用户名: 密码: 验证码:
人工湿地净化富营养化景观水的效果及机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为考察人工湿地对富营养化景观水的净化效果,筛选适用于富营养化景观水水质净化与维护的植物、基质以及湿地构型,提高人工湿地冬季净化效果及稳定性,本研究构建了不同植物、不同基质以及不同构型的人工湿地系统,对不同类型人工湿地的净化效果、影响因素以及湿地内部污染物浓度的沿程变化进行了系统研究,在此基础上对湿地植物的生长特性、氮磷吸收能力以及氮磷的吸收作用进行考察,并以复合垂直流人工湿地为例,对湿地系统中氮磷的迁移转化途径、总细菌、氨氧化菌的活性以及种群结构的空间分布进行了探讨。
     不同水力停留时间下污染物的去除效果试验结果表明,采用人工湿地净化富营养化景观水,最适停留时间为2d。在最适水力停留时间下,4种类型湿地(风车草水平潜流、美人蕉水平潜流、砾石复合垂直流、沸石-页岩复合垂直流)对富营养化景观水中各类污染物均有较好的去除效果,浊度和叶绿素a的去除率分别为80.2-92.3%和92.2-98.3%;COD_(Cr)、TP、PO_4~(3+)-P去除率分别为56.6-77.4%、73.0-95.0%和66.7-94.9%:TN并口NH_4~+-N去除率分别为58.1-85.3%和31.4-79.5%。
     人工湿地在不同季节对各类污染物的去除效果表现出夏季>秋季>春季>冬季的规律。季节变化和湿地类型对氮的去除效果影响较大,湿地构型对污染物净化效果的影响大于植物类型的影响,添加沸石基质可以提高湿地冬季氮的去除效果。相对于水平潜流湿地,复合垂直流湿地对氮的去除效率高且比较稳定,更适于富营养化景观水的处理。
     湿地基质硝化/反硝化强度沿程试验结果表明,由水平潜流湿地表层到底层,复合流湿地下行池到上行池,硝化强度逐渐降低,4种类型湿地反硝化强度差别不大。复合垂直流湿地硝化强度优于水平潜流湿地,风车草水平潜流湿地优于美人蕉潜流湿地,与氮的去除效果一致。
     在4种类型湿地中,pH值、DO以及污染物浓度沿程逐渐降低,污染物主要在湿地前端被去除。水平潜流和复合流湿地对各类污染物的去除作用首先表现为湿地前端(下行池)对悬浮态物质的过滤、截留作用,然后才表现出植物的吸收和微生物的矿化分解作用,在湿地后端(上行池),由于DO浓度低、碳源不足和接受前端污染物的溶解释放等原因,污染物去除效率不高。
     植物在湿地基质中的生长过程可分为适应期、快速增长期、相对稳定期和枯萎衰亡期几个生长阶段。相对于美人蕉,风车草生长周期长,植物地上部分生物量大(2.438kg DW/m~2),氮磷吸收量高(分别为36.49g/m~2和5.73g/m~2),更适于作为净化富营养化景观水的湿地植物。
     不同植物、在不同类型湿地中的同种植物的氮磷含量以及吸收量不同。水平潜流湿地植物的TN含量、TN吸收量高于复合流湿地,TP含量、TP吸收量没有明显差异。风车草植物的TN、TP含量以及吸收量高于美人蕉。在风车草和美人蕉两种植物不同器官中,TN、TP含量均遵循叶>茎的规律,不同植物器官含氮量差异较大。
     4种类型湿地植物的植株高度、植株数目、生物量、茎叶氮磷吸收量均表现出沿水流方向逐渐递减的规律。水平潜流湿地前1/2段植物地上部分生物量、氮磷含量以及氮磷吸收量明显高于后1/2段,复合流湿地下行池高于上行池。
     风车草水平潜流湿地、美人蕉水平潜流湿地、砾石复合垂直流湿地和沸石-页岩复合垂直流湿地4种类型湿地中,植物吸收氮量分别占湿地氮的总去除量的33.64%、16.49%、16.40%和16.37%,植物吸收磷量分别占湿地磷的总去除量的48.74%、29.05%、32.51%和37.60%。采用人工湿地净化污染物浓度较低的富营养化景观水,植物对氮磷的吸收作用是湿地脱氮除磷的重要形式。
     植物枯萎前后的对比试验结果表明,风车草和美人蕉两种景观植物枯萎后,组织氮磷含量明显降低。采用湿地处理富营养化景观水,如果以去除湿地中的营养物质为目的,建议在11月初收割美人蕉,1月初收割风车草,可以移除湿地系统的部分营养物质,延长湿地使用寿命。
     沸石-页岩复合流湿地下行池表层沸石基质氨氮吸附量低于中层和底层,上行池页岩基质氨氮吸附量总体较小,从上行池底层到表层无明显变化。在沸石和页岩两种基质吸附的不同形态的磷中,Ca-P所占比例最高,在基质除磷中占据主要作用,其次是Al-P和Fe-P。基质成分对基质吸附磷的存在形态影响较大,两者之间存在明显的相关性。不同位置磷的浓度、pH值、氧化还原电位等环境条件影响湿地中磷的分布形态,从下行池到上行池,Ca-P、Fe-P、Al-P和蔽蓄态磷的含量表现出不同程度的变化。
