用户名: 密码: 验证码:
超级杂交稻节氮高效栽培生理生化特性及关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着超级杂交稻的广泛推广应用,日益凸现出二个重要问题:一是超级杂交稻需肥量大,引起水稻生产上氮化肥用量的大幅增长,过量的化肥造成了一系列社会和环境问题;二是由于栽培技术不配套,品种超高产潜力一直难以发挥。为此,我们以超级杂交一季稻为对象,以节氮高效栽培为目标,采用大阳试验方式,开展了一系列超级杂交稻节氮增效栽培试验研究。主要研究结果如下:
     1.湖南省超级杂交一季稻产量和氮肥施用现状
     湖南省超级杂交一季稻产量在7.50~9.75t/hm~2之间,施氮量225.0~240.0kg/hm~2(折纯氮),最高施氮量超过270.0kg/hm~2,属高施氮水平。加强超级杂交稻一季稻氮肥管理,减少施氮总量、提高产量空间较大。超级杂交一季稻节氮栽培施氮基准水平为225.0kg/hm~2。
     2.超级杂交中籼稻氮高效利用基因型差异比较与筛选
     不同基因型组合的氮收获指数、氮素转运指数、氮籽粒生产效率和100kg籽粒需氮量变异大小次序是:氮收获指数>氮素转运指数>氮籽粒生产效率>100kg籽粒需氮量。氮响应度变幅-2.86~31.06kg/kg。试验组合可以分为3种类型,第Ⅰ类:氮高效型。氮高效型又可以分为2种类型,即高效吸收利用型和耐低氮型。第Ⅱ类:适氮高产型。第Ⅲ类:高氮高产型。
     3.缓/控释肥等不同类型肥料氮利用效率的比较与评价
     缓释尿素(SCU)、缓释复合肥(CCF)、微生物肥(LPK/MF)、高效复合肥(LNPK)等肥料产量、氮肥利用率均较普通尿素不同程度提高。肥料SCU表现突出,2种氮水平下均较普通尿素显著增产,增幅分别为14.7%~23.9%和10.3%~11.9%,其氮肥生理利用率(PE)超过40kg/kg、农学利用率(AE)在23kg/kg以上,分别比普通尿素提高7个、8个百分点。
     同种肥料节氮处理高峰苗显著降低,成穗效率显著提高,中后期根系活力强、光合效率高,库充实较好,不显著减产。氮肥利用率也提高,氮肥生产力(PFP)、氮肥生理利用率(PE)、农学利用率(AE)、氮素籽粒生产效率(NGPE)、氮收获指数(NIH)分别较等氮处理提高20%、3.4~7.2%、3.6~9.6%、4.5~8.5%、10%。
     4.不同节氮栽培条件下超级杂交稻群体发育、物质生产、产量、养分吸收利用、氮肥利用效率和土壤氮积累效应
     节氮幅度提高水稻分蘖发生速度降低,同最大茎蘖增长速率下降,日茎蘖增长饱和期(茎蘖同增长速率为0时间)提前,分蘖终止期提早,分蘖总数下降,前期生长略显不足,有效穗数减少,一定范围内(节氮40%内,氮量135kg/hm~2)减少不显著,高峰苗数显著降低,成穗率大幅度提高。
     群体生产率(CGR)随氮水平增加而提高。最大CGR变化幅度为17.51~35.89 kg.hm~(-2).d~(-1)。分蘖-幼孕分化穗、穗分化-孕穗、孕穗-齐穗、齐穗-成熟4个阶段水稻CGR与产量相关系数依次为0.6324(P>0.05)、0.7894(P>0.05)、0.9722(P<0.01)、0.9359(P<0.01)。
     节氮幅度提高水稻生长干物质积累量减少。生长前期处理差异不显著,生长中期差异加大,一定节氮范围内(节氮40%,氮量135kg/hm~2),减少不显著。抽穗后,节氮处理生物产量明显降低,但其茎鞘物质输出率和转换率均显著提高。
     产量随施氮量增加呈单峰曲线变化,以节氮20%(180kg/hm~2)处理最高,达到12.0t/hm~2。
     植株对NPK的吸收均有2个高峰,吸收总量均随施氮量增加而增加,齐穗后植株还能吸收30%左右的氮素;植株吸收磷素以移栽到分蘖中期吸收最多;钾素吸收高峰在生育后期,节氮可提高生育后期植株钟素吸收比例。
     节氮大幅度提高氮肥利用率。节氮20%~60%RE超过42%、AE在20kg/kg以上、PE超过38kg/kgN,NHI在67%以上,100kg籽粒需氮量1.53~2.19kg之间。
     土壤总氮、速效氮量均随施氮量增加而提高。低氮处理土壤总氮和速效氮量均大幅下降;中氮处理两者均基本持平;高氮处理则均大幅增加。节氮能降低土壤速效磷水平,一定范围内节氮土壤钾含量不显著降低,并能提高有机质含量,减轻环境压力。
     5.不同节氮栽培条件下超级杂交稻生理生化、光合作用特性
     施氮量与叶片叶绿素含量呈显著正相关;叶片单位叶绿素的光合作用效率随施氮量增加先升高后降低;节氮能提高叶片单位叶绿素的光合作用效率。
     根系活力、叶片NR、GS、CAT等酶活性均随施氮量增加先增后降;MDA含量随施氮量增加呈先减后增变化。生育期后移根系活力、CAT酶活性均下降,MDA含量与此相反,GS、NR酶活性则先高后低,均以齐穗期最高。
     增施氮肥能提高剑叶净光合速率(Pn)、蒸腾速率(Tr)、气孔导度(Gs);细胞间隙C02浓度(Ci)则随施氮量增加先降后升。适宜节氮能提高水稻叶片最大光合速率、降低光抑制系数、提高叶片光饱和点,不影响或不显著影响叶片捕光能力。
     叶片光合电子传递(ETR)、有效量子产量(EQY)和光化学猝灭系数(qP),非光化学猝灭系数(NPQ)均受氮用量和光照强度双重影响;节氮能提高水稻叶片ETR、EQY和qP,氮肥过低或过高都会产生相反作用,NPQ随施氮量增加而提高:ETR、EQY、qP随生育期推进而提高,NPQ则相反。
     6.超级杂交一季稻节氮栽培关键技术
     平原地区超级杂交中稻节氮栽培策略:主攻有效穗,兼顾穗粒数和粒重。
     节氮栽培最佳施氮量135~180kg/hm~2,N:P:K=1:0.4~0.7:0.9~1.2,移栽密度为18.0~21.0万蔸/hm~2。
     超级杂交稻节氮栽培技术要点:品种氮高效、氮肥控缓释、壮秧栽小苗、小蔸适稀植、水肥长藕合、综合控病虫、防倒保高产。
The Chinese Ministry of Agriculture has established 12 years ago a national collaborative research programme on breeding of super high-yielding rice(super rice).But while China has been successful in breeding super hybrid rice(SHR) strains,it now faces two challenges in developing the super rice:1) because of its higher biomass,SHR.consumes more fertilizers leading to the rapid increase in N fertilizer use,and subsequently causing a series of social and environmental problems;2) the yield potential of super-high-yield varieties could not be attained due to lack of proper cultivation techniques.For these reasons,field experiments were conducted in Changsha,Hunan province in 2006 and 2007 to study N-saving and high-efficiency cultivation of the super hybrid single rice(SHSR).The main results were as follows:
     1.Yield of SHSR and status of N application in Hunan
     In Hunan,yields of SHSR ranged from 7.50~9.75 t hm-~2 Actual yields of 8.25~9.00t/hm~2 were obtained relative to the variety yield potential of 12.0t/hm~2.Despite the relatively high level of N application ranging from 225.0kg/hm~2~270kg/hm~2,a yield gap of 2.25~4.50t/hm~2 existed. Thus,Hunan has still a long way to go to improve yield and N-use efficiency of SHSR The basic level of application for N-saving and high-efficiency cultivation of SHSR should be set as 225.0 kg N/hm~2.
     2.Genotypic differences in N-use and uptake among super hybrid and middle-season indica rice varieties
     Results of this study showed that the order of N harvest index(NHI),N transformation index(NTE),N in grain production efficiency(NGPE) and the N amount needed by 100 kg grain of different genotypes was:NHI>NTE>NGPE>the N amount needed in 100 kg grain.The range of response to N was-2.86~31.06 kg/kg.SHSR.combinations can be divided into 3 types:1) the high N use-efficiency type which can be further subdivided into 2 namely,the high- absorption and use efficiency and low N-tolerance types;2) high yield type with suitable N; 3) high yield type with high N.The low N treatment significantly caused low yield to a greater extent.
     3.Efficiency of N application using different fertilizers.
     The grain yield and N uptake and use-efficiency of Sulphur-Coated-Urea(SCU), Coated-Compound-Fertilizer(CCF),LPK/MF and LNPK under two N levels(N-saving and N-equivalent) were much higher compared with the ordinary urea..SCU increased yields by 14.7%~23.9%at 135 kg/hm~2 and 10.3%~11.9%at 187.5 kg/hm~2 and had high- N use efficiency.The Physiological efficiency(PE) was over 40 kg/kg and Agronomical efficiency(AE) over 23 kg/kg outweighing ordinary urea by more than 7%and 8%,respectively.
