用户名: 密码: 验证码:
应用可拆迁式猪舍生态养猪的种养结合关键参数的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于我国目前农牧严重脱节,规模养殖产生的畜禽粪尿没能作为有机肥合理利用,畜禽粪尿污染现象严重;规模种植中因过多施用化肥,导致土地板结,肥力下降,而没有用足够的有机肥以改良土壤。有机肥资源和土地资源的合理利用,成为规模养殖与规模种植所面临的最大问题。同时,现有固定猪舍模式的养殖还存在占用耕地、疫病严重等问题。为了从根源上解决以上问题,本课题组研制了适于种养结合生态养殖的可便携装拆迁移式环保型猪舍(可拆迁式猪舍)。本课题通过饲养试验和种植黑麦草土地猪粪尿承载力试验,研究得出可拆迁式猪舍生态养猪的种养结合关键参数,为可拆迁式猪舍在实际中的应用提供理论依据。
     饲养试验主要研究了可拆迁式猪舍对温湿度的影响、对肥育猪生长性能和消化率的影响。选取体重约为30 kg的杜大长三元杂交生长肥育猪216头,按完全区组设计分为2个组,分别为可拆迁式猪舍组和通用的固定猪舍组,每组3个重复,每个重复36头。公母各半,公猪在断奶前去势。饲养期从保育期结束后体重约30 kg进栏到体重达100 kg左右出栏。两组饲养密度均为1.1头/m2,饲料来源及营养水平相同,自由采食。
     研究结果表明:可拆迁式猪舍内平均温度为20.33℃,平均日温差为6.25℃,平均相对湿度为69.33;固定猪舍内分别为16.86℃、6.34℃和65.29;舍外分别为15.15℃、9.94℃和64.90。其中平均温度三者间差异极显著。相对湿度均在肥育猪湿度适宜范围之内。在初始重均为30 kg情况下,可拆迁式猪舍组饲养92天的肥育猪平均末重比固定猪舍组饲养了104天的高出5.06%(P<0.05);平均日增重和平均日采食量分别提高17.28%(P<0.01)和12.13%(P<0.01);料重比降低7.00%(P<0.05)。消化率两组之间差异不显著(P>0.05)。
     猪粪排泄量和尿污排泄量测定每10 d为1个周期,各饲养单元所有周期总量之和即为可拆迁式猪舍各单元1个饲养期内的总粪排泄量和尿污排泄量。可拆迁式猪舍平均每个饲养单元鲜粪排泄量为4045.88 kg,堆肥后重为2913.03 kg;鲜尿污量为13075.45 kg,最终施用量为12385.07kg。可拆迁式猪舍饲养肥育猪从30.13kg生长至104.84 kg平均每千克增重产生鲜粪重为1.58 kg,堆肥重为1.14 kg,尿污重为5.11 kg,尿污施用量为4.84kg。
     种植黑麦草土地猪粪承载力试验主要研究了黑麦草种植所需的最适猪粪尿施入量,以及可拆迁式猪舍肥育猪所产猪粪尿污完全施入黑麦草种植田的土地匹配面积。供试土地设7个处理组,分别施入猪粪量为0、3、3.75、4.5、5.25、6 kg/m2,化肥组施入硫酸钾型含硝态氮肥0.058 kg/m2,粪施入时按1:4.2的比例与尿污混合。每个处理组3个重复,每个重复2.4 m2。黑麦草播种量为1.7g/m2,共刈割3次,第1次收割后以后每隔一月收割一次,每组施用的肥料量按2/3作底肥,余下1/3在每茬割草后作追肥使用。每次收割后采样,测定各组土壤肥力指标,黑麦草生产性状和营养成分含量。
     试验结果表明,每平方米施入4.5kg猪粪堆肥和18.9 kg尿污为最适施肥量,每亩施用量为3001.5 kg猪粪和12606.3 kg尿污,黑麦草总鲜重可达11.78 kg/m2,每亩产量7857.26 kg;总蛋白含量可达0.32 kg/m2,每亩总蛋白重213.44 kg。根据每个单元可拆迁式猪舍所产生的平均猪粪堆肥量和尿污量,施入黑麦草种植田的土地匹配面积为647.34 m2,约合0.97亩土地,每头猪的匹配土地面积为17.98 m2。
     本试验的研究结果表明,可拆迁式猪舍饲养生长肥育猪的生产性能和温湿度环境优于通用的固定猪舍;可拆迁式猪舍生长肥育猪所产猪粪尿污混合施入黑麦草种植田的适宜量为猪粪堆肥4.5 kg/m2,尿污18.9 kg/m2;每个单元可拆迁式猪舍的黑麦草种植土地匹配面积为647.34 m2(0.97亩),每头猪的匹配土地面积为17.98m2;每个单元可拆迁式猪舍饲养生长肥育猪的经济效益比固定猪舍提高2810.05元,可匹配土地面积种植黑麦草的经济效益为1413.20元。
Because of the serious gap between agriculture and animal husbandry presently, swine manure wastewater from the scale breeding can not used rationally as organic fertilizer, which causes serious pollution problems. And excessive use of fertilizers in scale planting results in soil hardening and fertility declining, while there is not enough organic fertilizer used to improve soil fertility. Rational utilization of Organic fertilizer resources and land resources has become the biggest problem faced by the scale breeding and planting. At the same time, the problem of occupying cultivated land and serious disease and so on still exist in general fixed-pigsty model. In order to resolve the above problems from their root, the studying team has developed the migration portable and environment-friendly pigsty (removable pig house) which is suitable for crop-animal combined production. Our studying team has got the key parameters of crop-animal combined production by applying the removable pig house through the feeding trial and the bearing capacity tests of the swine manure wastewater in the land planted with the ryegrass, and these key parameters could provide a theoretical basis for the application of the removable pig house in practice.
