进展, 2003, 18 (2): 221~227
    132.魏光禄.谷氨酸废水制造的生物有机无机肥料农作物试验[J].发酵科技通讯, 2004, 33(2): 25~27
    133.翁锦周,黄盈.香蕉专用有机无机复肥的开发研究初报[J].福建省农科院学报, 1996, 11(3): 50~53
    134.武丽萍.一种长效腐植酸磷肥及其制备方法:中国, CN1434006[ P].2003
    135.武丽萍,成绍鑫.关于腐植酸对尿素增效作用的研究与产品开发概况及发展趋势[J].腐植酸, 2000, 1: 1~3
    136.武丽萍,成绍鑫.包裹型长效腐植酸尿素的化学组成结构研究[J].燃料化学学报, 2001, 29(5): 454~457.
    137.吴萍萍,刘金剑,周毅等.长期不同施肥制度对红壤稻田肥料利用率的影响[J].植物营养与肥料学报, 2008, 14(2): 277~283
    138.吴平霄,廖宗文,毛小云.改性磷肥的结构特征及其增效机理研究[J].植物营养与肥料学报, 2000, 6 (3) : 287~292
    139.吴平霄,廖宗文,毛小云.无机(矿物)改性碳酸氢铵对蕹菜生物量的增效作用研究[J].高校地质学报, 2000 , (2) : 367
    140.吴平霄,廖宗文,毛小云.改性尿素的肥效及淋溶特性研究初探[J].土壤与环境, 2000, 9 (1): 75~76
    141.吴平霄,毛小云,廖宗文.几种改性磷肥的射线衍射特征初报[J].土壤与环境, 1999, 8(4): 316~317
    142.吴平霄,廖宗文.有机无机改性钾肥的结构特征及其增效机理[J].生态科学, 2004, 23(1): 16~19
    143.吴平霄,廖宗文,冯新.改性尿素的结构变化及其肥效的盆栽试验研究[J].岩石矿物学杂志, 2003, 22(4): 442~444
    144.奚天鹏,刘传义.复混肥挤压造粒设备的现状与对比[J].化肥工业, 1997, 25(2): 13~18
    145.肖洪云.有机复合磷肥[P].中国专利:981240131.5
    146.肖强,张夫道,王玉军等.纳米材料胶结包膜型缓/控释肥料的特性及对作物氮素利用率与氮素损失的影响[J].植物营养与肥料学报, 2008, 14(4): 779~785
    147.夏学康,江祖嘉,李轩等.利用酒精废液生产有机-无机复合肥[J].广西轻工业, 2003, 3: 23~24
    148.谢林花,吕家珑,张一平等.长期施肥对石灰性土壤磷素肥力的影响,Ⅱ.无机磷和有机磷.应用生态学报[J], 2004, 15(5): 790~794
    149.徐和昌,柯以侃,郭立新等.几种缓释肥料包膜的性质和分析方法[J] .中国农业科学, 1995 , 28 (4) :72~79
    150.许宏伟,马常宝.我国商品有机肥料发展现状与建议[J].中国农技推广, 2007, 23(3): 43~45
    151.许秀成,李菂萍,王好斌.包裹型缓释/控制释放肥料专题报告.第一报概念区分及评判标准[J].磷肥与复肥, 2000, 15 (3) : 1~6
    152.许秀成,李菂萍,王好斌.包裹型缓释/控制释放肥料专题报告.第二报世界缓释/控制释料生产、消费现状[J].磷肥与复肥, 2000, 15 (4): 5~7
    153.许秀成,汤建伟,李菂萍等.全球环境压力下的增值肥料发展策略[J].磷肥与复肥. 2008, 23(6): 5~8
    154.许秀成,张福锁.养分资源综合管理与肥料创新—探索化肥行业发展之道[J].磷肥与复肥, 2007, 22(3): 1~6
    155.薛世川,孙志梅,彭正萍等.腐植酸复合肥的养分释放规律与控释机理研究[J].腐植酸,30~32
    156.薛世川,刘东臣,佟代言等. HA复合肥的应用效果与增产机理探讨[J].河北农业大学学报, 1994, 17(1): 24~27
    157.薛延丰,赵会杰,李奕林.低分子量有机酸对石灰性潮土无机磷形态转化的影响.土壤通报[J], 2004,35(4): 449~454
    158.熊又升,张行峰,熊桂云等.包膜缓释肥料养分释放速率评价方法的探讨[J ].磷肥与复肥, 1999, 14 (1) : 21~22
    159.闫洪刚,曲启恒,范英霞.腐植酸类肥料生产综述.磷肥与复肥, 2005, 20(2): 51~53
    160.杨利玲,杨学云.土壤磷素形态研究现状评述.安徽农业科学[J], 2006, 34(19): 4996~4997
    161.姚建武,柯玉诗,黄庆.我国有机肥产业化发展现状及主要生产工艺[J].广东农业科学, 2005, 1: 54~55
    162.姚政,赵京音.有机-无机型颗粒复合肥的生产工艺及挤压式造粒颗粒肥的某些理化特性[J].上海农业学报, 1994, 10(a): 22~25
    163.尹光华,陈温福.风沙半干旱区春玉米水肥耦合产量效应研究初报[J].玉米科学, 2007, l5(1): 103~106