     沸石-页岩复合流湿地植物地上部分吸收氮量占湿地总氮去除量的16.37%,基质吸附占29.07%,硝化反硝化占54.56%,微生物的硝化反硝化是湿地脱氮的主要途径,基质吸附和植物吸收作用也是湿地脱氮的重要形式。基质吸附磷占总磷去除量的56.57%,是湿地除磷的主要途径,植物地上部分吸收磷量占37.60%,在湿地除磷的过程中也起到重要作用。
     沸石-页岩复合流湿地下行池表层微生物生物量最高,为4.06nmol P/g基质,由下行池至上行池,微生物生物量逐渐递减。下行池表层微生物呼吸作用强度和脱氢酶活性均最高,分别为0.43mgCO_2/(g基质·d)和24.21μg TF/(g基质·16h)),均表现出沿程逐渐降低至上行池表层又略有升高的规律。
     复合流湿地沿程基质生物膜微生物的PCR-DGGE试验结果表明,复合流湿地下行池微生物种群多样性较高,但相似性较低。下行池表层氨氧化菌活性最高,为0.79mg·(kg·h)~(-1),从下行池表层到上行池底层,氨氧化菌活性逐渐下降,至上行池表层略有增强。下行池氨氧化菌多样性高于上行池,湿地植物根系供氧、残体累积以及根际效应等作用,在一定程度上提高了湿地表层总细菌和氨氧化菌种群多样性。在处理低浓度富营养化景观水的复合垂直流人工湿地中,多数氨氧化菌为寡营养类微生物,Nitrosomonas sp.为优势菌种,在氨氮氧化过程中起着主导作用。沿水流方向,又有Uncultured beta proteobacterium,Comamonas sp.以及Nitrosomonas oligotropha等菌种出现。复合流湿地中氨氧化菌种群空间变化,是不同的湿地环境对氨氧化菌种属长期选择的结果。
Different kinds of constructed wetlands(CWs)were constructed,to investigate treatment performance of CWs treating erutrophic scenic water,select suitable plants, substrates and CWs,and improve the performance and stability of CWs in winter. Purification efficiency,impact factors and pollutants concentrations of different types of CWs were studied.Then plant growth characteristic,nitrogen and phosphorus uptake capacity and its contribution to the removal of nutrients were investigated. Nitrogen and phosphorus transportation,and variation of microbial diversity,activity and community structure in integrated vertical-flow constructed wetlands(IVFCW) were discussed.
     The experimental results showed that 2d are the most optimal hydraulic retention time(HRT)for CWs treating eutrophic scenic water.Four types of CWs(Cyperus alternifolius/gravel bed horizontal subsurface flow constructed wetland(HFCW), Canna edulis/gravel bed HFCW,gravel bed IVFCW,and zeolite-shale bed IVFCW) all had better treatment performance under the optimal HRT.The removal efficiency is 80.2-92.3%for turbidity and 92.2-98.3%for CHLa,and 56.6-77.4%,73.0-95.0%, 66.7-94.9%for COD_(Cr),TP,PO_4~(3+)-P.58.1-85.3%of TN and 31.4-79.5%of NH_4~+-N were removed.