     The feeding trial was to study the effects of removable pig house on temperature, humidity, and the growth of fattening pigs on performance and digestibility.216 growing-finishing crossbred(Duroc X Landrace X Yorkshire) pigs with the weight of about 30 kg were Selected and divided into two groups according to completely block design respectively, the removable pig house group and general fixed pighouse group. There were three repetition and 36 pigs in each repetition with equal male and female, and the male pigs were emasculated before delactation. The pigs were feed from they were about 30 kg after the conservation stage ended to about 100 kg. The feeding density of the two groups were kept for 1.1/m2 and the feed source and nutrition level were the same, and the pigs feed freely.
     The results shows that, the average temperature of the removable pig house was 20.33℃, the mean daily temperature was 6.25℃, and the average relative humidity of 69.33; Data of the fixed pig house was 16.86℃,6.34℃and 65.29 respectively; the outdoor date was 15.15℃,9.94℃and 64.90. Among these data, the difference of average temperature was extremely significant. Relative humidity are suitable for finishing pigs within the scope of humidity. The average final weight of the fattening pigs reared for 92 days in the removable pig house was higher than pigs kept in fixed pig house for 104 days for 5.06%(P< 0.05) in the case that the average initial weight of the pigs were 30 kg; the average daily gain and average daily feed intake were higher than the fixed-pigsty group for 17.28% (P<0.01) and 12.13% (P<0.01); The feed to gain was lower for 7.00% (P<0.05). Digestibility between the two groups was not significantly different(P>0.05).
     Determination of pig manure and urine wastewater excretion was arranged into a cycle of every 10 days. Summation of weight of each unit in a cycle was the total fecal excretion and urine wastewater excretion pollution in feeding period of each unit of removable pig house. The weight of fresh pig manure excretion in each unit of the removable pig house was 4045.88 kg, and it was changed to 2913.03 kg after compost; The weight of fresh urine was 13075.45 kg, and it was changed to 12385.07 kg after the ultimate application. The amount of pig manure, composting products, urine wastewater and the actual urine waste water at last for average weight gain of 1 kg of finishing pigs in removable pig house from their 30.13 kg to 104.84 kg was respectively 1.58 kg,1.14 kg,5.11 kg,4.84 kg.
