用户名: 密码: 验证码:
山区水库氮污染行为与控制技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
田庄水库位于鲁中南山区鲁山山脉之间,是典型的山区水库,也是淄博沂源县潜在的大型饮用水源地,但由于受氮肥生产与氮肥使用的长期影响,水库氮素严重超标,大大影响了水体的使用功能。随着工农业生产的迅速发展及人口的快速增长,沂源县水资源的供需矛盾日益突出。因此,迫切需要开展田庄水库氮污染行为与控制技术研究,从而为水污染的预防与治理提供科学的依据。
     本文在区域自然环境概况调查基础上,通过河流水质、水量调查,淋滤试验、粉煤灰氮素含量测定,沉积物氮素释放试验、沉积物孔隙水分析等方法确定了田庄水库各主要污染源的氮素负荷;另外,通过沸石覆盖、砂覆盖及无覆盖情况下的对比试验,测定覆盖层-水界面氨氮浓度、上覆水混合浓度、孔隙水氨氮浓度,结合界面释放通量、覆盖层理论穿透时间计算等手段综合评价沸石覆盖对抑制沉积物氨氮释放的有效性;最后,通过建立平面二维模型,就多污染源影响下不同水文年水库氮素分布及沉积物局部覆盖、粉煤灰堆移除、面源控制等对改善水库水质的效果进行了预测。取得了一些新的认识和结论:
     ⑴田庄水库是一个常对流水库,硝氮与氨氮浓度高;受氨氮超标影响,田庄水库属于劣Ⅴ类水体。
     ⑵沉积物是上覆水氨氮的重要来源,释放通量在80-175mg/(m~2·d)之间;沉积物表层发生的反硝化作用是水库硝氮重要的去除途径,扩散通量约40mg/(m~2·d)。
     ⑶农业面源负荷(604.8t/a)占田庄水库硝氮总负荷的96.9%,是最大的硝氮来源;内源负荷(128.8t/a)占氨氮总负荷的76.0%,是氨氮的最大来源。
     ⑷各水文年水库氮素模拟结果表明,氨氮只有在丰水年丰水期能够达到《地表水环境质量标准》III类标准要求,枯水年枯水期超标最严重,超标倍数为1.00-1.67倍;同一水文年枯水期的氨氮浓度比丰水期高1.30-1.50mg/L;田庄水库中硝氮浓度在5.00-8.00mg/L之间,不同水文年的同期浓度相差不大。
     ⑸库岸粉煤灰的堆放对其周边水域硝氮浓度影响较大,粉煤灰移除前后,浓度相差0.20-0.50mg/L,粉煤灰应从水库岸边清除;治理面源污染是降低水库硝氮浓度的关键,面源负荷减少30%后,硝氮的模拟浓度比控制前降低了20%左右。
     ⑹同一种覆盖材料的穿透时间与覆盖层厚度平方成正比,沸石覆盖层的穿透时间明显长于砂覆盖层;同一种覆盖材料的稳态释放通量与覆盖层厚度成反比;15cm厚沸石+15cm厚砂构成的复合覆盖层对沉积物中氨氮释放的抑制效果将优于50cm砂覆盖层。
     ⑺取水口区沉积物沸石覆盖对改善出水水质的效果显著,各水文年丰水期氨氮浓度都满足III类标准;沉积物氨氮释放量需要减少80%,水库中氨氮才能全面达标。
The Tianzhuang Reservoir is a typical mountainous reservoir, which is situated in the mountain area of central south of Shandong province. It is also the potential water source for Yiyuan County. But the nitrogen in the reservoir water has exceeded the environmental quality standards for surface water under the influences of production and use of nitrogen fertilizer. With the development of agriculture and industry and population growth, the contradiction between water demand and water supply are being aggravating. Therefore, it is urgent to study the behaviors and controls of nitrogen pollution in the Tianzhuang Reservoir in order to provide the foundation for the prevention and treatment of the water pollution.