     Pollutants removal rate of CWs reached to the highest in summer,followed by that in autumn,spring and winter.Seasonal variation and the type of CWs had significant effect on the removal of nitrogen,and type of CWs had more significant effect than plants.The nitrogen removal rate was improved in winter when constructed wetland was filled with zeolite.The nitrogen removal rate was higher and more stable in IVFCW than that in HFCW.Compared with HFCW,IVFCW was suitable for the purification of eutrophic scenic water.
     Nitrification and denitrification intensity in different layers of CWs were studied. The result showed that nitrification intensity decreased gradually from upper layer to lower layer in HFCW and from down-flow system to up-flow system in IVFCW. Denitrification intensity had no significant difference in four types of CWs. Nitrification intensity in IVFCW was better than that in HFCW,which was in accordance with the nitrogen removal efficiency.
     Pollutants concentration,pH and DO decreased along the direction of flow in all the four types of CWs and pollutants removal mainly happened in the front of CWs. Pollutants were first removed by infiltration and interception of SS in the front (down-flow system)of CWs,and then removed by plant uptake and microbial decomposition.The pollutants removal rate was low in the back(up flow system)of CWs since low dissolved oxygen and lack of organic carbon and pollutants release.
     Plants growth period can be divided into adaptation phase,increase phase,stable phase and senescent phase.Compared with Canna edulis,Cyperus alternifolius had longer growth period,higher aboveground biomass(2.438kg DW/m~2)and uptake amount of nitrogen and phosphorus(36.49g/m~2 and 5.73g/m~2 respectively),suitable to be wetland plants for the purification of eutrophic scenic water.
     Content and uptake amount of nitrogen and phosphorus were different in different kinds of plants and the same kind of plants in different types of CWs.The contents of nitrogen were higher in plants growing in HFCW than that in IVFCW, and the contents of phosphorus had little variation in plants.The contents and amounts of nitrogen and phosphorus in Cyperus alternifolius were higher than that in Canna edulis.Total nitrogen and total phosphorus distribution in Cyperus alternifolius and Canna edulis organs can be summarized as follows:leaves>stems, and the contents were significant different in different plant organs.
     Plant height,aboveground plant biomass,and uptake amount of nitrogen and phosphorus decreased along the direction flow in CWs.The plant aboveground biomass,content and uptake amounts of nitrogen and phosphorus in the front half of CWs were higher than that in the back,and that were higher in down-flow system in IVFCW than that in up-flow system.
     The amounts of nitrogen removed by plant harvesting were about 33.64%, 16.49%,16.40%and 16.37%of removed TN in Cyperus alternifolius/gravel bed horizontal subsurface flow constructed wetland(HFCW),Canna edulis/gravel bed HFCW,gravel bed IVCW,and zeolite-shale bed IVCW respectively,and the amounts and dehydrogenase activity decreased gradually and then slightly increased near the surface of up-flow system.
     The diversity and spatial distribution of microbial community structure in IVCW was investigated using PCR-DGGE.The results showed that there existed some common kinds of microorganisms and specific microorganisms in different layers in constructed wetland because of the changes of environmental factors and nutrient levels.The diversity of bacteria community was the highest in the upper layer of down-flow system,and the similarity in down-flow system was higher than that in up-flow system.From down-flow system to up-flow system,the diversity of bacteria community decreased and the structure similarity gradually increased.because of the integrated influence of competition of plant rhizodeposition,heterotrophic bacteria, DO and ammonia concentration,there were significant spatial differences in the activity and diversity of ammonia-oxidizing bacteria(AOB)along the flow direction of wetland.The activity of AOB were 0.79mgNO_3~--N·(kg substrate·h)~(-1)near the surface of down-flow system in IVCW.From the surface of down-flow system to up-flow system,the activity of AOB decreased gradually,and slightly increased near the surface of up-flow system.The spatial variation of diversity of AOB showed similar change trend with the activity in IVCW.Most of AOB were belong to oligotrophic bacterium in IVCW,and the population of ammonia-oxidizing bacteria showed a higher percentage of Nitrosomonas-like sequences from the wetland samples.Uncultured beta proteobacterium,Comamonas sp.,Nitrosomonas oligotropha were also detected.The variation of the AOB community demonstrated slightly spatial pattern in IVCW,which might be related to different wetland environment.