     Tillering rate,tiller number,effective panicle,photosynthetic leaf area,and dry matter accumulation of super hybrid rice under N-saving condition were lower than those of N-equivalent condition.The maximum tillers and stems significantly decreased,however,the percentage of effective panicle significantly increased.Moreover,the super hybrid ricer had much higher root activity in the middle and late growth stage,higher photosynthetic efficiency, good grain filling and increased number of filled grains.Nitrogen-saving treatments greatly improved N uptake and use-efficiencies,and increased Partial factor productivity(PFP) by 20%, PE by 3.4 to7.2%.AE by 6 to 9.6%,NGPE by 5 to 8.5%,and NIH by 10%.
     4.Crop growth and development,dry matter production,yield,nutrient uptake,N use efficiencies and soil N accumulation of SHSR under different N-saving treatments.
     At the range of N applied rate in this study with N level decreasing,tillering rate decreased and the maximum rate and the saturation date of tillering(the tillering rate was 0) and tiller production shortened,the total number of tillers and effective panicles decreased but not significantly.At 135 kg N/hm~2(≤40%N-saving),the maximum tillers and stems decreased significantly but the percentage of effective panicles substantially increased.
     Crop growth rate(CGR) increased with increasing N level.The maximum rates of CGR ranged from 17.5 to 35.9 kg hm~(-2)d~(-1).The correlation coefficients between CGR and grain yield at different stages were as follows:tillering stage(TS) to panicle initiation stage(PI) r= 0.6324 (P>0.05),PI to booting stage(BT) r= 0.7894(P>0.05),BT to full heading stage(FH) r=0.9722(P<0.01),and FH to maturity(MA) r=0.9359(P<0.01).
     The dry matter accumulation decreased with N level decreasing.No significant differences in biomass among treatments at the early growth stage,but differences at the middle growth stage were observed except at 135 kg N/hm~2(≤40%N-saving).Biomass of N-saving treatments decreased significantly after heading,but with significantly higher amounts and rate of transformation of stem material,sheath material.
     Grain yield linearly increased with the increasing N application.Maximum yield of 12.0 t/hm~2 was obtained from the 20%N-saving treatment(180 kg N/hm~2) Yield differences between the no N and with N treatments were significant.The yield of N3 treatment was significantly higher than those of the other treatments,except for N4 and N5.Yield differences among N4,N5, N2 were not significant,but their yields were significantly higher than that of N1.
     Uptake of NPK for SHSR had two peaks.The total N uptake increased gradually with increasing N rate.After heading,the total N uptake of SHSR was about 30%.The rate of N increase in straw was higher than that in grain.The maximum phosphorous uptake was at the middle tillering and potassium just after full heading stages.The percentage K uptake at the later growth stage increased under N-saving cultivation.
     Nitrogen-saving substantially increased N use efficiency.At 20%to 60%N-saving, Recovery efficiency(RE) increased by more than 42%,AE>20 kg/kg,PE>38 kg/kg N,and NHI>67%.The amount of N required in producing 100 kg grain ranged from 1.53 to 2.19 kg.
     Effect on soil N accumulation:the total and available N in soil increased with increasing N application.Total and available N in soil of low N treatments significantly decreased,those of the middle N treatments were similar;and those of high N treatments increased significantly.
     5.Physiology,biochemistry and photosynthetic traits of super hybrid rice under N-saving cultivation
     Significant positive correlation between the chlorophyll content in leaf-area and the amounts of N applied was observed The efficiencies of the chlorophyll content per unit in leaf-area changed from high to low with the increase of N application rate.N-saving treatment could increase efficiencies of the chlorophyll content per unit in leaf-area.
     Root activities,the activities of NR,GS,and CAT in SHSR.leaves decreased with increasing amount of N applied.The content of MDA in leaves initially decreased and then gradually increased with N application.Root and CAT activities decreased but MDA content increased with growth stage.On the contrary,the activities of GS and NR decreased and reached the maximum at full heading stage.
     The Pn,Tr,Gs in rice flag leaf increased with increasing rate of N fertilizer.The Ci initially increased and then declined N increased.Optimal range of N-saving improved the maximum photosynthetic rate,reduced the coefficient of light inhibition,and increased light saturation point,but had little or no significant effects on the light absorbing abilities of the rice leaf.
     Photosynthetic electron transport(ETR),the effective quantum yields(EQY),photochemical quenching coefficient(qP),and non-photochemical quenching coefficient(NPQ) in rice leaf were affected by the amount of N and light intensity.Nitrogen-saving increased but too low or too high N fertilizer decreased ETR,EQY.and qR Non-photochemical quenching coefficient was a positively correlated to the amount of N applied at 10d after full heading(0.9231,P<0.05).Except for the NPQ,ETR,EQY,qP increased with growth stage.
     6.The key techniques for super hybrid rice N-saving cultivation
     The strategy for N-saving cultivation of SHSR in plain area:the key point was to have effective panicles and balanced grain number and weight.
     The optimum range of N application rate should be 135~180 kg/hm~2,the ratio of N-P-K at 1:0.4 to 0.7:0.9 to 1.2,and the optimum transplanting density should be180,000 hills/hm~2.
     The key technique to achieve high yield of super hybrid rice under N-saving cultivation: high N-use efficient varieties,slow/controlled release N fertilizer,early transplanting for stronger seedlings,optimal planting densities,good water and fertilizer-management coupled with integrated pest control and anti-lodging techniques.
引文
[1]陈友订.广东省超级稻育种研究进展与展望[J],广东农业科学,2005,(1):12-15.
    [2]青先国,王学华.超级稻研究的背景与进展[J],农业现代化研究,2001年.22(2):99-102.
    [3]杨仁崔.国际水稻研究所的超级稻育种[J],世界农业,1996(2):25-27.
    [4]袁隆平,马国辉.超给杂交稻亩产800kg关键技术[M],中国三峡出版社,2006,11.
    [5]中国农业部,中国超级稻育种--背景、现状和展望[J],农业部“新世纪农业曙光计划”项目,1996.
    [6]谢华安.中国特别是福建超级稻研究进展[J],中国稻米,2004,2:7-10.
    [7]袁隆平.杂交水稻超高产育种[J],杂交水稻,1997,(6):1-6.
    [8]佐藤尚雄(日).水稻超高产育种研究[J],国外农学水稻,1984(2):1-16.
    [9]陈温福,徐正进,张龙步,等.水稻超高产育种研究进展与前景[J],中国工程科学,2002,4(1):31-35.
    [10]Fisher K S.Toward increasing nutrient-use efficiency in rice cropping systems:the next generation of technology[J].Field Crops Research,1998,56:1-6.
    [11]石庆华,李木英,涂起红.杂交水稻根系生长优势与吸氮特性关系的初步研究[J].江西农业大学学报,1996,21(2):145-148.
    [12]Novoa R and Loomis R S.Nitrogen and plant production[J].Plant and Soil,1981,58:177-204.
    [13]Ericsson T.Growth and shoot:root allocation of seedlings in relation to nutrient availability[J].Plant and Soil,1995,168:205-214.
    [14]Marata Y.PHysiological responses to nitrogen in plants[M].In.J.D.Eastin,E A.Hm2skins,C.Y Sullivan,and C.H.M.van Bavel(eds.)PHysiological aspects of crop yield.American Society of Agronomy Madison,.1969,235-263.
    [15]李荣刚,翟云忠.江苏武进市高产水稻田素滲漏损失研究[J].农业生态环境,2000,16(3):19-22.
    [16]方桂鑫,莫建林,项彩花.碳铵、尿素、氯化铵在早稻上的当季肥效比较[J].土壤肥料,1995,(5):39-40.
    [17]凌启鸿,张洪程,戴其根,等.水稻精确定量施氮研究[J].中国农业科学,2005,38(12):2457-2467.
    [18]潘瑞炽主编.植物生理学[M].中国北京:高等教育出版社,第4版,2001,49.
    [19]李志宏,刘宏斌,张树兰,等.小麦-玉米轮作下土壤.作物系统对氮肥的缓冲能力[J],中国农业科学,2001,34(6):637-643.
    [20]Raun W R,Johnson G V.Soil-plant buffering of inorganic nitrogen in continuous winter wheat[J].Agron,J.1995,87:827-834.
    [21]钟茜,巨晓棠,张福锁.华北平原冬小麦/夏玉米轮作体系对氮素环境承受力分析[J].植物营养与肥料学报,2006,12(3):285-293.
    [22]巨晓棠,刘学军,张福锁.冬小麦/夏玉米轮作体系中NO~-_(3-)N在土壤剖面的累积及移动[J].土壤学报,2003,40(4):538-546.
    r23]范仲学,王璞,梁振兴.谷类作物的氮肥利用率及其提高途径研究进展[J].山东农业科学.2001,4:47-50.
    [24]黄见良.水稻氮素营养特性、氮肥利用率与实时实地氮肥管理的研究[[D],博士学位论文湖南农业大学,2003.