    164.袁洋,黄振伟.生物有机复合肥项目简介[J].山东农业科学, 2005, (5): 79
    165.翟丙年,李生秀,齐亚婷.不同水分状况下追施氮肥对冬小麦产量及其构成因素的影响.西北植物学报[J], 2001, 21(3): 462~467
    166.张宝文.我国持续农业发展面临的问题与对策[J].中国农学通报, 1997, 13(16): 3~5
    167.朱本岳,朱萌泪.底泥化肥复混肥的加工及其在蔬菜上的应用效果[J].浙江农业科学, 2000,(6): 281~283
    168.张福锁,王激清,张卫峰等.中国主要粮食作物肥料利用率现状与提高途径[J].土壤学报, 2008, 45(5): 915~924
    169.张宏伟.腐植酸共聚物改良后土壤中磷肥有效性研究.土壤肥料[J], 2002, (6): 39~40
    170.张明祥,童军,胡群中.生物有机复合肥对柑桔产量、品质和桔园土壤肥力的影响[J].湖北农业科学, 2002, 13: 34~36
    171.章永松,林咸勇,罗安程等.有机肥(物)对土壤中磷的活化作用及机理研究, I有机肥(物)对土壤不同形态无机磷的活化作用.植物营养与肥料学报[J], 1998, 4(2): 145~150
    172.肇博敏.腐植酸类物质与尿素复合效应及脲酶活性的抑制作用[J].土壤通报, 1993, 3: 135~136
    173.赵秉强,张福锁,廖宗文等.我国新型肥料发展战略研究[J].植物营养与肥料学报, 2004, 10(5): 536~545
    174.赵秉强,林治安,冀建华等.有机复合肥养分高效优化技术研究[J].磷肥与复肥, 2008, 23(5): 39~42
    175.赵定国,陆铭昌.有机肥在有机无机复混肥中的效果[J].磷肥与复肥, 2004, 19(2): 19~20
    176.赵京音,姚政,蒋小华.利用农业有机废弃物提高化学氮肥利用率的研究I有机物料对尿素氮在土壤中转化的影响[J].上海农业学报, 1998, 14(2): 67~72
    177.赵晓齐,鲁如坤.有机肥对土壤磷素吸附的影响.土壤学报[J], 1991, 28(1):7~13
    178.甄新爱,黄亚群,陈景堂等.不同氮效率玉米基因型苗期对光和氮响应的研究[J].中国农学通报, 2009, 25(10): 89~95
    179.郑超,刘可星,廖宗文等.改性木质素对砖红壤磷素有效性的影响[J].华中农业大学学报[J], 2004, 23(5): 528~532
    180.郑超,杜建军,廖宗文等.改性磷铵在砖红壤植蔗土上的施用效果[J].甘蔗, 2004, 11(1): 5~9
    181.朱兆华,王德汉,廖宗文等.改性造纸黑液木质素—氨氧化木质素(AOL)作为缓释氮肥的肥效研究[J].农业环境保护, 2001, 20(2): 98~100 , 119
    182.朱兆华,廖宗文,王德汉.改性造纸黑液木质素氮素释放规律[J].农业环境保护, 2002, 21(2): 140~142
    183.朱兆华,王德汉,廖宗文等.氨氧化木质素作为硝化抑制剂的研究[J].土壤与环境, 2000, 9(2): 132~134
    184.朱兆良.我国土壤供氮和化肥氮去向的研究进展[J].土壤, 1985, (1): 2~9
    185.朱兆良.我国氮肥的使用现状、问题和对策[M].见:李庆逵,朱兆良,于天仁.中国农业持续发展中的肥料问题.南京:江苏科学技术出版社, 1998, 38~51
    186. Adrie V, Vinnie W, Bert H. Passively aerated composting of straw-rich pig manure: Effect of compost bed porosity [J]. Comp. Sci. Utiliz. , 2002, 10(2): 114~128
    187. Apsimon H M, Kruse M, Bell J N B. Ammonia emissions and their role in acid deposition [J]. Atmos. Environ. , 1987, 21(9): 1939~1946
    188. Angela L C, Claire T, Adrian G W, et a1. The respiration rate of composting pig manure [J]. Comp. Sci. Utiliz. , 2004, 12(2) : 119~129
    189. Blouin M, Rindt W, Moore O. Sulfur-coated fertilizers from controlled release: pilot plant production [J]. J. Agric. Food Chem., 1971, 19: 801~808.