引文
[1]张庆费,袁峻峰.公园水体的综合管理技术措施.上海建设科技,3:31-32
    [2]吕学军.住宅区景观水体水质处理实例.湖南林业,2004,2:11-11
    [3]彭剑峰,宋永会,郑丙辉,等.污水再生用于湖泊的补水模式及其环境效应.中国环境科学,2007,27(2):279-283
    [4]甘树应,杨青,潘熠,等.景观水体污染处理工艺研究及工程应用.给水排水,2002,28(12):56-58
    [5]潘涌璋,张娜,叶林顺,等.受污染景观水体的生物修复.环境污染治理技术与设备,2005,6(3):69-71
    [6]汪松年.上海市景观水体水质调研及分析.中国水利,2004(11):40-42
    [7]王艳春,李延明.北京公园水体污染原因分析及治理现状调查.环境科学与技术,2006,29(11):50-52
    [8]刘春光,金相灿,王雯,等.城市景观河流夏季污染状况及营养水平动态分析-以天津市津河为例.环境污染与防治,2004,26(4):312-316
    [9]朱鸣,孙建军,徐亚同.景观水体的水质净化与生态维护.上海环境科学,2003,增刊:159-163
    [10]高吉喜.水生植物对面源污水净化效率研究.中国环境科学,1997,17(3):247-251
    [11]胡洪营,何苗,朱铭捷,等.污染河流水质净化与生态修复技术及其集成化策略.给水排水,2005,31(4):1-7
    [12]Pu P M,WANG G X,Hu C H,et al.Can we control the lake eutrophication by dredging.Eighth Internationa]Symposium on the interactions between sediments and water.1999,Beijing
    [13]王国祥,濮培民.若干人工调控措施对富营养化湖泊藻类种群的影响.环境科学,1999,20(7):71-74
    [14]严立,刘志明,陈建刚,等.潜流式人工湿地净化富营养化景观水体.中国给水排水,2005,21(2):11-13
    [15]岳春雷.亚热带地区人工湿地净化效果与机理研究:[博士学位论文].杭州:浙江大学,2004
    [16]赵联芳,朱伟,赵建.人工湿地处理低碳氮比污染河水时的脱氮机理.环境科学学报,2006,26(11):1821-1826
    [17]王国祥,濮培民,张圣照,等.人工复合生态系统对太湖局部水域水质的净化作用.中国环境科学,1998,18(5):410-414
    [18]Drizo A,Frost C,Grace J.Physicochemical screening of phosphate removing substrates for use in constructed wetland systems.Water Research,1999,33(7):3595-3602
    [19]Arias C A,Del Bubba M,Brix H.Phosphorus removal by sands for use as media in subsurface flow constructed reed beds.Water Research,2001,35(5):1159-1168
    [21]Richardson C J.Mechanisms controlling phosphorus retention capacity in freshwater wetlands.Science,1985,228:1424-1427
    [21]Zhu T,Jenssen P D,Mhlum T,et al.Phosphate sorption and chemical characteristics of lightweight aggregates(LWA)-Potential filter media in treatment wetlands.Water Science and Technology,1997,35(5):103-108
    [22]Sakadevan K,Bavor H J.Phosphate adsorption characteristics of soils,slags and zeolite to be used as substrates in constructed wetland systems.Water Research,1998,32(2):393-399
    [23]袁东海,景丽洁,高士祥,等.几种人工湿地基质净化磷素污染性能的分析.环境科学,2005,26(1):51-55
    [24]徐丽花,周琪.不同填料人工湿地处理系统的净化能力研究.上海环境科学,2002,21(10):603-605
    [25]谭洪新,周琪.湿地填料的磷吸附特性及潜流人工湿地除磷效果研究.农业环境科学学报,2005,24(2):689-694
    [26]Drizo A,Comeau Y,Forget C,et al.Phosphorus saturation potential:a parameter for estimating the longevity of constructed wetland systems.Environmental Science and Technology,2002,36(21):4642-4648
    [27]袁东海,景丽洁,张孟群,等.几种人工湿地基质净化磷素的机理.中国环境科学,2004,24(5):614-617
    [28]Drizo A,Forget C,Chapuis R P.Phosphorus removal by electric arc furnace steel slag and serpentinite.Water Research,2006,40(8):1547-1554
    [29]Kantawanichkul S,Pilaila S,Tanapiyawanich W,et al.Wastewater treatment by tropical plants in vertical-flow constructed wetlands.Water Science and Technology,1999,40(3):173-178
    [30]Lund L J,Home A J,WiHiams A E.Estimating denitrification in a large constructed wetland using stable nitrogen isotope ratios.Ecological Engineering,2000,14(1):67-76