     The bearing capacity tests of the pig waste in the land planted with the ryegrass was carried out mainly for the optimum amount of swine waste applied for planting the ryegrass,as well as the suited fields of land planted ryegrass to match entirely pig waste pollution applied to the ryegrass land from the removable pig house. There were seven treatment groups in test land, and they were fertilized by the pig manure with 0,3,3.75, 4.5,5.25,6 kg/m2 respectively containing potassium nitrate-based fertilizer 0.058 kg/m2 equally, and the pig manure was mixed with urine wastewater to the ratio of 1:4.2, and there were three treatment groups for each repeat, and it was 2.4m2 for each repeat.The ryegrass was reaped for 3 times totally. After the first harvest, it was reaped every other month.2/3 of the number of the pig waste was used as the base fertilizer, and the remaining 1/3 was used as additional fertilizer after reaped. Samples of the soil was collected after reaped every time, and indicators of the soil fertility, production traits and nutrient content of the ryegrass in each group were determined.
     The result of the bearing capacity test of the pig manure of the land planted the ryegrass showed that the optimum weight of the fertilizer applied per square was 4.5kg, and that was 4.5 kg pig manure and 18.9 kg urine wastewater could be contained for 1 square meter of land planted ryegrass. That is to say,3001.5 kg pig manure and 18.9 kg urine wastewater could be contained for 1 mu of land planted ryegrass. The products of ryegrass can reach to 11.78 kg/m2,7857.26 kg/mu; the protein content can reach to 0.32 kg/m2,213.44 kg/mu. The matched area of land planted ryegrass for the pig waste totally being applied was 647.34 m2, and it was about 0.97 mu according to the demolition-style weight of pig manure compost and urine from each unit of the removable pig house. And the matched area of land for each pig was 17.98 m2.
     The results of this experiment showed that the pigs' production performance, temperature and humidity environment of removable pig house were better than common fixed pig house. The optimum weight of the pig manure and urine wastewater from the removable pig house that were mixed and applied to the land planted with ryegrass were 4.5kg/m2 and 18.9kg/m2; The matched area of land planted ryegrass for each unit of the removable pig house was 647.34m2 (0.97 mu), and the matched area of land for each pig was 17.98 m2. The economic benefit of each raising unit in removable pig house was higher than fixed pig house by 2810.5 RMB, while the direct economic benefit made by the ryegrass planted in matched area was 1413.20 RMB.
引文
1. Adams F. Some effects of lime, nitrogen and soluble and insoluble phosphate on the yield and mineral composition of established grassland[J]. J. Agric. Sci. Camb,1984,102:219-226
    2. Ajit K. Sarmah, Michael T. Meyer, Alistair B.A.Boxall. A global perspective on the use, sales, exposure pathways, occurrence, fate and effects of veterinary antibiotics (VAs) in the environment[J]. Chemosphere,2006,65:725-759
    3. Giusquiani, P. L, L. Cocezzi, M. Businelli, A. Macchioni. Fate of pig sludge liquid fraction in calcareous soil[J]. Agricultural and Environmental Implications. J. Environ. Qual.1998,27: 364-371.
    4. Hartung. J., Phillips. V.R. Control of gaseous emissions from livestock buildings and manure stores[J].Journal of Agricultural Engineering Research (United Kingdom).57(3):173-189.
    5. J. A. Moore and M. J. Gamroth, Calculating. The fertilizer value of manure from livestock operatins[M]. Oregon state university extension service. EC1094, Rep rinted November 1993.1-7.
    6. J. L. Black, B. P. Mullan, M. L. Lorschy et al. Lactation in the sow during heat stress[J]Livestock Production Science.1993,35(1-2):153-170
    7. Mexle L Esmay.Principles of animal environmeat.[J]AVI. Publishing Company,978,157-176
    8. N. Quiniou, J. Noblet. Influence of high ambient temperatures on performance of multiparous lactating sows[J]J Anim Sci,1999,77:2124-2134
    9. Natalie Anderson,etl Cooler Temperature during rmination improves the survival of embryo cultured peach seed[J] HortScience,2002,37 (2):402-403
    10. Nicholson F. A,. Chambers B. J, William J. R, et al. Heavy metal contents of livestock feeds and animal manures in England and Wales[J]. Bioresourse Technology,1999,70 (1):23-31.
    11. P. L. Giusquiani, L. Concezzi, M. Businelli. Fate of pig sludge liquid fraction in calcareous soil: Agricultural and environmental implications[J]. J Environ Qual,1998,27:364-371
    12. Roland DA, Gordon R, Rao SK. Phosphorus solubilization and its effect on the environment [J]. Proc. MD Nutr. Conf.,1993,(4):138-145.