     Based on the natural environment investigation in the area of the Tianzhuang Reservoir, the nitrogen loadings were determined through the monitor of water quality and water quantity of the inflows, the experiments of leaching and nitrogen release from the sediments, and the nitrogen analysis in the porewaters in surface sediment. In addition, the feasibility of sediments capping by natural zeolite to prevent the ammonium release were assessed via the comparison experiments; In these experiments the ammonium in water near the capping-water interface and in overlying water were monitored; The interfacial flux of ammonium and the time of ammonium breakthrough the capping layer were also calculated. At last, a plane 2D flow-water quality was developed to simulate the spatial-temporal distribution of nitrogen in the Tianzhuang Reservoir. The treatment effects of local sediment capping by zeolite, the fly ash move and agricultural diffuse control were also predicted. The major conclusions can be summarized as follows.
     ⑴The Tianzhuang Reservoir is a polymictic revervoir. The concentrations of nitrate nitrogen and ammonium nitrogen are higher than the normal levels of the Chinese reservoirs. The water quality of the Tianzhuang Reservoir is inferior to class Ⅴ(GB3838-2002) under the influence of exceeding standard of ammonium nitrogen.
     ⑵The release flux of ammonium nitrogen from sediments ranges from 80 to 175 mg/ (m2·d), and the sediments are the important source for ammonium nitrogen of the reservoir. The influx of nitrate nitrogen is about 40mg/(m2·d), and the denitrification in surface sediments is the most thorough pathway for nitrogen removal.
     ⑶Agriculture diffuse is the largest source of nitrate nitrogen, which (604.8t/a)accounts for 96.9% of the total loadings. The sediments are the largest source (128.8t/a) of ammonium nitrogen, which occupies 76.0% of the total loadings.
     ⑷The results of water quality simulation indicate that the concentrations of nitrate nitrogen range from 5.00 to 8.00 mg/L, and the concentrations in the same period of different hydrological years are close. Ammonium can be up to the standard only in wet period of wet years. Ammonium in dry period of dry years is below the standard seriously, and its exceeding criterion multiple is in the range of 1.00-1.67. The ammonium concentrations in dry period are higher 1.30-1.50 mg/L than values in the wet period of the same hydrological year.
     ⑸The leachates from fly ash at the north bank of the Tianzhuang Reservoir influence the quality of ambient water. The concentration difference of nitrate nitrogen in the ambient water can be up to 0.20-0.50 mg/L between before and after the fly ash removal. The control of agricultural diffuse is the key factor to improve the water quality with respect to nitrate. The concentration of nitrate nitrogen will decrease about 20% if the loadings of agricultural diffuse decrease 30%.
     ⑹The breakthrough time of ammonium through the same capping material is positive to the square of the layer thickness. The breakthrough time through zeolite- capping is longer than the time through sandy layer remarkably. The steady release flux of ammonium from the sediments is negative to the thickness of capping layer. The complex capping of 15 cm zeolite layer and 15 cm sand layer is more effective than the 50 cm sand layer.
     ⑺The water quality with regard to ammonium will improve obviously after the sediments in intake area are capped by zeolite, and the ammonium nitrogen can be up to the standard in wet periods of all hydrological years. Ammonium nitrogen of the water in every part of the reservoir may be up to the standard when the internal loadings are decreased 80%.
引文
[1] Vitousek P M, Aber J D, Howarth R W et al. Human alteration of the global nitrogen cycle: Sources and consequences. Ecological Applications, 1997, 7(3): 737-750.
    [2] Galloway J N, Dentener F J, Capone D G et al. Nitrogen cycles: Past, present, and future. Biogeochemistry, 2004, 70: 153-226.
    [3] Magee P N. Nitrogen as a potential health hazard. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 1982, 296: 543-550.
    [4] Fields S. Global nitrogen: Cycling out of control. Environmental Health Perspectives, 2004, 112: A556-A563.