    [31]Ellis J B,Revitt D M,Shutes R B E,et al.The performance of vegetated biofilters for highway runoff control.Science of the Total Environment,1994,146-147:543-550
    [32]Thut R N.Feasibility of treating pulp mill effluent with a constructed wetland[A].In:Moshiri GA(eds).Constructed Wetlands for Water Quality Improvement.[C].Boca Raton,Florida:Lewis Publishers,1993,441-447
    [33]郑少奎,张燕燕,杨志峰,等.低温下表面流人工湿地中氨氮型富营养化水体净化研究.环境科学,2006,27(10):2014-2018
    [34]刘剑彤,丘吕强,陈朱金,等.复合生态系统工程中高效去除氮、磷植被植物的筛选研究.水生生物学报,1998,22(1):1-8
    [35]Gersber R M,Elkins B V,Lyon S R,et al.Role of aquatic plants in wastewater treatment by artificial wetland.Water Research,1986,20(3):363-368
    [36]Gopal B.Water Hyacinth.Aquatic Plant Studies 1.Elsevier,Amsterdam,1987:471
    [37]Adler P R,Summerfelt S T,Glenn,M D.Evaluation of a wetland system designed to meet stringent phosphorus discharge requirements.Water Environment Research,1996,68(5):836-840
    [38]金卫红,付融冰,顾国维.人工湿地中植物生长特性及其对总氮和总磷的吸收.环境科学研究,2007,20(3):75-80
    [39]Achintya N,Bezlmruah,Tian C Z.Quantification of oxygen release by bulrush(Scirpus validus)roots in a constructed treatment wetland.Biotechnology and Bioengineering,2005,89(3):308-318
    [40]Dunbabin J S,Pokorny J,Bowmer K H.Rhizosphere oxygenation by Typha domingensis Pers.in miniature artificial wetland filters used for metal removal from wastewater.Aquatic Botany,1988,29(4):303-317
    [41]Boon.A G.Report of a visit by members and staff of water resources center to Germany to investigate the root zone method for treatment of wastewaters,Water Research Center,Stevenage,England,August.1995
    [42]张鸿,陈光荣.两种人工湿地中氮、磷净化率与细菌分布关系的初步研究.华中师范大学学报,1999,33(4):575-578
    [43]成水平,夏宜(王争).香蒲、灯心草人工湿地的研究.Ⅰ.净化污水的空间.湖泊科学,1998,10(1):62-66
    [44]陈玉成编.污染环境生物修复工程.北京:化学工业出版社,2003
    [45]籍国东,孙铁珩,李顺.人工湿地及其在工业废水处理中的应用.应用生态学报,2000,13(2):224-228
    [46]成水平,况琪军,夏宜(王争).香蒲、灯心草人工湿地的研究:Ⅰ.净化污水的效果.湖泊科学,1997,9(4):351-358
    [47]成水平,吴振斌,况琪军.人工湿地植物研究.湖泊科学,2002,14(2):179-184
    [48]Hill D T,Payton J D.Effect of plant fill ratio on water temperature in constructed wetlands.Bioresource Technology,2000,71(3):283-289
    [49]张荣社,周琪,张建,等.潜流构造湿地去除农田排水中氮的研究.环境科学,2003,24(1):113-116
    [50]许航,陈焕壮,熊启权,等.水生植物塘脱氮除磷的效能及机理研究.哈尔滨建筑大学学报,1999,32(4):69-73
    [51]成水平,夏雪(王争).香蒲、灯心草人工湿地的研究-Ⅲ.净化污水的机理.湖泊科学,1998,10(2):66-71
    [52]李科德,胡正嘉.芦苇床系统净化污水的机理冲国环境科学,1995,15(2):140-144
    [53]梁威,吴振斌,詹发萃,等.人工湿地植物根区微生物与净化效果的季节变化.湖泊科学,2004,16(4):312-317
    [54]贺锋,吴振斌,陶菁,等.复合垂直流人工湿地污水处理系统硝化与反硝化作用.环境科学,2005,26(1):47-50
    [55]刘超翔,胡洪营,张健,等.人工复合生态床处理低浓度农村污水.中国给水排水,2002,18(7):1-4
    [56]梁威,吴振斌.复合垂直流构建湿地基质微生物类群及酶活性的空间分布.云南环境科 学,2002,21(1):5-8
    [57]Amann R I,Ludwig W,Schlefier K H.Phylogenetic identification and in situ detection of individual microbial cells without cultivation.Microbiological Reviews,1995,59(1):1143-1169
    [58]谢冰,董亮.芦苇人工湿地底泥微生物群落结构的PCR-SSCP技术研究.农业系统科学与综合研究,2007,23(2):205-211