    13. S. S. Malhi, M. Nyborg, J. T. Harapiak. Effects of long-term N fertilizer-induced acidification and liming on micronutrients in soil and in bromegrass hay[J]. Soil & Tillage Research,1995. (48).91-101
    14. S. Stamatiadis, M. Werner, M. Buchanan. Field assessment of soil quality as affected by compostand fertilizer application iin a broccoli field (San Benito County, California) [J]. Applied Soil Ecology,1999.12(3).217-225
    15. Van Beemen N. Acidic deposition and internalproton in acidification of soils and water[J]. Nature,1984,367,599
    16.白考哲,罗冬菊,梁庭敏等.规模化猪场疫病的流行特点及防制对策[J].云南畜牧兽医,2006,(2):15-16
    17.曹从荣,张漫.规模化畜禽养殖场粪污处理模式的选择[J].科技纵横.2004.(5):29-31
    18.陈安国.现代化养殖场规划与设计[M].浙江大学2003.3:87-88
    19.陈刚才,甘露,万国江.土壤有机物污染及其治理技术[J].重庆环境科学,2000,22(2):45-49,62
    20.陈俊波,潘雄高.温岭市大溪镇畜牧业用地状况的调查与建议[J]2007,(1):21
    21.陈彤.农业土壤污染及其治理[J]福建农业科技,2004,(2):48-50
    22.陈武国.环境温度对生长肥育猪的影响研究[J]浙江畜牧兽医.2001,(1):21
    23.陈新民.规模化养殖的用地政策出台[J].湖南农业,2008,(1):5
    24.邓蕾.我国土地资源可持续利用浅析[J].能源与环境,2008,(6),98-99
    25.丁疆华.广州市畜禽粪便污染与防治对策[J].环境科学研究.2000,(13)
    26.丁守成.谈施肥对土壤的影响[J]科技创新导报,2008,(29):123
    27.董淑萍.西安生态养殖模式技术推广及效益分析[J]生态农业研究.2000,8(4):93-94
    28.杜华平,江海东,周琴等.氮肥对一年生黑麦草营养成分影响的研究[J]上海农业科技.2008,(2):23-24
    29.傅锦涛.有机无机肥配施对空心菜产量及土壤肥力影响[J].安徽农学通报.2009.15(1):65-66
    30.高洪军,朱平,彭畅等.吉林省畜禽粪便污染分析及对策[J]吉林农业科学,2008,33(5):33-35,38
    31.高洪磊.畜禽养殖业中存在的立体污染及其防治措施[J].现代农业科技.2008,(21):279-280,282
    32.葛红梅.大同市污灌区土壤重金属污染现状[J].检测分析,2007,(6):107-109
    33.顾掌根,王国峰.浙北平原创新发展农业循环经济模式选择和对策[J].中国农学通报,2009,25(01):203-205
    34.国家统计局.2003年中国统计年鉴[M].北京:统计出版社,2003
    35.国土资发.关于促进规模化畜禽养殖有关用地政策的通知[J].特别关注.2007,24(22):5
    36.国务院关于印发《全国土地利用总体规划纲要(2006-2020)》的通知[J].专题报道
    37.杭州市土壤普查办公室.杭州土壤[M]浙江科学技术出版社,1991
    38.贺晓燕.规模化畜禽养殖场污染及其治理对策的探讨.[J].2005, (4):7-9
    39.侯雪莹,韩晓增,王树起等.不同土地利用和管理方式对黑土肥力的影响[J]水土保持学报,2008,22(6):99-103
    40.胡枫.中国农村劳动力转移的研究:一个文献综述[J]浙江社会科学,2007,(1):207-212
    41.黄晨熹.九十年代中国农村劳动力转移的特征、作用与趋势[J].人口研究,1998,22(2):8-14
    42.黄国勤,王兴祥,钱海燕等.施用化肥对农业生态环境的负面影响及对策[J].生态环境.2004,13(4):656-660.
    43.黄雪泉,黄锦华.规模化养猪场中的恶臭及其控制措施[J].现代养猪,2001,(2):28-29
    44.家畜粪便学[M].上海:上海交通大学出版社.1997
    45.江径伟.年出栏3.5万头猪场的设计与技术措施[J]2002,(1):23-24
    46.孔凡德.黑麦草的研究与利用前景[J]四川草原.2002,(2):29-31
    47.孔源,韩鲁佳.我国畜牧业粪便废弃物的污染及其治理对策的探讨[J].中国农业大学学报,2002,7(6):92-96.