    [5] Heathwaite A L, Johnes P J, Peters N E. Trends in nutrients. Hydrological Processes, 1996, 10: 263-293.
    [6] Boyd S R. Nitrogen in future biosphere studies. Chemical Geology, 2001, 76: 1-30.
    [7] Stewart W D P, Preston F R S T, Peterson H G et al. Nitrogen cycling in eutrophic freshwaters. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 1982, 296: 491-509.
    [8] Taylor K G, Boyd N A, Boult S. Sediment, porewaters and diagenesis in an urban water body, Salford, UK: impacts of remediation. Hydrological Processes, 2003, 17: 2049-2061.
    [9] Hem J D. Study and Interpretation of the Chemical Characteristics of Natural Water. 3rd edn. USGS, 1985.
    [10] Pierzynski g M, Sims J T, Vance G F. Soils and Environmental Quality. CRC Press, 1994.
    [11] Dodds W K, evans-White M A, Gerlanc N M et al. Quantification of the nitrogen cycle in a prairie Stream. Ecosystems, 2000, 3: 574-589.
    [12] Hamilton S K, Tank J L, Raikow D F et al. Nitrogen uptake and transformation in a Midwestern U.S. stream: A stable isotope enrichment study. Biogeochemsitry, 2001, 54: 297-340.
    [13] Bernot M J, Tank J L, Royer T V et al. Nutrient uptake in streams draining agricultural catchments of the midwestern United States. Freshwater Biology, 2006, 51: 499-509.
    [14] Seitzinger S P. Denitrification in freshwater and coastal marine ecosystems: Ecological and geochemical significance. Limnology and Oceanography, 1988, 33(4, part 2): 702-724.
    [15] Gardner W S, Yang L Y, Cotner J B et al, Nitrogen dynamics in sandy freshwater sediments (Saginaw Bay, Lake Huron). Journal of Great Lakes Research, 2001, 27(1): 84-97.
    [16] Wetzel R G, Likens G E. Limnological Analyses. 2nd, New York: Springer-Verlag Inc., 1991.
    [17]张学青,杨志峰,夏星辉.黄河水体硝化过程的模拟实验研究.环境化学, 2005, 24(3): 245-249.
    [18] Saunders D L, Kalff J. Nitrogen retention in wetlands, lakes and rivers. Hydrobiologia, 2001, 443: 205-212.
    [19]李恭臣,夏星辉.黄河无机氮形态组成影响因素的灰色关联度分析.北京师范大学学报(自然科学版), 2005, 41(6): 632-635.
    [20]史红星,刘会娟,曲久辉,等.无机矿质颗粒县浮物对富营养化水体氨氮的吸附特性.环境科学, 2005, 26(5): 72-76.
    [21] Bhovichitra M, Swift E. Light and dark uptake of nitrate and ammonium by large oceanic dinoflagellates: Pyrocystis noctiluca, pyrocystis fusiformis, and dissodinium lunula. Limnology and Oceanography, 1977, 22(1): 73-83.
    [22] Fang Y Y, Babourina O, Rengel Z et al. Ammonium and nitrate uptake by floating plant Landoltia Punctata. Annals of Botany, 2007, 99(2): 365-370.
    [23] O’brien J M, Dodds W K. Ammonium uptake and mineralization in prairie streams: Chamber incubation and short-term nutrient addition experiments. Freshwater Biology, 2008, 53: 102-112.
    [24] Pauer J J, Auer M T. Nitrification in the water column and sediment of a hypereutrophic lake and adjoining river system. Water Research, 2000, 34(4): 1247-1254.
    [25]曾巾,杨柳燕,肖琳,等.湖泊氮素生物地球化学循环及微生物的作用.湖泊科学, 2007, 19(4): 382-389.
    [26] Cooper L H N, D.Sc F R I C. Particulate ammonia in sea water. Journal of the Marine Biological Association of the United Kingdom, 1948, 27(2): 322-325.