    [59]Todd D D,William A A,Timothy M L.The characterization and quantification of methanotrohpic bacterial populations in constructed wetland sediments using PCR targeting 16S Rrna gene fragments.Applied Soil Ecology,2007,35(3):648-659
    [60]Ibekwe A M,Grieve C M,Lyon S R.Characterization of microbial communities and composition in constructed dairy wetland wastewater effluent.Applied Environmental Microbiology,2003,69(9):5060-5069
    [61]Variga S,Chongrak P.Nitrogen mass balance and microbial analysis of constructed wetlands treating municipal landfill leachate.Bioresource Technology,2007,98(3):565-570
    [62]Yan L,Ryuhei I,Gui P,et al.Distribution characteristics of ammonia-oxidizing bacteria in the Typha latifolia constructed wetlands using Fluorescent in situ hybridization(FISH).Journal of Environmental Sciences,2005,17(6):993-997
    [63]Roberts G S,Lewis G.In situ analysis of Nitrosomonas sp..In wastewater treatment wetland biofilms.Water Research,2001,35(11):2731-2739
    [64]吴振斌,王亚芬,周巧红,等.利用磷脂脂肪酸表征人工湿地微生物群落结构.中国环境科学,2006,26(6):737-741
    [65]王晟,徐祖信,李怀正.潜流湿地处理不同浓度有机污水的差异分析.环境科学,2006,27(11):2194-2200
    [66]汪俊三,覃环.高水力负荷人工湿地处理富营养化湖水.中国给水排水,2005,21(1):1-4
    [67]Stober J T,Oconnor,J T,Brazos,B J.Winter and spring evaluations of a wetland for tertiary wastewater treatment.Water Environment Research,1997,69(5):961-968
    [68]Dieberg F E,DeBusk T A,Jackson S D,et al.Submerged aquatic vegetation-based treatment wetlands for removing phosphorus from agricultural runoff:response to hydraulic and nutrient loading.Water Research,2002,36(6):1409-1422
    [69]Brix H.Treatment of wastewater in the rhizosphere of wetland plants-the rootzone method.Water Science and Technology,1987,19:107-118
    [70]Zhang X,Wu W Z,Wen D H,et al.Adsorption and desorption of ammonia-nitrogen onto natural zeolite.Environmental Chemistry,2003,22(2):166-171
    [71]Romero J A,Comin F A,Garcia C.Restored wetlands as filters to removal nitrogen.Chemosphere,1999,39(2):323-332
    [72]卢少勇,金相灿,余刚.人工湿地的氮去除机理.生态学报,2006,26(8):2670-2677
    [73]Fleming S M S,Horne A J.Enhanced nitrate removal efficiency in wetland microcosms using an episediment layer for denitrification.Environmental Science Technology,2002, 36(6):1231-1237
    [74]Brix H.Functions of macrophytes in constructed wetlands.Water Science and Technology,1994,29(4):71-78
    [75]Brix H.Use of constructed wetland in water pollution control:Historical development,present status,and future perspectives.Water Science and Technology,1994,30(8):209-223
    [76]Hammer D A.Constructed wetlands for wastewater treatment[M].Michigan:Lewis Publishers In.,1989
    [77]梁继东,周启星,孙铁衍.人工湿地污水处理系统研究及性能改进分析.生态学杂志,2003,22(2):49-55
    [78]何成达.DASB、W-SFCW特性及联合工艺处理生活污水的研究:[博士学位论文].南京:河海大学,2004
    [79]司马卫平.折流式+侧流式人工湿地处理城市污水试验研究:[硕士学位论文].重庆:重庆大学,2006