    [25]叶华斌,黄新平,姚,铭,等.氮钾配比对水稻氮素利用率的影响[J],上海农业科技,2003,3.
    [26]骆建军,吴文安,解平,等.水稻节氮栽培效果初析[J],上海农业科技,2005,3.
    [27]阮新民,施伏芝,罗志祥,等.氮肥水平对不同基因型水稻品种农学利用率的影响[J],安徽农业科学,2005,33(6):942-943,976.
    [28]冯涛,杨京平,施宏鑫,等.高肥力稻田不同施氮水平下的氮肥效应和几种氮肥利用率的研究[J],浙江大学学报,2006,32(1):60-64.
    [29]刘立军,徐伟,徐国伟,等.水稻实地氮肥管理技术的节氮效果及其机理[J],江苏农业学报,2005,21(3):155-161.
    [30]马国辉,宋春芳,艾治勇,等.超级稻节氮降污栽培技术研究[M],袁隆平主编,超级杂交稻强化栽培理论与实践,湖南科技出版社,2006:187-195.
    [31]马国辉,宋春芳,吴朝晖,等.低氮高磷钾超级稻专用肥的研制与应用研究[M],袁隆平主编,超级杂交稻强化栽培理论与实践,湖南科技出版社,2006:180-186.
    [32]杨祥田,林贤青,曾孝元,等.水稻强化栽培下不同氮肥管理对产量与氮素利用的影响[J].台州农业,2007,(2):11-14.
    [33]何念祖,孟赐福.植物营养原理[M],上海:科技出版社,1987,59-124.
    [34]Mooney H A,Field C,Gulmon S L,et al.PHotosynthetic capacity in relation to leaf posit ion in desert versus old field annuals[J].O eco logia,1981,50:109-112.
    [35]Field C.A llocating leaf nitrogen for the maximization of carbon gain:leaf age as a control on the allocation program.O eco logia,1989,56:341-347.
    [36]Gulmon S L,Chu C C.The effects of light and nitrogen on pHotosynthesis,leaf chm2racteristics,and dry matter allocation in the chm2parral shrub,Dip lacus au rantiacus[J].O eco logia,1981,49:207-212.
    [37].Field C,Merino J,Mooney H A.Comp remises between water use efficiency and nitrogen use efficiency in five species of California evergreens[J].O eco logia,1983,60:384-389.
    [38]孙羲.水稻的氮素营养[A],见:我国土壤氮素研究工作的现状与展望,中国土壤氮素工作会议论文集,北京:科学出版社,1986,1-3.
    [39]曹翠玲,氮素及形态对作物的生理效应[D].博士论文,西北农林科技大学,2002.
    [40]Engels C,Marschner H.Influence of the form nitrogen supply on root uptake and translocation of cations in the xylem exudates of maize(Zea mays L.)[.J],Exp.Bot.1993,44:1695-1701.
    [41]陈春宏,张耀东,高祖民.不同氮素形态对叶菜铁素营养的影响[J],上海农业学报,1993,9(1):44-48.
    [42]赵平,孙谷畴,彭少麟.植物氮素营养的生理生态学研究[J],生态科学,1998,17(2):37-42.
    [43]权勇,金妍姬.水稻不同群体的氮素吸收特性[J].延边大学农学学报.2000,22(2):86-90.
    [44]傅庆林.施氮对杂交稻518的氮吸收,转化和利用的影响[J].浙江农业学报.1999,11(4):174-177.
    [45]邹长明,秦道珠,水稻的氮磷钾养分吸收特性及其与产量的关系[J],南京农业大学学报.2002,25(4):6-10.
    [46]刘运武.杂交水稻吸氮特性及氮肥利用状况的研究[J].土壤通报,1990,21(2):60-64.
    [47]邹长明,秦道珠,陈福兴,刘更另.水稻氮肥施用技术[J].氮肥施用的适用时期与用量.湖南农业大学学报(自然科学版),2000,26(6):467-470.
    [48]赵荣广,孙维忠.基穗型施肥水稻对肥料氮和土壤氮的吸收利用[J].核农学报.1997,11(3):163-167.
    [49]冯惟珠,苏祖芳.水稻灌浆期源质量与产量关系及氮素调控的研究[J].中国水稻科学.2000,14(1):24-30.
    [50]罗莲香,袁彩庭,卢普相,等.双季稻每公顷年产18t稻谷的施氮技术研究[J].中国农学通报,1997,13(4):21-23.
    [51]Yoshida S,N avasero S,A,and Ramivez E.A.Effects of silica and nitrogen supply on some leaf chm2racters of the rice plant[J].Plant Soil.1969,31:48-56.
    [52]De Datta S K.Improving nitrogen fertilizer efficiency in lowland rice in tropical Asia[J].Fertilizer Res.1986,(9):171-186.
    [53]Marata Y.PHysiological responses to nitrogen in plants[M].In.J.D.Eastin,F.A.Hm2skins,C.Y Sullivan,and C.H.M.van Bavel(eds.)PHysiological aspects of crop yield.American Society of Agronomy Madison,WI.1969,235-263.
    [54]杨连新,王余龙,董桂春,等.氮素对扬稻6号谷壳性状的影响及其原因分析[J],中国农业科学,2002,35(7):765-770.
    [55]何新华,安.奥先斯,李明启.C3和C4禾本科作物的氮素利用效率[J].植物学通报,1995,12(3):20-27.
    [56]田纪春,张忠义,梁作勤.高蛋白和低蛋白小麦品种的氮素吸收和运转分配差异研究[J],作物学报,1994.(1):76-83.
    [57]尹西翔.水稻氮高效品种的筛选及其机理的初步探讨,硕士论文[[D],华中农业大学资源与环境学院,2005.
    [58]江立庚,曹卫星.水稻高效利用氮素的生理机制及有效途径,中国水稻科学[J].2002,3:261-264.
    [59]刘立军,水稻氮肥利用效率及其调控途径[[D],博士论文,扬州大学农学院,2005.
    [60]孙传范,小麦氮素利用效率的生理生态与氮肥调控研究[[D],博士论文,南京农业大学,2002.
    [61]童汉华,水稻氮高效资源筛选及相关基因的分子定位[[D].硕士论文,华中农业大学植物科学技术学院,2004.
    [62]Moll R H,Kamprath E J,Jackson W A,et al.Analysis and interpretation of factors which contribute to efficiency of nitrogen utilization[J].Agronomy Journal.1982,7:526-564.
    [63]Fotyma E,Fotyma M.The agronomical and pHysiological efficiency of nitrogen applied for amble crops in Poland[J].Fertilizer Research,1996,43(1-3):9-12.
    [64]Novoa R,Loomis R S.Nitrogen and plant production[J].Plant Soil.1981,58:177-204.
    [65]Cassman K.G.,Pingali P L.Extrapolating trends from long-term experiments to famiers' fields.Environment and Statistical terms.London,UK:John Wiley and Sons,Lts,1995:63-68.
    [66]叶全宝.不同水稻基因型对氮肥反应的差异及氮素利用效率的研究[[D],博士论文,扬州大学,2005.
    [67]荆家海主编.植物生理学[M].西安:陕西科学技术出版社,1994.
    [68]朱兆良,文启孝.中国土壤氮素[M].南京:江苏科学技术出版社,1992.
    [69]FAO.Statistical databases,Food and Agriculture Organization(FAO) of the United Nation,2006.
    [70]袁隆平.超级杂交稻栽培技术研究[M],袁隆平主编,超级杂交稻研究,上海科学技术出版社,2006,288-296.
    [71]童依平,李继云,李振声.不同小麦品种(系)吸收利用氮素的差异及有关机理研究Ⅱ.影响吸收效率的因索分析[J].西北植物学报,1999.19(3):393-401.
    [72]邹应斌,周上游,唐起源.中国超级杂交水稻超高产栽培研究的现状与展望[J],中国农业科技导报,2003,5(1):31-35.
    [73]浙江农业大学等编.实用水稻栽培学[M],上海科学技术出版社,1981.
    [74]中国农业科学院主编.中国稻作学[M],农业出版社,1986.
    [75]Cai G X,Cao Y C,Yang N C,el al.Direct estimation of nitrogen gasses emitted from flooded soil during demystification of applied nitrogen[J].PedospHere,1990,1:241.
    [76]http://www.irri.org/science/ricestat/index.asp.
    [77]http://www.fertilizer.org/ifa/statistics/indicators/tablen.asp.
    [78]http://www.sannong.gov.cn/default.htm.
    [79]De Datta S K,Broadbent F E.Development changes related to nitrogen-use efficiency in rice[J],Field Crops Research,1993,34:47-56.
    [80]Yoshida S.Fundamentals of rice crop science[J],International Rice Research Institute,Los Banos PHilippines,1981,1:26-39.
    [81]朱兆良.农田中氮素的损失与对策.土壤与环境[J].土壤.2000,9(1):1-6.
    [82]彭少兵,黄见良.钟旭华,等.提高中国稻田氮肥利用率的研究策略[J],中国农业科学,2002,35(9):1095-1103.
    [83]朱兆良,蔡贵信,徐银华.等.种稻卜氮肥的氮挥发及其在氮素损失中的重要性研究[J].土壤学报,1985,22(3):320-327.