    190. Bourke R M.Influence of nitrogen and potassium fertilizer on growth of sweet potato in Papua New Guinea [J]. Field Crops Res., 1985, 12: 363~375
    191. Boyle M. et al. Carbon and nitrogen mineralization kinetics in soil previously amended with sewage sludge [J]. Soil Sci. Soc. Am., 1989, 53: 99~103
    192. Bouwman A F, Boumans L J M, Batjes N H. Estimation of global NH3 volatilization loss from synthetic fertilizers and animal manure applied to arable lands and grasslands [J]. Glob.Bio. Cyc., 2002, 16(2):1024~1039
    193. Cassman K G, Peng S, Olk D C, et a1. Opportunities for increased nitrogen use efficiency from improved resource management in irrigated rice systems. Field Crops Res., 1998, 56: 7~38
    194. Cassman K G, Dobermann A, Waiters D T. Agroecosystems, nitrogen-use efficiency, and nitrogen management. Ambio. , 2002, 31: 132~140
    195. Cole M A, Zhang L, Liu X. Remediation of pesticide contaminated soil by planting and compost addition [J]. Comp. Sci. Utiliz., 1995, 3(4): 20~30.
    196. Carolyn C B, Thomas J S. Estimating the availability of nitrogen in poultry manure throughlaboratory and field studies [J]. J. Environ. Qual., 1988, 17(1): 47~54
    197. Chen Xinping.Optimization of the N fertilizer management of a winter wheat / summer maize rotation system in the Northern China Plain [D]. Stuttgart, Germany: University of Hohenheim, 2003
    198. Cai G, Fan X, Yang Z, et al. Gaseous loss of nitrogen from fertilizers applied to wheat on a calcareous soil in North China Plain [J].Pedos. , 1998, 8(1): 45~52.
    199. Colbourn P, Harper I W. Denitrification in drained and undrained arable soils [J]. Soil Sci., 1987, 38: 531~539
    200. Diez J A, Cartegna M C, Vallejo A, et al.Establishing the solubility kinetics of N in coated fertilizers of slow - release by means of electroultrafiltration [J]. Agri. Med., 1991, 121: 291~296.
    201. Drury C F, Beauchamp E G. Ammonium fixation, Release, Nitrification and immobilization in high and how fixing soils [J]. Soil Sci. Soc. Am., 1991, 55: 125~129
    202. Eklind Y, Kirchmann H. Composting and storage of organic house-hold waste with different litter amendments:Ⅱ.Nitrogen turnover and losses [J]. Biores. Tech., 2000, 74(2): 125~133.