    48.兰海军.采用营养调控降低养殖场粪污对环境污染.养殖与饲料.2008,(4):107-109
    49.李保明,施正香.家畜环境与设施[M].北京:中央广播电视大学出版社.2004
    50.李惠鹏,李金华,范根成.产蛋鸡脑脊髓炎的诊断[J],中国兽医科技.1999.(9):29-30
    51.李吉进,宋东涛,邹国元等.不同有机肥料对番茄生长及品质的影响[J]土壤肥料科学,2008,24(10):300-305
    52.李美茹,冯光秀,王素素.廊坊市郊设施蔬菜土壤次生盐渍化状况分析[J].安徽农业科学.2008,36(28):12343-12344
    53.李如治.家畜环境卫生学(第三版)[M]中国农业出版社,2004
    54.李盛霖,林长光,刘亚轩等.我国猪病流行特点与防制对策[J].福建农业学报,2005,20(增刊):160-164.
    55.李文庆,骆宏毅,刘加芬.大棚生态系统物流能流分析及效益评价[J].生态农业研究,1996,4(3):53-55.
    56.李先珍,王耀林,张志斌等.设施蔬菜大棚土壤盐离子积累状况研究初报[J].中国蔬菜,1993(4):15-17.
    57.李雪,李淑琴,关明阳.环境温度对猪的胜利及生产性能的影响[J].黑龙江畜牧兽医,1995,(2):10-12
    58.李鹰.猪禽新病流行趋势与综合防制对策[J].行业透视.2004(6):8-10
    59.李愈茂,冷崇总,喻荣等.江西农业用地使用现状、问题与对策研究[J].价格月刊,1994,(4):19-27
    60.李远,单正军,徐德徽.我国畜禽养殖业的环境影响与管理政策初探[J]中国生态农业学报.2002,10(2):136-138
    61.李远.我国规模化畜禽业存在的环境问题与防治对策[J].上海环境科学,2002,21(10):597-599
    62.李志强.环境因素对猪的影响及其控制技术[J].河南畜牧兽医.2005.26(3):18-20
    63.梁才芝.畜牧养殖中的环境污染及综合治理[J]山东畜牧兽医,2008,29(11):58-59
    64.梁小玉,张新全,张锦华.不同施氮量和时间对鸭茅生产利用的影响[J].草原与草坪,2004,(2):8-12
    65.廖新俤.动物废弃物管理与畜牧业清洁生产技术[J].中国生态农业学报,2001,9(1):101-102.
    66.刘艳珍.关于桂东地区冬闲田开发利用的几点思考[J].农家之友.2008,(16):11-14
    67.刘银秀,赵光桦,王志荣等.能源生态环保型猪场粪污处理模式的应用[J].中国沼气,200826(4):30-34.
    68.刘志强,谭碧娥,汤文杰等.日粮不同蛋白质水平对三元肥育猪生产性能和胴体品质的影响[J].动物营养学报,2008,20(6):611-616
    69.刘忠新,刘莉梅.植物营养失调的症状及合理施肥[J]农村实用科技信息,2007,(12):13
    70.陆东海,陈安国.应用可移动猪舍进行种养结合的主要技术参数研究[C],浙江大学硕士学位论文,2008.
    71.吕英华,秦双月.测土与施肥[M]中国农业出版社,2002
    72.栾晓丽,王晓,强艳艳等.湿地植物对生活污水中氮磷吸收能力的研究[M].江苏农业科学.2002,(4):296-298
    73.罗金炼.狼尾草饲喂生长肥育猪效果试验[J].养猪,2004,(5):12
    74.孟文学.浅谈近年猪瘟流行态势和防制对策[J].中国兽医科技.1999,9(29):29-30.