    [84]李庆逵.中国农业可持续发展中的肥料问题[M].江西:江西科学技术出版社,1997.
    [85]李荣刚.高效农田氮素肥效与调控途径-以江苏太湖区稻麦两熟农区为例推及全省[[D],博士论文,中国农业大学,2000.
    [86]张绍林,朱兆良,徐银华,等.关于太湖地区稻麦上氮肥的适宜用量[J],土壤1988,20:5-9.
    [87]王志琴,杨建昌.亚种间为杂交稻物质积累与运转特性的研究[J],江苏农学院学报,1996,17(4):1-5.
    [88]单玉华,王余龙,山本由德,等.常规籼稻与杂交水稻氮素利用效率的差异[J].江苏农业研究,2000,22(1):12-15.
    [89]李伟波,吴留秋,廖海秋.太湖地区高稻田氮肥施用与作物吸收利用的研究[J].土壤学报,1997 34(4):67-72.
    [90]崔玉亭.苏南太湖流域水稻氮肥利用率及氮肥淋失量研究[J],中国农业大学学报.1998,3(5):51-54.
    [9]朱兆良.农田生态系统中化肥氮的去向和氮素管理[M].朱兆良,文启孝,中国土壤氮素,南京:江苏科技出版社,1992,213-249.
    [92]蔡贵信.氨挥发[M].见朱兆良,文启孝主编:中国土壤氮素.南京:江苏科技出版社,1992,171-196.
    [93]Cai G X,Yang N C,Lu W F,et al.Gaseous loss of nitrogen from fertilizers applied to a paddy soils in southeastem China[J].PedospHere,1992,3:209-217.
    [94]Cai G X,Peng G H,Wang X Z,et al.Ammonia volatilization from urea applied to acid paddy field in southern China and its control[J].PedospHere,1992,4:345-354.
    [95]田光明,曹金留,蔡祖聪.镇江丘陵地区稻田氨挥发损失研究[J].南京大学学报(自然科学版),1997(专辑),268-270.
    [96]Zhu Z L.Efficient management of nitrogen fertilizer for flooded transformations in flooded soils[J].PedospHere,1992,2:97-114.
    [97]Tran Guanming,Cao lintiu,Cai Zucong,et al.Ammonia volatilization from winter wheat field top-dressed with urea[J].PedospHere,1998,4:331-336.
    [99]蔡贵信,朱兆良,稻田中化学氮的气态损失[J].土壤学报,1995 32(增刊):128-135.
    [98]尹娟,勉韶平.稻田中氮肥损失途径研究进展[J].农业科学研究,2005,26(2):76-80.
    [100]曹金留,田光明,任立涛,等.江苏南部地区稻麦两熟土坡中尿素的氮挥发损失[J].南京农业大学学报,2000,23(4):51-54.
    [101]蔡贵信.农田生态系统中的氮素循环[M].赵其国主编,土壤圈物质循环与农业和环境.南京:江苏科技出版社.1995,8-24.
    [102]Buresh R J.De Dana S K.Samson M Z et ai.Dinitrogen and nitrous oxide flux from urea basely applied to peddled rice soils[J].Soil Sci.Soc.Am.J,1991,55:268-273.
    [103]De Dana S K.Buresh R J.Samson M Z et al.Direct measurement of ammonia and gentrification fluxes from urea applied to rice[J].Soil Sci.Soc.Am.J,1991,55:543-548.
    [104]Focht D.Microbial kinetics of nitrogen losses in flooded soils[M].In:Nitrogen and Rice.Los.Banos.PHilippines,IRRI,1979,119-134.
    [105]李新慧.稻田土壤中硝化一反硝化机制的研究[[D].博士论文.南京:中国科学院南京土壤研究所,1994.
    [106]Katyal J C.Xatter M F and Vlek P L G.Nitrification activity in submerged soils and its relation to denitrification loss.Bioi.Fertil[J].Soils.1998,7:16-22.
    [107]Jensen K Revsbech N P and Nielsen L P Microscale distribution of nitrification activity in sediment determined with a shielded micmsensor of nitrate[J].Appl Environ.1993,59:3287-3296.
    [108]Finery 1 R P.Biological denitrification[M],in:Freney J R&Simpson J Reds.Gaseous loss of nitrogen fmm plant soil systems.Martinus Nijhoff,1983:33-64.
    [109]俞慎,李振高.稻田生态系统生物硝化,反硝化作用与氮素损失[J].应用生态学报,199,10(5):630-634.
    [110]姚丽贤,黄志武,张壮塔.有机碳源物对淹水土壤中氮素转化的影响[J].热带亚热带土壤科学,1997 6(2):82-87.
    [111]Firestone M K.Biological denitrification[M].In:Stevenson F J eds.Nitrogen in agricultural soils.ASA.CSSA&SSSA.Madison.Wisconsin.1982.22:289-326.
    [112]张国梁,章申.农田氮素的研究进展[J].土壤,1998,(6):291.
    [113]陈刚才,甘露,王仕禄,等.土壤氮素及其环境效应[J].地质地球化学,2001,29(1)63-67.
    [114]张福珠,熊光哲,戴同顺.应用~(15)N研究土壤-植物系统中氮素淋失动态[J].环境科学,1984,5(1):231-240.
    [115]Start JL,Broadbent F E,Nielsen D R.Soil.Sci.Soc.LN].Am.Proc.1974,38:238-289.
    [116]王家五,王胜佳,陈义.稻田土壤中氮素淋失研究[J].农村生态环境,2000,16(3):19-22.
    [118]李荣刚,翟云忠.江苏省武进市高产水稻田氮素渗漏损失研究[J].农村生态环境,2000.16(3):19-22.
    [118].Wang J Y,Wang S L,Chen Y Study on leaching loss of nitrogen in rice fields by using large undisturbed monolith hypsometers[J].Pedospere,1994,4:87-92.
    [119]张美良,吴建富,郭成忐.应用~(15)N对稻田生态系统中氮素淋失和去向的研究[J].江西农业大学学报,1998,20(2):153-157.
    [120]Bergstrom,L.and N.Brink.Effects of differentiated application of fertilizer N on leaching losses and Distribution of inorganic N in the soil[J].Plant and Soil.1986 93(3):333-345.
    [121]Bauderr J W;Schneider,R P Nitrate-nitrogen leaching following urea fertilizations and leaching[J].Journal Soil Science Society American,1979,.43:744-747.
    [122]Hergert,G W.Nitrate leaching through sandy soil as affected by sprinkler irrigation management[J].Environ.Qual,1986,15:272-277.
    [123]Wild A.Nitrate Leaching Under a Bare Fallow at a Site in Northern Nigeria[J].Soil Sci,1972,23:315-324.
    [124]Zantua,M I,LC Dumenil and J M Bremner.Relationship between soil urea activity and other soil properties[J].Soil Sci.Soc.Am.J.1977,41:350-352.
    [125]冯锋,张福锁,杨新泉编:植物营养研究进展与展望[M].北京:中国农业出版社.2000,207-215
    [126]安林升,倪晋山,李共福.耐低钾水稻的钾营养特性[J].植物生理学通讯.1995,31(4):257-259.
    [127]曹黎明,潘晓华.水稻耐低磷基因型种质的筛选与鉴定[J].江西农业大学学报.2000,22(2):162-168.
    [128]敖和军.不同季别施氮对水稻产量生长生理及土壤氮素变化的影响[D]硕士论文,湖南农业大学,2004
    [129]Margan J A.and W J Patton.Characteristics of ammonia volatilization from spring wheat[J].Crop Sci.1989.14:154-162.
    [130]Francis D D,J.S.Scheper,M.F.Vigil.Post-Anthesis Nitrogen Loss from Corn[J].Plant Nutr,1986,27:42-47.
    [131]艾治勇.超级杂交稻形态及生理特性与抗倒性的关系研究[[D],硕士论文湖南农业大学农学院,2006.
    [132]苏正义,韩晓曰,李春全.氮肥深施对作物产量和氮肥利用率的影响[J].沈阳农业大学学报,1997,28(4):292-296.
    [133]伍泽康.水稻氮肥深施比较试验[J],贵州农业科学,1999,27(3):52-53.
    [134]吴敬民,姚月明.水稻氮肥机械化深施效果初探[J].土壤肥料,1997,4:17-19.
    [135]吴敬民,许学前.姚月明.基肥不同施用方法对水稻生长及稻田周围水体污染的影响[J].土壤通报,1999,30(5):232-234.
    [136]曾希柏,关光复.水稻配方施肥方法及其比较研究[J].土壤通报,1999,30(1):40-41,45.
    [137]吴建富,赵小敏,卢志红.氮、磷、钾化肥配施对水稻效应的研究[J].江西农业大学学报,2002,24(2):193-195.
    [138]Bangar R.Fertilization of sorghum based on modified Mitscherlich Bray equation under semi-arid tropic.[J].Journal of the Indian Society of Soil Science,1998,46(3):383-391.
    [139]金耀青.配方施肥的方法及其功能-对我国配方施肥式作的评述[J].土壤通报,1989,20(1):46-48,33.