    203. Gambash S, Kochba M, Avnimelech Y. Study on slow– release fertilizers:Ⅱ.A method for evaluation of nutrient release rate from slow-releasing fertilizers [J]. Soil Sci., 1990, 150 (1) : 446~450.
    204. Gandeza A T, Shaoji S, Yamada I. Divisions of fertilizer management & technology. Simulation of crop response to polyolefin-coated urea: I. Field dissolution [J]. Soil Sci. Soc. Am. J., 1991, 55: 1462~1467
    205. Gregorich E G, Rochette P, Mcguire S. Soluble organic carbon and carbon dioxide fluxes in maize fields receiving spring-applied manure [J]. J. Environ. Qual., 1998, 27: 209~214
    206. Hatch D J, Lovell R D, Antil R S, et al. Nitrogen mineralization and microbial activity in permanent pastures amended with nitrogen fertilizer or dung [J]. Biol. Fert. Soils, 2000, 30: 288~293
    207. Jensen E S. Nitrogen immobilization and mineralization during initial decomposition of 15N-labelled pea and barley residues [J]. Biol. Fert. Soils, 1997, 24: 39~44
    208. Kaf Kali V, Bar Yosef B. Phosphorus absorption by kaolinite and montmorrillonite:Ⅱ.Organic anion competion [J]. Soil Sci. Am., 1988, 52:1585~1589
    209. KanoK, Yoneyanm T, Kumaznwa K. Determination of N-15 by emission spectrometry [J]. J. Sci. Soil Manure. Jpn. 1974, 45: 549~559
    210. Krupa S V. Effects of atmospheric ammonia (NH3) on terrestrial vegetation: a review [J]. Environ. Pol., 2003, 124: 179~221
    211. Kirchmann H, Witter E. Amonia volatilization during aerobic and anaerobic manure decomposition [J]. Plant Soil, 1989, 115(1): 35~41
    212. Leu H G, Lee C D, Ouyang C F, et al. Effects of organic matter on the conversion rate of nitrogenous in a channel reactor under various flow conditions [J].Water. Res., 1998, 32(3): 891~899
    213. Lunt O R, Oertli J J . Controlled release of fertilizer minerals by encapsulating membranes :Ⅱ. Efficiency of recovery, influence of soil moisture, mode of application , and other consideration related to use[J ] . Soil Sci. Soc. Am. Proc., 1962, 26: 584~587
    214. Lyamuremye F, Dick R P, Baham J. Organic amendments and phosphorus dynamics:Ⅰ.Distribution of soil phosphorus fractions. Soil Sci. [J], 1996a, 161 (6):436~443
    215. Lyamuremye F, Dick R P, Baham J. Organic amendments and phosphorus dynamics: Ⅱ.Distribution of soil phosphorus fractions. Soil Sci. [J], 1996b, 161 (6):444~451
    216. Mnkeni P N S, Mackenzie. Retentior of ortho- and polyphosphate in some Quebec soil as affected by added organic residues and calcium carbonate. Can J. Soil Sci. [J], 1985, 651:575~585
    217. Mingchu Z, Nyborg M, Solberg E D. Seed germination and seedling dry matter production of canola , barley and wheat as affected by seed placed KCl and polymer coated KCl[J] . Can. J. soil sci., 1998, 78: 611~614
    218. Mingchu Z, Nyborg M, Robertson J A. Coated KCl increases barley K uptake in two Alberta soils in a greenhouse experiment [J] .Can. J. soil sci. , 1998 , 78 : 615~617
    219. Meier D. Conversion of technical lignins into slow- release nitrogenous fertilizer by am oxidation in liquid phase [J]. Bio. Tech.,1994, 49(2) : 121~128
    220. Mosier A R. Exchange of gaseous nitrogen compounds between agricultural systems and the atmosphere [J]. Plant and Soil, 2001, 228: 17~27
    221. Oertli J J, Lunt O R. Controlled release of fertilizer minerals by encapsulating membranes: I. Factors influencing the rate of release [J]. Soil Sci. Soc. Am. Proc., 1962, 26: 579~583
    222. Peigne J, Girardin P, Environmental impacts of farm-scale composting practices [J]. Water Air Soil Po1., 2004, 153(1): 45~68