    [27] Hutchinson G E. A Treatise on Limnology, Volume 1 Geography, Physics, and Chemistry, New York: John Wiley and Sons, Inc., 1957.
    [28] Triska F J, Jackman A P, Duff J H et al. Ammonium sorption to channel and riparian sediments: A transient storage pool for dissolved inorganic nitrogen. Biogeochemistry, 1994, 26: 67-83.
    [29] Peterson B J, Wollheim W M, Mulholland P J et al. Control of nitrogen export from watersheds by headwater streams. Science, 2001, 292: 86-90.
    [30] Jossette G, Leporcq b, Sanchez N et al. Biogeochemical mass-balances (C, N, P, Si) in three large reservoirs of the Seine Basin (France). Biogeochemistry, 1999, 47: 119-146.
    [31] Christofi N, Preston T, Stewart W D P. Endogenous nitrate production in an experimental enclosrue during summer stratification, Water Research, 1981, 15: 343-349.
    [32] H?hener P, G?chter R. Nitrogen cycling across the sediment-water interface in an eutrophic, artificially oxygenated lake. Aquatic Sciences, 1994, 56(2): 115-132.
    [33] Wetzel R G. Limnology. 2nd ed. Saunders, Philidelphia, 1983.
    [34] Dodds W K, Priscu J C, Ellis B K. Seasonal uptake and regeneration of inorganic nitrogen and phosphorus in a large oligotrophic lake: Size-fractionation and antibiotic treatment. Journal of Plankton Research, 1991, 13(6): 1339-1358.
    [35]金相灿,刘树坤,章宗涉,等.中国湖泊环境(第一册).北京:海洋出版社, 1995.
    [36] Mengis M, G?chter R, Wehrli B. Nitrogen elimination in two deep eutrophic lakes. Limnology and Oceanography, 1997, 42(7): 1530-1543.
    [37] Santschi P, H?hener P, Benoit G et al. Chemical processes at the sediment-water interface. Marine Chemistry, 1990, 30:269-315.
    [38]金相灿,徐南妮,张雨田,等.沉积物污染化学.北京:中国环境科学出版社, 1992.
    [39]戴树桂,张明顺,庄源益.底泥中氮的主要迁移转化过程及其转化模型的研究.环境科学学报, 1990, 10(1): 1-9.
    [40] Golterman H L. The Chemistry of Phosphate and Nitrogen Compounds in Sediments. Dordrecht: Kluwer Academic Publishers, 2004.
    [41] Brezonik P L, Lee G F. Denitrification as a nitrogen sink in Lake Mendota, Wis. Environmental Science and Technology, 1968, 2: 120-125.
    [42] Knowles R, D. Denitrification. Microbiological Reviews, 1982, 46: 43-70.
    [43] Golterman H L. Denitrification and a numerical modeling approach for shallow waters. Hydrobiologia. 2000, 431: 93-104.
    [44] Van Kessel J F. Factors affecting the denitrificatin fate in two water-sediment systems. Water Research, 1977, 11: 259-267.
    [45] Kana T M, Sullivan M B, Cornwell J C et al. Denitrification in estuarine sediments determined by membrane inlet mass spectrometry. Limnology and Oceanography, 1998, 43: 334-339.
    [46] Christensen P B, Nielsen L P, S?rensen J et al. Denitrification in nitrate-rich streams: Diurnal and seasonal variation related to benthic oxygen metabolism. Limnology and Oceanography, 1990, 35(3): 640-651.
    [47] Graetz D A, Keeney D R, Aspiras R B. Eh status of lake sediment-water systems in relation to nitrogen transformations. Limnology and oceanography, 1973, 18(6): 908-917.
    [48]莱尔曼.湖泊的化学,地质学和物理学.王苏民等译.北京:地质出版社, 1989.
    [49] Blackburn, T H, Henriksen K. Nitrogen cycling in different types of sediments from Danish waters. Limnology and Oceanography, 1983, 28(3): 477-493.