    [140]李光锐,陈培森,郭毓德,等.模拟机具追施碳酸氢对早作土壤中氮肥去向的影响[J].土壤肥料,1988,2:15-18.
    [141]黄东迈.有机无机肥对提高土壤氮素肥力的作用及其配合施用[J],土壤通报,1985,16(5):197-201.
    [142]张夫道.有机.无机肥料配合是现代化施肥技术的发展方向[J],土壤肥料,1984,1:16-19.
    [143]牟善积,何明华,卢树昌,等.重谈有机肥与化肥并重[J].天津农学院学报,2000,7(3):30-34.
    [144]姚丽贤,黄志武,卢仁骏,等.有机碳源物对水稻生长和氮素有效性的影响[J],土壤肥料,1997,6:27-31.
    [145]Smith C J,Delaune R D.Effect of rice plants on nitrification-denitrification less of nitrogen under green house conditions[J].Plant and soil,1984,79:287-290.
    [146]黄志武,卢仁骏.稻杆和尿素单施或混施水稻对标记的氮的吸收与~(15)N的去向[J],华南农业大学学报,1995,16(4):58-63.
    [147]任军,闰晓艳,日本施肥现状及发展趋势[J].土壤肥料,1996,(3):20-22.
    [148]任祖淦,唐福钦.缓效氨肥的增产效应研[J].土壤通报,1997,28(1)22-24.
    [149]张春伦,米兴明,胡思农.缓释尿素的肥效及氮素利用率研究[J].土壤肥料,1998,(6):17-20.
    [150]蒋永忠,刘海琴,张永春.高效尿素提高氮利用的机理[J].江苏农业学报,2000,16(3):180-184.
    [151]严力蛟,杜建生,郑志明,等.作物生产动态模拟模型的研究与应用[J].作物研究,1996.10(2):1-5.
    [152]郑志明,严力蛟,姚建龙.作物生产系统模拟模型研究进展[M].严力蛟等主编.生态研究与探索.北京:中国环境科学出版社,1992.92-97.
    [153]严力蛟,郑志明,王兆蓦,等.水稻氮肥计算机优化管理模拟模型的验证与应用[J].浙江农业学报,1998,10(1):7-11.
    [154]郑志明,严力蛟,王兆赛,等.水稻氮行为模拟模型和数学程序结合在氮肥运筹中的应用[J].生态学报,1998,18(4):446-448.
    [155]石庆华,Ten Berge H F M,潘晓华.稻田氮素管理优化系统的应用研究[J],江西农业大学学报,1998,20(3):287-290.
    [156]潘剑君,房世波,孙维伙,等.利用土坡信息系统进行水稻施氮量决策初探[J].南京农业大学学报,2000,23(3):53-56.
    [157]凌启鸿,张洪程,丁艳峰,等.水稻高产技术的新发展-精确定量栽培[J],中国稻米,2005,1:3-7.
    [158]Dobermann A,Witt C,Dawe D,Abdulrachman S,Gines H C,Nagarajan R,Satawathananont S,Son T T,Tan P S,Wang G H,Chien N V,Thoa V T K,Phung C V,Stalin P,Muthukrishnan P,Ravi V,Babu M,Chatuporn S,Sookthongsa J,Sun Q,Fu R,Simbahan G C,Adviento M A A.Site-specific nutrient management for intensive rice cropping systems in Asia.Field Crops Research,2002,74:37-46.
    [159]范立春,彭显龙,刘元英,宋添星.寒地水稻实地氮肥管理的研究与应用[J].中国农业科学,2005,38(9):1761-1766.
    [160]贺帆,黄见良,崔克辉,曾建敏,徐波,彭少兵,R J Buresh.实时实地氮肥管理对水稻产量和稻米品质的影响[J].中国农业科学,2007,40(1):123-132.
    [161]刘立军,桑大志,刘翠莲,王志琴,杨建昌,朱庆森.实时实地氮肥管理对水稻产量和氮素利用率的影响[J].中国农业科学,2003,36(12):1456-1461.
    [162]王圣瑞,马文奇,张福锁.我国粮食作物化肥肥效的演变[M],养分资源综合管理.中国农业大学出版社,2003,1-3.
    [163]De Datta SK,Broadbent.Nitrogen use efficiency of rice genotypes in N-dificient soil[J],Field Crops Res 199023:81-92.
    [164]刘立军,杨建昌,徐伟,等.中籼水稻品种改良对氮素利用影响及其生理机制[C],全国第十一届水稻优质高产理论与技术研讨会论文集,中国,武汉,2005,30-40.
    [165]武志杰,李东圾,史云峰未来肥料的希望-环境友好智能缓/控释肥料[C],全国第十届新型肥料开发与应用技术交流会暨汉枫缓释肥国际研讨会论文集,2005,58-65.
    [166]潘振玉.努力发展结合国情的缓控释肥料[C],全国第十届新型肥料开发与应用技术交流会优秀论文集,2005,66-72.
    [167]崔玉亭,程序,韩纯儒,等.苏南太湖流域水稻经济生态适宜施氮量研究[J],生态学报,2000,4:659-662.
    [168]李庆逵,朱兆良,于天仁,中国农业持续发展中的问题[M],南昌:江西农业科技出版社,1999.
    [169]张福锁.对提高养分资源利用几点思考[M],迈向21世纪的土壤科学,北京:中国农业出版社,2000,42-48.
    [170]张琴,张春华.缓/控释肥为何发展缓慢[J],中国农资,2004,4-5:44-47.
    [171]林葆,李家康,当前我国化肥的若干问题和对策[J].磷肥与复肥,1997(2):1-23.
    [172]高旺盛,杨光立粮食安全与农作制度建设[M],湖南科技出版社,2004.9.
    [1]彭少兵,黄见良,钟旭华,等.提高中国稻田氮肥利用率的研究策略[J],中国农业科学,2002,35(9):1095-1103.
    [2]袁隆平.超级为杂交栽培技术研究[M],袁隆平主编,超级杂交稻研究.上海科学技术出版社,2006,288-296.
    [3]关广晟.烟草镁吸收积累规律与调控研究[D].湖南农业大学,博士论文,2007.
    [4]湖南省农业统计年鉴.年[M].湖南人民出版社出版,1985-2006.
    [5]中国三农数据网,统计数据(2006年),http://www.sannong.gov.cn.
    [6]马国辉.超级杂交稻节氮栽培途径与实践[A],第六届生态产业与可持续发展国际学术研计会论文集[C].比利时.2007.71-75.
    [7]马国辉,宋春芳艾治勇,等.超级杂交稻节氮降污高产栽培技术研究[A],袁隆平主编,超级杂交稻强化栽培理论与实践[M].湖南科技出版社2005,:187-195.
    [8]袁隆平.超级杂交稻节氮超高产施肥技术[A],袁隆平主编,超级杂交稻亩产800公斤关键技术[3vrl.中国三峡出版社农业科教出版中心,2006,61-63.
    [9]邹应斌.周上游,唐启源.中国超级杂交水稻超高产栽培研究的现状与展望[J],中国农业科技导报2003,5(1):31-35.
    [10]王志琴,杨建昌.亚种间杂交稻物质积累与运转特性的研究[J],江苏农学院学报,1996,17(4):1-5.
    [11]张福锁.马文奇,江荣风,等.养分资源管理的概念及其综合管理的理论基础与技术途径[M],见:张福锁主编,养分资源综合管理.北京:中国农业大学出版社,2003,4-14.
    [1]江立庚,戴迁波,韦善清,等.南方水稻氮素吸收与利用效率的基因型差异及评价[J].植物生态学报,200327(4):466-471.
    [2]叶全宝.不同水稻基因型对氮肥反应的差异及氮素利用效率的研究[[D].博士学位论文,扬州大学,2005.
    [3]Lincoln S E,Daley M J,Lander E S.Mapping genes controlling quantitative traits with MAPMKER/QTL[M].Whitehead Institute Technical Report(2~(nd) edition).Whitehead Institute Cambridge.Mass.1992.
    [4]单玉华,不同类型水稻在氮素吸收及利用上的差异[J].扬州大学学报(自然科学版),2001,4(3):42-45.
    [5]朴钟泽,韩龙植,高熙宗.水稻不同基因型氮素利用效率差异[J].中国水稻科学,2003,17(3):233-238.
    [6]阮新民,施伏芝,罗志祥,等.氮肥水平对不同基因型水稻品种农学利用率的影响[J].安徽农业科 学,2005,33(6):942-943,976.
    [7]植物生理学实验指南[M],华东师范大学主编,中国农业科学出版社出版,.2002.
    [8]刘立军.水稻氮肥利用效率及调控途径[[D].博士学位论文,扬州大学,2005.
    [9]童汉华,水稻氮高效资源筛选及相关基因的分子定位,硕士论文,华中农业大学植物科学技术学院,2004年.
    [10]张福锁,樊小林,李晓林.土壤与植物营养研究新动态:第2卷[M].北京:中国农业出版社,1995.88-89.
    [11]冯元琦.我国化肥生产现状、前景、存在问题和对策[A].李庆逵,朱兆良,于天仁.中国农业持续发展中的肥料问题[C].南昌:江西科学技术出版社,1997,28-37.