    223. Pare T, Schnitzer M, Dumontet S. Transformations of carbon and nitrogen during composting of animal manure and shredded paper [J]. Bio1.Felt. Soils, 1998, 26(3): 173~178
    224. Peter S O, Lind A M, Sommer S G. Nitrogen and organic matter losses during storage of cattle and pig manure [J]. J. Agric. Sci., 1998, 130(1): 69~79
    225. Randall G W, Mulla D J. Nitrate-N in surface water as influenced by climatic conditions and agricultural practices. J. Environ. Qual., 2002, 30: 337~344
    226. Shaviv A. Plant response and environmental aspects as affected by rate and pattern of nitrogen release from controlled release N fertilizers [A]. In: Van Cleemput (edit). Progress in Nitrogen Cycling Studies [C]. Kluwer Academic Publishers, The Netherlands. 1996, 285~291
    227. Standford G, Sminth S J. Nitrogen mineralization potentials of soils [J]. Sci. Soc Am Proc, 1972, 36: 465~472
    228. Standford G, Fere L, Schwaninger M. Temperature coefficient of soil nitrogen mineralization [J]. Soil Sci., 1973, 119: 222~226
    229. Strauss E A, Mitchell N L, Lamberti G A. Factors regulating nitrification in aquatic sediment: effect of organic carbon, nitrogen availability, and pH [J]. Can. J. Fish. Aquat. Sci., 2002, 59: 554~563
    230. Stanford G, Roger A V P, Stanislaw D. Denitrification rates in relation to total and extractable soil carbon [J]. Soil Sci. Soc. Am. Proc., 1975, 39: 284~289
    231. Shinjiro K, Susumu A, Yasuo T. Effect of fertilizer and manure application on microbial numbers, biomass, and enzyme activities in volcanic ash soils [J]. Soil Sci. Plant Nutri., 1988, 34 (3):429~439
    232. Sanchez C A, Blackmer A M. Recovery of anhydrous ammonia derived nitrogen-15 during three years of corn production in Iowa [J]. Agron. J., 1988, (80): 102~108
    233. Sadao Shouji. MEISTER: Controlled release fertilizer: Properties and utilization [M]. Konno Printing Company Ltd, 1999
    234. S.K.Behera, R.K.Panda. Effect of fertilization and irrigation schedule on water and fertilizer solute transport for wheat crop in a sub-humid sub-tropical region[J]. Agri. Ecosys. Environ. , 2009, (130): 141~155
    235. S. Sitthaphanit V., Limpinuntana B., Toomsan S., et al. Fertiliser strategies for improved nutrient use efficiency on sandy soils in high rainfall regimes [J]. Nutri. Cycl. Agro., 2009, 85: 123~139
    236. Tandon H L S. Fertilizers, organic manures, recyclable wastes and bio-fertilizers [M]. New Delhi (India): Fertilizer Development and Consolation Organization, 1992
    237. Tiqnia S M, Tam N F Y. Fate of nitrogen during composting of chicken letter [J]. Environ. Pol., 2000, 110(3): 535~541.
    238. Timsina J,Sinsh U,Badaruddin M, et al. Cultivar,nitrogen and water effects on productivity and nitrogen-use efficiency and balance for rice-wheat sequences of Bangladesh. Field Crops Res. 200l, 72: 143~161
    239. Vuorinen A H, Saharinen M H. Evolution of microbiological and chemical parameters during manure and straw co-composting in a drum composting system [J]. Agric., Ecosys. Environ., 1997, 66(1): 19~29.
    240. Zhu J, Larry D J. Correlating microbes to major odorous compounds in swine manure [J]. J Environ. Qua1., 1999, 28(3): 737~744
    241. Zucconi F, Peram A, Foae M, et a1. Evaluating toxicity of immature compost [J]. Bio-Cycle, 1981, 22(2): 54~57
    242. Zhang M, Nyborg M and Ryan J T. Determining permeability of coatings of polymer coated urea [J]. Fert. Res., 1994, 38: 47~51

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700