    75.那日,白音巴特尔.关于生态畜牧业的理论探讨[J].黑龙江民族丛刊.2002.(4):46-49
    76.宁安荣,张洪生,张跃民.酸沉降对蔬菜吸收养分的影响[J].农业环境科学学报.2003.22(6):651-655
    77.乔海云.规模养殖污染与生态畜牧业[J].中国畜禽种业,2008,(7):61-62
    78.秦文利,刘忠宽,刘振宇.氮磷钾调控对苜蓿生产影响的研究进展[J].河北农业科学.2008.12(10):34-35
    79.尚以顺,舒健虹,陈燕萍等.不同施肥水平及播种量对一年生黑麦草A2003产草量的影响[J]贵州农业科学.2008,36(5):135-136
    80.史海娃,宋卫国,赵志辉.我国农业土壤污染现状及其成因[J].上海农业学报,2008.24(2):122-126
    81.孙铁军,韩建国.施肥对禾本科牧草种子产量形成及种子发育过程中生理生化特性的影响[J].草地学报,2005,13(1):83-84
    82.孙瑛.畜禽养殖场污染及其治理对策的探讨[J].畜牧兽医科技信息.2008,(11):42-43
    83.孙志海,武志杰,陈利军等.农业生产中的氮肥施用现状及其环境效应研究进展[J].土壤通报,2006,37(4):782-786
    84.唐春艳,齐德生.降低畜产公害的营养调控[J].饲料研究2005:47-49
    85.汪善锋,陈安国,汪海峰.规模化猪场粪污处理技术研究进展[J].家畜生态.2004,25(1):49-54.
    86.王朝辉,宗志强,李生秀.蔬菜的硝态氮累积及菜地土壤的硝态氮残留[J].环境科学,2002,23(3):79-83
    87.王虹.土壤肥料分析方法[M]辽宁大学出版社,1991
    88.王辉,董元华,张绪美等.集约化养殖畜禽粪便农用对土壤次生盐渍化的影响评估[J].环境科学.2008,29(1):183-188
    89.王辉,董元华,张绪美等.江苏省集约化养殖畜禽粪便盐分含量及分布特征分析[J].农业工程学报.2007,23(11):229-33
    90.王凯军.畜禽养殖污染防治技术与政策[M].北京:化学工业出版社,2004
    91.王立民,孙泽威,赵云蛟等.规模化猪场对环境的污染及治理对策[J].家畜生态.2002,23(3):58-60.
    92.王庆仁,李继云.论合理施肥与土壤环境的可持续性发展[J].环境科学进展.1999.7(2):116.124
    93.王帅,杨劲峰,韩晓日等.不同施肥处理对旱作春玉米光合特性的影响[J]中国土壤与肥料.2008,(6):23-27
    94.王新谋等.家畜粪便学[M]上海交通大学出版社,1997
    95.王玉田.当前猪场疾病流行特点及控制对策[J].畜牧与兽医.2006,38(4):35-36.
    96.王珍芹,曲志娜.猪繁殖与呼吸道综合征免疫预防进展[J].中国动物检疫.2005,22(12):37-38
    97.王周,陈安国.移动鸡舍及种养结合基本参数的初步探讨[C],浙江大学硕士学位论文,2008.
    98.吴升鹏.规模化养殖场粪污治理问题探讨[J].中国畜牧杂志,1998,34(2),54-55
    99.夏劲伟.氮肥对一年生黑麦草产量及品质影响的研究[C],南京农业大学硕士学位论文,2000
    100.夏立江,王宏康.土壤污染及其防治[M].上海:华东理工大学出版社.2001:7.