    [12]Moll R H.Kamprath E J.Jackson WA.Analysis and interpretation of factors which contribute to efficiency of nitrogen utilization[J].Agronomy Journal.1982.74:562-564.
    [13]Novoa R,Loomis R S.Nitrogen and plant production[J],Plant and Soil.,1981,58:177-204.
    [14]居静.水稻氮素吸收利用的差异及其原因分析[[D].扬州大学,硕士学位论文,2003.
    [1]杨雯玉,贺明荣,王远军,等.控释尿素与普通尿素配施对冬小麦氮肥利用率的影响[J],植物营养与肥料学报2005,11(5):627-633.
    [2]谷洁,高华.提高化肥利用率技术创新展望[J].农业工程学报,2000,16(2):17-20.
    [3]张维理,田哲旭,张宁,等.我国北方农田氮肥造成地下水硝酸盐污染的调查[J].植物营养与肥料学报,1995,1(2):80-87.
    [3]朱兆良.农田中氮肥的损失与对策[J].土壤与环境,2000,9(1):1-6.
    [4]Shen A L,Liu C Z,Zhang F S et al.Effects of different application rate of NPKon the growth of rice and N fertilizer utilization ratio under water leakage and non21eakage conditions[J].Chinese J.of Rice Sci.,1997,11(4):231-237.
    [5]冯元琦.我国化肥生产现状、前景、存在问题和对策[A].李庆逵,朱兆良,于天仁.中国农业持续发展中的肥料问题[C].南昌:江西科学技术出版社,1997,28-37.
    [6]钟旭华,黄农荣,郑海波.禾谷类作物氮素利用收获指数及植株氮浓度的定量关系[A].全国第十一届水稻优质高产理论与技术研讨会论文集[C],中国作物学会作物栽培专业委员会,中国武汉,2005:22-28.
    [7]W u P,Tao Q N.Genotypic response and different nitrogen regimes[J].Plant Nutrition,selection pressure on nitrogen-use efficiency in rice under,1995,18(3):487-500
    [8]Tirol-Padre A.Ladha J K,Singh U et al.Grain yield performance of rice genotypes at suboptimal levels of soil N as affected by N uptake and utilization efficiency.Field Crops Res.,1996,46:127-143.
    [9]张云桥,吴荣生,蒋宁.水稻的氮素利用效率与品种类型的关系[J].植物生理学通讯,1989,(2):45-47.
    [10]De Datta S.K,Broadbent RE.Nitrogen-use efficiency of 24 rice genotypes on an N-deficient soil.Field Crops Res.,1990.23:81-92.
    [11]Broadbent F.E.,De Datta S.K.,Laureles E V.Measurement of nitrogen utilization efficiency in rice genotypes.Agron J,1987.79:786-791.
    [12]植物生理学实验指南[M],华东师范大学主编,中国农业科学出版社出版.2002.
    [13]吴合洲,马均,王贺正,等.超级杂交稻的生长发育和产量形成特性研究[J].杂交水稻,2007,22(5):57-62.
    [14]张志良主编.植物生理学实验指导[M].北京:高等教育出版社,2003.
    [15]刘立军.水稻氮肥利用效率及调控研究[[D].博土学位论文,扬州大学,2005.
    [16]洪植蕃,林非,庄宝华.两系杂交稻栽培生理生态特性Ⅱ.干物质生产特性[J].福建农学院学报,1992,21(2):129-136.
    [17]方志伟,张荣铣,朱培仁.水稻叶片叶绿素含量的变化与光合作用的关系[J].南京农业大学学报,1987,(4):53-57.
    [18]陈秉发,陈建民,黄荣裕,.高产水稻品种株型特征和光合特性的初步[J].研究福建农业学报,2000,15(2):46-50.
    [19]马莲菊,高峰,杜慧明,等.两种不同穗型水稻品种灌浆期间物质生产特性的比较[J].山东农业大学学报,2004, 35(1):11-14.
    [20]苏祝芳,李永丰,郭宏文,等.水稻单茎茎鞘重与产量形成关系及其影响因素的研究[J],江苏农学院学抿1993,14(1):1-10.
    [21]戚吕瀚,贺浩华,石庆华等.大穗型水稻的物质生产特性与产量能力的研究[J],作物学报,1986,12(2):121-127
    [22]黄超武.水稻品种在生长发育过程中物质的积累与运转的研究[J],早季稻部分,作物学报,1963,4(3):235-241.
    [23]邹应斌,周瑞庆,未乔芳等.水稻高产低耗栽培群体物质生产与分配的特点[J],作物研究1992,6(增刊):9-15.
    [24]刘秋英,蔡耀辉.超高产组合新优752干物质积累与分配特性研究[J].江苏农业学报,1998,10(4):23-28.
    [25]石庆华,李木英,涂起红.杂交水稻根系N素营养效率及其生理因素研究[J].杂交水稻,2002,17(4):45-48.
    [26]曹云.不同品种水稻硝酸还原酶及谷氨酞胺合成酶对硝态氮响应的分子生理差异[[D].南京农业大学硕士论文,2006.
    [27]王绍华,吉志军,刘胜环,等.水稻氮素供需差与不同叶位叶片氮转运和衰老的关系[J].中国农业科学,2003,36(11):1261-1265.
    [28]李殿平,曹海峰,张俊宝,等.全程深施肥对水稻产量形成及稻米品质的影响[J].中国水稻科学,2006,20(1):73-78.
    [29]黄绍文,金继运,杨俐苹,等.分区平衡施肥技术对氮肥利用率和土壤养分平衡的影响[J]土壤肥料,2002,(6):3-7.
    [30]单玉华,王余龙,山本由德,等.常规籼稻与杂交籼稻氮素利用效率的差异[J].江苏农业研究,2001,22(1):12-15.
    [31]单玉华,王余龙,山本由德,等.不同类型水稻在氮索吸收及利用上的差异[J].扬州大学学报,2001,4(3):42-45.
    [32]石庆华,李木英,涂起红.杂交水稻根系生长优势与吸氮特性关系的初步研究[J].江西农业大学学报1996,21(2):145-148.
    [33]郑志明,严力蛟,王兆赛,等.水稻氮吸收的动态模拟和氮肥管理的数学优化[J].浙江农业大学学报[J].1997,23(2):211-216.
    [34]尹兆友,江继发,卜建英,等.两系杂交中籼华安3号不同密度、施氮量与产量关系的研究[J]杂交水稻,2000,15(增刊):39-41.
    [35]徐培智,郑惠典,张育灿,等.水稻缓释控释肥的增产效应与环保效应[J].生态环境2004,13(2):227-229.
    [36]杨建昌,王志琴,朱庆森.水稻源库关系的研究[J].江苏农学院学报,1993,14(3):47-53.
    [37]杨长明,杨林章.不同肥料结构对水稻群体干物质生产及养分吸收分配的影响[J].土壤通报,2004,35(2):199-202.
    [38]张洪松,岩田忠寿.粳型杂交稻与常规稻的物质生产及营养特性的比较[J].西南农业学报,1995,8(4):11-16.
    [39]凌启鸿.水稻不同叶龄期施用穗肥的研究[J].江苏农学院学报,1985,6(3):11-19.
    [40]邹应斌,周上游.中国超级杂交水稻超高产栽培研究的现状与展望[J].中国农业科技导报,2003,5(1):31-35.
    [41]杨惠杰,李义珍,杨仁催,等.超高产水稻的干物质生产特性研究[J].中国水稻科学,2001,15(4):265-270.
    [42]J T Hays.Controlled release nitrogen fertilizer[A].In Francis T.Nielsson(ed):Manual of Fertilizer Processing.Fertilizer Science and Technology Series[C],Vol.5,Marcel Dekker,Inc.,New York and Basel,1987,21-22.
    [43]林葆,李家康.当前我国化肥的若干问题和对策[J].磷肥与复肥,1997,(2):1-3.
    [44]郑圣先,聂军,熊金英,等.控释肥料提高氮素利用率的作用及对水稻效应的研究[J].植物营养与肥料学报,2001,7(1):11-15.
    [45]樊小林,廖宗文.控释肥料与平衡施肥和提高肥料利用率[J].植物营养与肥料学报,1998,4(3):219-223.
    [46]李方敏,艾天成,周升波,等.缓释氮肥对水稻的增产效果及其氮素利用率[J].土壤通报,2004,35(3):311-315.
    [1]武志杰,缓释复混专用肥料研制、生产与应用[C].中国学术会议论文集,1998.
    [2]李方敏,艾天成,周升波,等.缓释氮肥对水稻的增产效果及其氮素利用率[J],土壤通报,2004,35(3):311-315.
    [3]吕云峰,史吉平,J.D.Beaton.SCU技术及在中国的推广应用[C],全国第十届新型肥料开发与应用技术交流会优秀论文集,主办:中国化学工业学会,2005,76-84.
    [4]严玉娟,张晓建.孙明强,等.缓释中稻专用肥肥效研究[J].上海农业科技,2001,(4):88-89.