    [80]Hristina B,Karin T.Impact of loads,season,and plant species on the performance of a tropical constructed wetland polishing effluent from sugar factory stabilization ponds.Ecological Engineering,2007,29(1):66-76
    [81]Cristina S C,Calheiros,Antonio O.S.S,et al.Constructed wetland systems vegetated with different plants applied to the treatment of tannery wastewater.Water Research,2007,41(8):1790-1798
    [82]国家环境保护总局.水和废水检测分析方法[M].(第四版).北京:中国环境科学出版社,2002
    [83]丁晔,韩志英,吴坚阳,等.不同基质垂直流人工湿地对猪场污水季节性处理效果的研究.环境科学学报,2006,26(7):1093-1100
    [84]龚琴宏,田光明,吴坚阳,等.垂直流湿地处理低浓度生活污水的水力负荷.中国环境科学,2004,24(3):275-279
    [85]张荣社,李广贺,周琪,等.潜流人工湿地负荷变化对脱氮效果的影响研究.环境科学,2006,27(2):253-256
    [86]Crites,R.W.Design criteria and practice for constructed wetlands.Water Science and Technology,1994,29(4):1-6
    [87]Brodrick,S.J.et al.Denitrification in a natural wetland receiving secondary treated effluent.Water Research,1988,22(4):431-439
    [88]吴晓磊.人工湿地废水处理机理.环境科学,1995,16(3):83-86
    [89]Stottmeister U,WiePner A,Kuschk P,et al.Effects of plants and microorganisms in constructed wetlands for wastewater treatment.Biotechnology Advances,2003,22:93-117
    [90]黄娟,王世和,雒维国,等.植物光合特性及其对湿地DO分布、净化效果的影响.环境科学学报,2006,26(11):1828-1832
    [91]Lin Y F,Jing S R,Wang T W,et al.Effects of macrophytes and external carbon sources on nitrate removal groundwater in constructed wetlands.Environmental Pollution.2002,199:413-420
    [92]Ernest Clarke,Andrew H.Baldwin.Responses of wetland plants to ammonia and water level.Ecological Engineering,2002,18:257-264
    [93]鲁如坤.土壤农业化学分析方法.北京:中国农业科学技术出版社,2000
    [94]邓欢欢.农村富营养化天然水体的人工湿地净化机理研究:[博士学位论文].上海:同济大学,2007
    [95]廖新悌,骆世明,吴银宝,等.风车草和香根草在人工湿地中迁移养分能力的研究.应用生态学报,2005,16(1):156-160
    [96]蒋跃平,葛滢,岳春雷,等.人工湿地植物对观赏水中氮磷去除的贡献.生态学报,2004,24(8):1720-1725
    [97]Peterson S B.Teal J M.The role of plants in ecologically engineered wastewater treatment systems.Ecological Engineering,6(1-3):137-148
    [98]王晟,徐祖信,李怀正.潜流湿地处理不同浓度有机污水的差异分析.环境科学,2006,27(11):2194-2200
    [99]林愉.生活污水潮汐流人工湿地处理系统研究:[硕士学位论文].广州:华南农业大学,硕士论文,2006
    [100]徐光来.复合垂直流人工湿地对污水中氮去除效果研究:[硕士学位论文].武汉:武汉大学,2004
    [101]张荣社,李广贺,周琪等.潜流湿地中植物对脱氮除磷效果的影响中试研究.环境科学,2005,26(4):83-86
    [102]Omari A A,Fayyad M.Treatment of domestic wastewater by subsurface flow constructed wetlands in Jordan.Desalination,2003,155(1):27-39
    [103]尹军,崔玉波.人工湿地污水处理技术.北京:化学工业出版社.2006
    [104]Comín F A,Romero J A,Astorga V,et al.Nitrogen removal and cycling in restored wetlands used as filters of nutrients for agricultural runoff.Water Science and Technology,1997,35(5):255-261
    [105]Wang N,Mitsch W J.A detailed ecosystem model of phosphorus dynamics in created riparian wetlands.cological Modelling,2000,126:101-130
    [106]Kim S Y,Geary P M.The impact of biomass harvesting on phosphorus uptake by wetland plants.Water Science and Technology,2001,44(11-12):61-67
    [107]Stewart J W B,Tiessen H.Dynamics of soil organic phosphorus.iogeochemistry,1987,4(1):41-60
    [108]中国土壤学会农业化学专业委员会.土壤农业化学常规分析方法.北京:科学出版社,1983.