    101.谢红兵,常新耀,魏刚才.半光胺对肥育猪生产性能和胴体品质的影响[J].广东农业科学, 2008,(7):114-117
    102.徐建雄,叶陈梁,王晶等.双低菜籽粕对生长肥育猪生产性能和消化性能的影响[J].粮食与饲料工业,2005,(3):36-38
    103.徐仁扣,D.R.Coventry.某些农业措施对土壤酸化的影响[J].农业环境保护,2002,21(5),385-388
    104.许中坚,刘广深,愈佳栋.氮循环的人为干扰与土壤酸化[J].地质地球化学,2002,30(2):74-78
    105.闫玲,单德鑫.中国生态农业发展现状及展望[J]山西农业科学,2008,36(12):10-13
    106.阎宏,赵保全,蒋发斌.封闭式断奶仔猪舍空气环境状况评价[J].家畜生态,2002,23(1):18-20
    107.杨梅,田尧.畜禽养殖业导致环境污染的现状及防治对策[J].安徽同学通报.2008.14(16):123-124
    108.杨小南.人工湿地污水处理系统对氮磷的净化效果研究[J].气象与环境学报,2008,24(4):60-65
    109.叶军林,潘华明.发展山区生态畜牧业之初探[J].上海农业科技,2008, (2):62-63
    110.叶丽霞.因地制宜,发展生态畜牧业[J].各地畜牧业,2008,(10),24-25
    111.叶素成.浅谈我国的畜牧业标准化建设[J]上海畜牧兽医通讯.2007,(5):87
    112.叶素成.我国畜禽养殖业污染现状及防治建议[J]当代畜牧.2007,(11):52-53
    113.于桂阳.规模化猪场生物安全体系的构建[J].中国动物保健.2008,(117):54-57
    114.余世法.江山市畜禽养殖污染的治理对策[J].浙江畜牧兽医,2006,(3):44
    115.於忠祥.世纪初我国土地利用总体规划回顾与展望[J]安徽农业大学学报(社会科学版),2008,17(6):39-117
    116.俞丹宏,潘根长.浙江省畜禽养殖业的污染问题及防治对策[J],浙江畜牧兽医.2001(2):14
    117.俞美子,王德武,范强.日光温室育肥猪舍主要内环境指标的测定[J].畜禽生产,2008,(7):16-17
    118.袁月星,许德美,李育娟等.合理利用冬闲田,努力提高冬季农业综合效益[J].上海农业科技.2004,(2):99-100.
    119.曾新福,陈安国.环境温度对母猪繁殖性能及仔猪生长的影响[J].家畜生态.2001.22(1):40-43
    120.张恩平,张淑红,李天来等.有机肥与无机肥配施对菜田土壤氮磷钾养分含量的影响[J]黑龙江农业科学,2001,(2):5-7
    121.张丽英主编.饲料分析及饲料质量检测技术[M].北京:中国农业大学出版社,2003
    122.张明杰.规模化畜禽养殖对环境的污染及防治对策[J].河南农业.2008,(8):30
    123.张平,刘建高,李铁军等.猪氨基酸消化率测定中指示剂的应用[J].饲料工业.2006.27(19):58—60
    124.张士良,薛连秋,郭鹏等.保护地土壤次生盐渍化成因及防控措施[J],现代化农业,2008.(3):15-16
    125.张士勇,孙斐.畜禽养殖场污染状况调查与评价[J].现代农业科技,2008,(21):244~245
    126.张维理,田哲旭,张宁等.我国北方农用氮肥造成地下水硝酸盐污染的调查[J]植物营养与肥料学报.1995,1(2):80-87
    127.张新跃,李元华,苟文龙等.多花黑麦草研究进展[J]草业科学.2009,26(1):55-60
    128.张艳清,李青峰,陈连青等.环境污染与生态农业[J].重庆环境科学,2003.7
    129.张增玉,顾宪红,刘永刚等.通用酶制剂对生长肥育猪日粮养分消化率的影响[J].饲料广角.2006.(2):46-48
    130.赵伯仁.施肥对土壤肥力及作物产量的影响研究[J]黑龙江农业科学.1999,(2):11-13
    131.赵佩红.新会气候资料的正态分布检验及正态化处理[J].广东气象,2007.29(1):27-28
    132.赵青玲,杨继涛,李遂亮等.畜禽粪便资源化利用技术的现状及展望[J].河南农业大学学报,2003,37(2),184-187
    133.周勇志,章力勇,周金林等.畜禽排泄物与农业立体污染防治[J].上海农业科技,2006,(5):101-102.
    134.周元军.畜禽粪便对环境的污染及治理对策[J].医学动物防制,2003,19(6):350-354
    135.朱德文,钟成义,陈永生.畜禽养殖业粪污处理现状与对策研究[J].家畜生态学报,2007,28(6):163-166
    136.朱柳海,周自玮.施肥对白三叶生长发育和种子生产的影响[J]草业与畜牧.2008,(4):20-27
    137.卓坤水.杂交狼尾草栽培及其喂猪技术[J].养猪,2005,(1):5-7.
    138.邹建煌.浅析当前猪病流行特点与防控对策[J]养殖与饲料,2008,(7):106-108

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700