    [5]陈剑慧,曹一平.有机高聚物包膜控释肥氮释放特性的测定与农业评价[J].植物营养与肥料学报2002,8(1):44-47.
    [6]刘德林,聂军,肖剑.~(15)N标记水稻控释肥料对提高氮素利用效率的研究[J].激光生物学报,2002.(2):78-81.
    [7]郑圣先,聂军,熊金英,等.控释肥料提高氮素利用率的作用及对水稻效应的研究[J].植物营养与肥料学报,2001.7(1):11-15.
    [8]Genshichi W,Rowena C,Ho A.Effect of slow release fertilizer(Meister) on the nitrogen uptake and yield of the rice plant in the tropics[J].Jpn.J.Crop Sci.,1991,60(1 ):101- 106.
    [9]De Datta S K.Improving nitrogen fertilizer efficiency in lowland rice in tropical Asia.Fertilizer Res.1986,(9):171-186.
    [10]植物生理学实验指南[M],华东师范大学主编,中国农业科学出版社出版,.2002.
    [11]吴合洲,马均,王贺正,等.超级杂交稻的生长发育和产量形成特性研究[J].杂交水稻,2007,22(5):57-62.
    [12]范淑秀,陈温福,王嘉宁.高产水稻品种干物质生产特性研究[J],辽宁农业科学,2005,(3):6-8.
    [13]刘立军.水稻氮肥利用效率及调控研究[[D].博士学位论文,扬州大学,2005.
    [14]凌启鸿,杨建昌.水稻群体粒叶比与高产栽培途径的研究[J].中国农业科学,1986,(3):1-8.
    [15]肖应辉,余铁桥,陈立云,等.两系亚种间杂交稻干物质生产特性的研究[J].湖南农业大学学报,1999,25(6):423-429.
    [16]谢卫国主编.测上配方施肥理论与实践[M].湖南长沙:湖南科学技术出版社,2006年,172.
    [17]刘立军,杨建昌,徐伟,等.中籼水稻品种改良对氮肥利用率的影响及其生理机制,全国第十一届水稻优质高产理论与技术研讨会[A],中国作物学会作物栽培专业委员会主办,中国,武汉,2005,8:30-40.
    [18]张洪程,戴其根,杨海生,等.两系法杂交稻两优培九不同栽培方式吸氮特性的初步研究[Z].杭州:第七届全国水稻栽培学术研讨会交流论文,1999.
    [19]洪克城,张大友,徐为元.水稻超高产群体质量与氮肥运筹效应[J].南京农专学报,2000,16(2):39-42.
    [20]唐启源,邹应斌,米湘成,等.不同施氮条件下超级杂交稻的产量形成特点与氮肥利用[J],杂交水稻,2003,18(1):44-48.
    [21]艾治勇.超级杂交稻形态及生理特性与抗倒性的关系研究[[D],硕士论文,湖南农业大学农学院,2006.
    [22]曾建敏,崔克辉,黄见良,等.水稻生理生化特性对氮肥的反应及与氮利用效率的关系[J].作物学报,2007,33(7):1168-1176.
    [23]刘秋英,蔡耀辉.超高产组合新优752干物质积累与分配特性研究[J].江苏农业学报,1998,10(4):23-28.
    [24]杨惠杰,李义珍杨仁崔,等.超高产水稻干物质生产特性研究[J].中国水稻科学,2001,15(4):265-270.
    [25]杨惠杰,李义珍,黄育民,等.超高产水稻的产量构成和库源结构[J].福建农业学报1999,11(4):1-5.
    [26]凌启鸿,张洪程,戴其根,等.水稻精确定量施氮研究[J].中国农业科学,2005,38(12):2457-2467.
    [27]袁隆乎主编.杂交水稻[M].中国北京:中国农业出版社,2002,366-374.
    [28]张洪程,王秀芹,戴其根,等.施氮量对杂交稻两优培九产量、品质及吸氮特性的影响[J].中国农业科学,2003,36(7):800-806.
    [29]巨晓棠,张福锁.关于氮肥利用率的思考[J],生态环境,2003,12(2):192-197.
    [30]彭少兵,黄见良,钟旭华,等.提高中国稻田氮肥利用率的研究策略[J],中国农业科学,2002,35(9):1095-1103.
    [1]张亚丽,董园园,沈其朵,等.不同水稻品种对铵态氮利硝态氮吸收特性的研究[J].土壤学报,2004,41(16):918-922.
    [2]Ta T C,Ohira K.Effect of various environmental and medium conditions on the response oflndica amd Japonica rice plants to ammonium and nitrate nitrogen[J].Soil Science and Plant Nutrition,1981,27:347-355.
    [3]Ta T C,Tsutsumi M,Kurihara K.Comparative study on the response of Indica amd Japonica rice plants to ammonium and nitrate nitrogen[J].Soil Science and Plant Nutrition,1981,27:83-92.
    [4]刘枫,张辛未,叶舒,.沈善敏.无机氮对土壤氮矿化与固定的影响-兼论土壤氮的“激发效应”[J].土壤学报,1986,23(1):10-16.
    [5]张辛未,刘枫等.稻草和尿素配施时水稻对肥料氮和土壤氮的吸收利用[J].核农学报,1996,10(1):39-42.
    [6]黄东迈,高家弊,朱培立.有机、无机肥料氮在水稻-土壤系统中的转化与分配[J].土壤学报,1981,18(2):107-121
    [7]曾建敏,崔克辉,黄见良,等.水稻生理生化特性对氮肥的反应及与氮利用效率的关系[J].作物学报,2007,33(7):1168-1176.
    [8]马均.不同穗重型水稻的形态、生理生化特性及产量潜力的研究[J].四川农业大学,博士学位论文,2002.
    [9]植物生理学实验指南[M],华东师范大学主编,中国农业科学出版社出版,.2002.
    [10]Platt T,Gallegos C L,Harrison W G.Photoinhibition of photosynthesis in natural assemblages of marine phytoplankton[J].Journal of Marine Resarch,1980,(38):687-701.
    [11]BecanaM.Reactive oxygen species and antioxidant sinlegume nodels[J].physiolplant 2000,109:372-381.
    [12]Kanazawa S.Changes intantioxidative incucumbercot yledons during natural sencence comparison with those during dark-induced senecence,physiolPlant,2000,109:2311-2316..
    [13]陈贵,胡文五谢甫绨,等.提取植物体内MDA的溶剂及MDA作为衰老指标的探讨[J].植物生理学通讯,1991,27(1):44-46.
    [14]林世青,许春辉,张其德,等.叶禄索荧光动力学在植物抗性生理学、生态学和农业现代化中应用[J].植物学通报,1992,9(1):1-16.
    [15]关广晟.烟草镁吸收积累规律与调控研究[J].湖南农业大学,博士论文,2007.
    [16]Ralph P J,Gademann R,Larkum A W D.et al.Insitu sea grass photosynthesis measured using a submersible,pulse-amplitde modulated fluorometer[J].Marine Biology,1998,132:367-373.
    [17]Kühl M,Chen M,Ralph P J,et al..A niche for cyan bacteria containing chlorophyll d[J].Nature,2005,433:820.
    [18]Dusan Laza,Chlorophyll a fluorescence induction[J].Biochim.Boiophys.Acta,1999,1421:1-28.
    [19]Ralph P J,Macinnis C M O,Frankart C.Fluorescence imaging application:effect of leafage on sea grass photo kinetics[J].Plant Physiol,2005,81,69-84.
    [20]张守仁.叶绿素荧光动力学参数的意义及讨论[J].植株学通报,1999,16(4):444-448.
    [21]陈温福,徐正进.张龙步.水稻超高产育种生理基础[M].沈阳:辽宁科学技术出版社,2004.1-2.
    [22]王磊 白由路.不同氮处理春玉米叶片光谱反射率与叶片全氮和叶绿素含量的相关研究[J].中国农业科学,2005,38(11):2268-2276.
    [23]胡文新,彭少兵,高荣孚.新株型水稻的光合效率[J].中国农业科学,2005,38(11):2205-2210.
    [24]李平,王以柔,刘鸿先.籼型杂交水稻F1代高产的生理基础[J].中国农业科学,1990,23(5):39-44.
    [25]凌启鸿,凌励.水稻不同层次根系的功能及对产量形成作用的研究[J].中国农业科学,1984,17(5):3-11.
    [26]凌启鸿.水稻根系对水分和养分的反应[J].江苏农学院学报,1990,11(1):23-27.
    [27]张玉屏,李镏金,黄义德,等.水分胁迫对水稻根系生长和部分生理特性的影响[J].安徽农业科学,2001,29(1):58-59.
    [28]王余龙,蔡建中.水稻颖花根活量与籽粒灌浆结实的关系[J].作物学报,何杰升.1992,18(2):81-89.
    [29]王余龙,姚庆友,刘宝玉,等.不同生育时期氮素供应水平对杂交水稻根系生长及其生活力的影响[J].作物学报,1997,23(6):699-705.
    [30]孙静文,陈温福,曾雅琴.氮素水平对粳稻根系形态及其活力的影响[J].沈刚农业大学学报,2003,34(5):344-346.