    [50] Reddy K R, Jessup R E, Rao P S C. Nitrogen dynamics in a eutrophic lake sediment. Hydrobiologia, 1988, 159: 177-188.
    [51]王雨春.贵州红枫湖、百花湖沉积物-水界面营养元素(磷、氮、碳)的生物地球化学作用.中国科学院地球化学研究所博士学位论文, 2001.
    [52]范成新,王春霞.长江中下游湖泊环境地球化学与富营养化.北京:科学出版社,2007.
    [53] Smolders A J P, Lamers L P M Lucassen E C H E T et al. Internal eutrophication: How it works and what to do about it-a review. Chemistry and Ecology, 2006, 22(2): 93-111.
    [54] Anneli G and Blomqvist S. Phosphate exchange across the sediment-water interface when shifting from anoxic to oxic conditions-an experimental comparion of freshwater and brackish-marine systems. Biogeochemistry, 1997, 37: 203-226.
    [55]范成新,相崎守弘.好氧和厌氧条件对霞浦湖沉积物-水界面氮磷交换的影响.湖泊科学, 1997, 9(4): 337-342.
    [56]秦伯强,朱广伟,张路,等.大型浅水湖泊沉积物内源营养盐释放模式及其估算方法-以太湖为例.中国科学D辑, 2005, 35(增刊Ⅱ): 33-44.
    [57] Smith J T, Comans R N J. Modelling the diffusive transport and remobilization of 137Cs in sediments: the effects of sorption kinetics and reversibility. Geochimica et Cosmochimica Acta, 1996, 60(6): 995-1004.
    [58]范成新,张路,杨龙元,等.湖泊沉积物氮磷内源负荷模拟.海洋与湖沼, 2002, 33(4): 370-378.
    [59] Berner R A. Early diagenesis: A theoretical approach. New Jersey: Princeton university Press, 1980.
    [60] Ullman W J, Aller R C. Diffusion coefficients in nearshore marine sediments. Limnology and Oceanography, 1982, 27(3): 552-556.
    [61] Li Y-H, Gregory S. Diffusion of ions in sea water and in deep-sea sediments. Geochimica et Cosmochimica Acta, 1974, 38: 703-714.
    [62]高增文,郑西来,徐芹选,等.应用电阻率法确定浅水砂质沉积物中的扩散系数.地球物理学进展, 2008.
    [63] Sweerts J-P R A, Kelly C A, Rudd J W M et al. Similarity of whole-sediment molecular diffusion coefficients in freshwater sediments of low and high porosity. Limnology and Oceanography, 1991, 36(2): 335-342.
    [64]叶常明.水环境数学模型的研究进展.环境科学进展, 1993, 1(1): 74-81.
    [65] J?rgensen S E. State-of-the-art management models for lakes and reservoirs. Lakes & Reservoirs: Research and Management, 1995, 1: 79-87.
    [66] Xu F L, Tao S, Dawson R W et al. History, development and characteristics of lake ecological models. Journal of Environmental Sciences, 2002, 14(2): 255-263.
    [67]梁婕,曾光明,郭生练,等.湖泊富营养化模型的研究进展.环境污染治理技术与设备, 2006, 7(6): 24-30.
    [68]龚春生.城市小型浅水湖泊内源污染及环保清淤深度研究.河海大学博士学位论文, 2007.
    [69] National Research Council. Models in Environmental Regulatory Decision Making. Washington D C, the National Academies Press, 2007.
    [70] Yearsley J R. State estimation and hypothesis testing: A framework for the assessment of model complexity and data worth in environmental systems. Technical Report No. 116, University Washington, Seattle, WA, 1989.
    [71]周怀东,彭文启.水污染与水环境修复.北京:化学工业出版社, 2005.
    [72]贺缠生,傅伯杰,陈利顶.非点源污染的管理及控制.环境科学, 1998, 19(5): 87-91.