    [31]Dechard E L.Nitrate reductase assays as prediction test for crosses and lines in soring wheat[J].Crop Sci.1978,18:289-294.
    [32]张亚丽,沈其荣,段英华.不同氮素营养对水稻的生理效应[J].南京农业大学学报,2004,27(2):130-135.
    [35]范晓荣,沈其荣,崔国贤.旱作水稻内源激素变化及其与水稻形态和生理特性的关系[J].土壤学报,2002,39(2):206-213.
    [34]方昭希,王明录,彭代平.硝酸还原酶与氮素营养的关系[J].植物生理学报,1979,5(2):123-127.
    [35]李春喜,张根发,石惠恩.氮肥对小麦硝酸还原酶活性和籽粒蛋白质含量变化动态的影响[J],西北植物学报,1995,15(4):276-281.
    [36]Johnson C B,Whittington WJ,Biackwood G C.Nitrate reductase as a possible predictive test of crop yield.Nature.,1976,5564(262):133-134.
    [37]曹翠玲,李生秀.供氮水平对小麦生殖生长时期叶片光合速率、NR活性和核酸含量及产量的影响[J].植物学通报,2003,20(3):319-324.
    [38]Dortch Q,Ahmed S I,Packard T T.Nitrate reductase and glutamate dehydrogenase activities in skeletonema costatum as measures of nitrogen assimilation rates[J].Plankton Res.,1979,1:169-186.
    [39]Lea P L.Nitrogen metabolism of plant[M].New York:Oxford University Press,1992.153-186.
    [40]Sun H,Huang Q M,Su J.Highly effective expression ofglutamine synthetase genes GS 1 and GS2 in transgenic rice plants increases nitrogen-deficiencytolerance.J Plant Physiol Mol Biol,2005,31(5):492 - 498.
    [41]罗兰芳,郑圣先,廖育林,等.控释氮肥对杂交水稻糙米蛋白质品质和氮代谢关键酶活性的影响[J].中国水稻科学,2007,21(4):403-410.
    [42]黄少白,章静娟,刘晓忠,等.紫外光B辐射增强对小白菜膜质过氧化作用的影响[J].华北农学报,1998,13(3):97-101.
    ]43]丁金玲,段承俐,文国松,等.氮素用量对K326生理生化特性的影响[J].云南农业大学学报,2005,20(2):204-208.
    [44]陈少裕.膜脂过氧化与植物逆境胁迫[J].植物学通报,1989,6(4):211-217.
    [45]焦德茂,李霞,黄雪清,不同高产水稻品种生育后期叶片光抑制、光氧化和早衰的关系[J].中国农业科学,2002,35(5):487-492.
    [46]Krause G H,Weis E Chlorophy Ⅱ fluorescence and photosynthesis:the basics[J].Plant Physiol,1991,42:313 - 349.
    [47]Schreiber U,Gademann R.Raloh P J,et al..Assessment of photosvnthetic performance of Prochloron in Lissoclinum patella in hospite by chlorophyll fluorescence measurements[J].Plant Cell and Physiology,1997,(38):945-951.
    [48]White A J,Critchley C.Rapid light curves:a new fluorescence method to assess the state of the photosynthetic apparatus[J].Photosynthesis Research,1999,(59):63-72.
    [49]Kühl M,Chen M,Ralph P J,et al.A niche for cyanobacteria containing chlorophyll d[J].Nature,2005,(433):820.
    [50]Schreiber U,Bilger W,Neubauer C.Chlorophyll fluorescence as a nonintrusive indicator for rapid assessment of in vivo photosynthesis[A].In:Schulze E-D,Caldwell M M(Eds.) Ecophysiology of Photosynthesis[C].Berlin:Springer-Verlag.1994,49-70.
    [5 l]Tang X R(唐湘如).Effect of N supply on yield and protein content and its mechanism in fodder hybrid rice.Hybrid Rice(杂交水稻),2000,15(2):34-37(in Chinese with English abstract)
    [52]段巍巍,赵红梅.郭程瑾.夏玉米光合特性对氮素用量的反应[J].作物学报,2007,33(6):949-954.
    [53]Yang Q(杨晴),Li YM(李雁鸣),Xiao K(肖凯),Du YH(杜艳华).Effect of different amount of nitrogen on flag leaf senescence and yield components of wheat[J].Agric Univ Hebei(河北农业大学学报),2002,25(4):20224(in Chinese with English abstract)
    [54]张旺锋,勾玲,王振林.氮肥对新疆高产棉花叶片叶绿素荧光动力学参数的影响[J].中国农业科学2003,36(8):893-898.
    [55]李伶俐,马宗斌谢德意,等.不同施氮水平对早熟棉花光合特性及产量的影响[J].中国棉花2005,11:14-161.
    [56]Wu C A,Meng Q W,Zou Q,et al.Comparative study on the photo oxidative response in different wheat cultivar leaves[J].Acta Agronomica Sinica,2003,29(3)339-344.
    [57]Bradbury M,Bakern R.A quantitative determination of photochemical and non-photochemical quenching during the slow phase of chlorophyll fluorescence induction curve of bean leaves[J]..Biochem Biophys Acta,1984,765:275-281.
    [58]许大全.光合作用效率[M].上海:上海科学技术出版社,2002.33.
    [59]Genty B E,Briantais M J,Baker N R.The relationship between thequantum yield of photosynthetic electron transport and quenching ofchlorophyll fluorescence.Biochemistry Biophysics Acta,1989,990:87- 92.
    [60]Lu Q T,Li W H,Jiang G M,Ge Q Y,Hao N B,Sun J Z,Guo R J.Studies on the characteristics of chlorophyll fluorescence of winterwheat flag leaves at different developing stages.Acta Botanica Sinica,2001,43(8):801-804.
    [61]Chen YZ,Li SS,Lin ZF.Effect oflight and antioxidants on fluorescence quenching ofchlomphy Ⅱ inmaize leaves under water stress.Acta Bot Sin,1993,35:38-44.
    [62]张绪成,上官周平.施氮对旱地不同抗旱性小麦叶片光合色素含量与荧光特性的影响[J].核农学报,2007,21(3):299-304.
    [63]Zhang Q D,Lu C M,et al.Effects of doubled CO2 on the fluorescenceinduction kinetics parameters of soybean leaves grown at different nitrogen nutrition levels[J].Plant Nutrition and Fertilizer Science,1997,3(1):24-29.
    [64]郭大财,冯伟,赵会杰,等.两个穗型冬小麦品种旗叶光合特性及氮素调控效应[J].作物学报,2004,30(2):115-121.
    [65]Shangguan Z P,Shao MA.Effect of nitrogen nutrition and water deficiton net photosynthetic rote and chlorophyll fluorescence in winter wheat[J].Plant Physio1,2000,56:46-51.
    [1]林扬鹏,蔡火车.水稻氮磷钾平衡施肥应用研究[J].福建热作科技,2007,27(3):6-8.
    [2]彭建伟,刘强,荣湘民,氮磷钾配比及氮用量对水稻光合特性及产量的影响[J].湖南农业大学学报(自然科学版),2004.30(2):123-127.
    [3]龙继锐,马国辉,周静,宋春芳.缓释尿素对超级杂交稻Y两优1号生氏发育及氮肥利用率的影响[J].杂交水稻,2007,22(6):48-51.
    [4]Tremkel M E.Improving fertilizer use efficiency controlled release and stabilized fertilizers in agriculture [M].Paris:International Fertilizer Industry Association(IFA),1997,99-104.
    [5]郑圣先,聂军,熊金英,等.控秆肥料提高氮素利用率的作用及对水稻效应的研究[J].植物营养与肥料学报,2001,7(1):11-16.
    [6]李方敏.艾天成.周升波.聂小菊,刘芳.缓释氮肥对水稻的增产效果及其氮素利用率[J].土壤通报,2004,5(3):311-315.
    [7]龙继锐,马国辉,宋春芳.不同肥料节氮栽培对超级杂交稻生长和产量及氮肥效率的影响[J].农业现代化 研究,2008,(1):54-58.
    [8]王兴仁,陈新平,张福锁 施肥模型在我国推荐施肥中的应用[J]植物营养与肥料学报,1998,4(1):67-74.
    [9]曾勇军,石庆华,李木英,等.施肥和密度对-季稻群体质量及产量的影响[J].江西农业大学学报,2003,25(3):325-330
    [10]李熙英,黄世臣,权成武.施肥量和密度对水稻产量影响的研究[J].吉林农业科学,2002,27(6):34-37.
    [11]王应军,王淑珍.水稻高产优质氮肥施用技术研究[J].河南农业科学,1989(1):3-5.
    [12]Raun W R,Johnson G V.Improving nitrogen use efficiency for cereal production[J].Agron,1991:357-363.
    [13]Lemaire G.Diagnosis of the nitrogen status in crop[M].Springer-Verlag,Berlin Heideberg.1977.
    [14]吴合洲,马均,王贺正,等.超级杂交稻的生长发育和产量形成特性研究[J].杂交水稻,2007,22(5):57-62.
    [15]王玉夫.水稻群体库源特征及影响因素研究[[D].博士学位论文,扬州大学,2002年.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700