    [73]金相灿.湖泊富营养化控制和管理技术.北京:化工工业出版社, 2001.
    [74] Boers P C M. Nutrient emissions from agriculture in the Netherlands: Causes and remedies. Water Science and Technology, 1996, 33(1): 183-190.
    [75] Xing G X, Zhu Z L. Regional nitrogen budgets for China and its major watersheds. Biogeochemistry, 2002, 57/58: 405-427.
    [76] Bao Q S, Mao X Q, Wang H D. Progress in the research in aquatic environmental nonpoint source pollution in China. Journal of Environmental Sciences, 1997, 9(3): 329-336.
    [77]何萍,王家骥.非点源污染控制与管理研究的现状、困难与挑战.农业环境保护, 1999, 18(5): 234-237.
    [78] Petzoldt T, Uhlmann D. Nitrogen emissions into freshwater ecosystems: is there a need for nitrate elimination in all wastewater treatment Plants? Acta Hydrochimica et Hydrobiologica, 2006, 34: 305-324.
    [79]汤鸿霄.环境科学中的化学问题-环境水质学中的几个化学前沿问题.化学进展, 2000, 12(4): 415-422.
    [80] Palermo M R. A state of the art overview of contaminated sediment remediation in the United States. Proceedings of the International Conference on Redediation of Contaminated Sediments, 10-12 October 2001, Venice, Italy.
    [81] Klapper H. Technologies for lake restoration. Journal of Limnology, 2003, 62(Suppl. 1): 73-90.
    [82] Alshawabkeh A N, Rahbar N, Sheahan T. A model for contaminant mass flux in capped sediment under consolidation. Journal of Contaminant Hydrology, 2005, 78: 147-165.
    [83] Mulligan C N, Yong R N. Overview of natural attenuation of sediments. Journal of ASTM International, 2006, 3(7), ID JAI13338.
    [84] Hyder Consulting Ltd. Literature review on the handling and treatment methods for contaminated sediment. 2006.
    [85]林建伟.地表水体底泥氮磷污染原位控制技术及相关机理研究.同济大学博士论文,2006.
    [86] Sumeri A, Romberg P. Contaminated bottom sediment capping demonstration in Elliott Bay. Proceedings of conference Puget Sound Research’91, Seattle, WA, 1991.
    [87] Reible D, Hayes D, Lue-hing C et al. Comparison of the long-term risks of removal and in situ management of contaminated sediments in the Fox River. Soil and Sediment Contamination, 2003, 12(3): 325-344.
    [88] Oberholster P J, Botha A-M, Colete T E. Ecological implications of artificial mixing and bottom-sediment removal for a shallow urban lake, Lake Sheldon, Colorado. Lakes & Reservoirs: Research and Management, 2007, 12: 73-86.
    [89] Wang X Q, Thibodeaux L J, Valsaraj K T et al. Efficiency of capping contaminated bed sediments in situ. 1. Laboratory-scale experiments on diffusion-adsorption in the capping layer. Environmental Science and Technology, 1991, 25(9): 1578-1584.
    [90] Azcue J M, Zeman A J, Mudroch A et al. Assessment of sediment and porewater after one year of subaqueous capping of contaminated sediments in Hamilton Harbour, Canada. Water Science and Technology, 1998, 37(6-7): 323-329.
    [91] F?rstner U, Apitz S E. Sediment remediation: U.S. Focus on capping and monitored natural recovery. Fourth International Battelle Conference on Remediation of Contaminated Sediments.Journal of Soils and Sediments, 2007, 7(6): 351-358.
    [92] Brannon J M, Hoeppel R E, Sturgis T C et al. Effectiveness of capping in isolating contaminated dredged material from biota and the overlying water, Technical Report, D-85-10, 1985. US Army Engineer Waterways Experiment Station: Vicksburg, MS.
    [93] Thoma G J, Reible D D, Valsaraj K T et al. Efficiency of capping contaminated sediments in situ. 2. Mathematics of diffusion-adsorption in the capping layer. Environmental Science and Technology, 1993, 27(12): 2412-2419.
    [94] Palermo M, Maynord S, Miller J et al. Guidance for in-situ subaqueous capping of contaminated sediments. 1998, EPA 905-B96-004, Great Lakes National Program Office, Chicago, IL.
    [95] Hull J H, Jersak J M, Kasper C A. In situ capping of contaminated sediments: Comparing the relative effectiveness of sand versus clay mineral-based sediment caps. Proceedings of the 1999 Conference on Hazardous Waste Research, 1999, 286-311.
    [96] Liu C H, Jay J A, Kia R et al. Capping efficiency for metal-contaminated marine sediment under conditions of submarine groundwater discharge. Environmental Science Technology, 2001a, 35: 2334-2340.
    [97] Liu C H, Jay J A, Ford T E. Evaluation of environmental effects on metal transport from capped contaminated sediment under conditions of submarine groundwater discharge. Environmental Science Technology, 2001b, 35: 4549-4555.
    [98] Eek E, God?y O, Aagaard P et al. Experimental determination of efficiency of capping materials during consolidation of metal-contaminated dredged material. Chemosphere, 2007, 69: 719-728.
    [99] Jacobs P H, F?rstner U. Concept of subaqueous capping of contaminated sediments with active barrier systems (ABS) using natural and modified zeolites. Water Research, 1999, 33(9): 2083-2087.
    [100] Olsta J T, Hornaday C J, Darlington J W. Reactive material options for in situ capping. Journal of ASTM international, 2006, DOI: 10.1520/STP37693S.
    [101] Simpson S L, Pryor I D, Mewburn B R et al. Considerations for capping meta-contaminated in dynamic estuarine environments. Environmental Science and Technology, 2002, 36(17): 3772-3778.
    [102] Jacobs P H, Waite T D. The role of aqueous iron(Ⅱ) and manganese(Ⅱ) in sub-aqueous active barrier systems containing natural clinoptilolite. Chemosphere, 2004, 54: 313-324.
    [103] Murphy P, Marquette A, Reible D et al. Predicting the performance of activated carbon-, coke-, and soil-amended thin layer sediment caps. Journal of Environmental Engineering, 2006, 132(7): 787-794.
    [104]林建伟,朱志良,赵建夫,等. HCl改性沸石和方解石复合覆盖层控制底泥氮磷释放的效果及机理研究.环境科学,2007,28(3):551-555.
    [105] Reible D, Lampert D, Constant D et al. Active capping demonstration in the Anacostia River,Washington, D.C.. Remediation Journal, 2006: 39-53.
    [106] Reible D. In situ sediment remediation through capping: status and research needs. www.hsrc-ssw.org/pdf/cap-bkgd.pdf.
    [107] Murakami K, Nobusawa Y, Kameyama Y. The lasting effect of sand capping techniques on nutrient release reduction fro contaminated sediments in Tokyo Bay. Journal of ASTM International, 2006, 3(7).
    [108] Brannon J M, Hoeppel R E, Gunnison D. Capping contaminated dredged material. Marine Pollution Bulletin, 1987, 18(4): 175-179.
    [109] Brannon J M, Poindexter-Rollings M E. Consolidation and contaminant migration in a capped dredged material deposit. The Science of the Total Environment, 1990, 91: 115-126.
    [110]温东辉.天然沸石吸附-生物再生技术及其在滇池流域暴雨径流污染控制中的试验与机理研究.北京:中国环境科学出版社,2003.
    [111]佘振宝,宋乃忠.沸石加工与应用.北京:化学工业出版社,2005.
    [112] Saltal? K, Sar? A, Ayd?n M. Removal of ammonium ion from aqueous solution by natural Turkish (Y?ld?zeli) Zeolite for environmental quality. Journal of Hazardous Materials, 2007, 141: 258-263.
    [113]吴启鲁,张涛,李河海,等.田庄水库水环境初步研究.山东师大学报(自然科学版), 1995, 10(3): 308-313.
    [114]乐林生,吴今明,高乃云,等.太湖流域安全饮用水保障技术.北京:化学工业出版社, 2007.
    [115] J?rgensen S E. The application of models to find the relevance of residence time in lake and reservoir management. Journal of Limnology, 2003, 62(Suppl. 1): 16-20.
    [116]叶守泽,夏军,郭生练,等.水库水环境模拟预测与评价.北京:中国水利水电出版社, 1997.
    [117]方子云,邹家祥,郑连生.《中国水利百科全书-环境水利分册》.北京:中国水利水电出版社, 2004.
    [118]易雯.《地表水环境质量标准》中氮、磷指标体系及运用中有关问题的探讨.环境保护, 2004, 8: 10-11.
    [119]汪志国,齐文启.我国现行水环境标准中存在问题浅析.中国环境监测, 2006, 22(6): 25-28.
    [120]钱君龙,王苏民,薛滨,等.湖泊沉积研究中一种定量估算陆源有机碳的方法.科学通报, 1997, 42(15): 1655-1658.
    [121]吴莹,张经,张再峰,等.长江悬浮颗粒物中稳定碳、氮同位素的季节分布.海洋与湖沼, 2002, 33(5): 546-552.
    [122]王苏民,余源盛,吴瑞金,等.岱海-湖泊环境与气候变化.合肥:中国科技大学出版社, 1990.
    [123]高增文.沐官岛水库蓄水初期水质演化过程研究.中国海洋大学硕士学位论文, 2005.
    [124] Bear J. Dynamics of Fluids in Porous Media. American Elsevier: New York, 1972.
    [125] Choy B, Reible D D. Diffusion Models of Environmental Transport. Boca Raton, London, New York, Washington DC: CRC Press, 2000.
    [126] Garban B, Ollivon D, Poulin M et al. Exchanges at the sediment-water interface in the River Seine, downstream from Paris. Water Research, 1995, 29(2): 473-481.
    [127] Crank J. The Mathematics of Diffusion. Second Edition, Oxford: Calrendon Press, 1975.
    [128] Semmens M, Klieve J, Schnobrich D et al. Modeling ammonium exchange and regeneration on clinoptilotite. Water Research, 1981, 15: 655-666.
    [129]楼莉萍,王光火,胡顺良.沸石吸附铵离子的若干性质的研究.浙江大学学报(农业与生命科学版), 2001, 27(1): 28-32.
    [130] Lerman A. Geochemical Processes: Water and Sediment Environments. John Wiley & Sons, Inc., 1979.
    [131] Archer D, Emerson S, Smith C R. Direct measurement of the diffusive sublayer at the deep sea floor using oxygen microelectrodes. Nature, 1989, 340: 623-626.
    [132] Dade W B, Hogg A J, Boudreau B P. Physics of flow above the sediment-water interface. In: The Benthic Boundary Layer. New York: Oxford University Press, 2001, 104-126.
    [133] Gao Z W, Zheng X L, Xu Q U. Resistance of the diffusive boundary layer to salt release from saline sediments to freshwater. Acta Oceanologica Sinica, 2008.
    [134] Kelly-Gerreyn B A, Hydes D J, Waniek J J. Control of the diffusive boundary layer on benthic fluxes: a model study. Marine Ecology Progress Series, 2005, 292: 61-74.
    [135] Sumeri A, Fredette T J, Kullberg P G et al. Sediment chemistry profiles of capped dredged material deposits taken 3-11 years after capping. Dredging Research Technical Note DRP-5-09, U.S. Army Engineer Waterways Experiment Station, Vicksburg, MS, 1994.
    [136] Summary of contaminated sediment capping projects. www.sediments.org/capsummary.pdf

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700