    [109]帖靖玺.人工湿地处理太湖流域农村生活污水的试验研究:[博士学位论文].南京:南京大学,2006
    [110]付融冰.强化人工湿地对富营养化水体的修复及作用机理研究:[博士学位论文].上海:同济大学,2007
    [111]卢少勇,桂萌,余刚等.人工湿地中沸石和土壤的氮吸附与再生试验研究.农业工程学报,2006,22(11):64-68
    [112]Kivaisi A K.The potential for constructed wetlands for wastewater treatment and reuse in developing country:a review,ological Engineering,2001,16(4):545-560
    [113]Drizo A,Frost C A,Grace J,et al.Physico-chemical screening of phosphate- removing substrates for USe in constructed wetland systems.Water Research,1999b,33(17):3595-3602
    [114]Yuan G,Lakulich L M.Phosphate adsorption in relationship to extractable iron and aluminum in spodosols.Soil Science Society of American Journal,1994,58:343-346
    [115]Prochaska C A,Zouboulis A I.Removal of phosphates by pilot vertical-flow constructed wetlands using a mixture of sand and dolomite as substrate.Ecological engineering,2006,26(3):293-303
    [116]Berg U,Neumann T,Donnert D,et al.Sediment capping in eutrophic lakes efficiency of undisturbed calcite barriers to immobilize phosphorus.Applied Geochemisty.2004,19:1759-1771
    [117]Verhoeven J T A,Meuleman A F M.Wetlands for wastewater treatment:opportunities and limitations.Ecological Engineerign,1999,12(1-2):5-12
    [118]Ragusa S R,McNevin D,Qasem S,et al.Indicators of biofilm development and activity in constructed wetlands microcosms.Water Research,2004,38(12):2865-2873
    [119]付融冰,杨海真,顾国维,等.人工湿地基质微生物状况与净化效果相关分析.环境科学研究,2005,18(6):44-49
    [120]Vacca G,Wand H,Nikolausz M,et al.Effect of plants and filter materials on bacteria removal in pilot-scale constructed wetlands.Water Research,2005,39(7):1361-1373
    [121]Werker A G,Dougherty J M,McHenry J L,et al.Treatment variability for wetland wastewater treatment design in cold climates.Ecological Engineering,2002,19(1):1-11
    [122]Ferris M J,Muyzer G,Ward D M.Denaturing gradient gel electrophoresis of 16S rRNA-defined populations inhabiting a hot spring microbial mat community.Applied Environmental Microbiology,1996,62:340-346
    [123]White D C,Davis W M,Nickels J S,et al.Determination of the sedimentary microbial biomass by extractible lipid phosphate.Oecologia,1979,40:51-62.
    [124]吴振斌,周巧红,贺锋,等.构建湿地中试系统基质剖面微生物活性的研究.中国环境科学,2003,23(4):422-426
    [125]White D C.Bobbie R J,King J D,et al.Biochemical measurements of microbial mass and activity from environmental samples.Native aquatic bacteria:enumeration,activity and ecology.American Society for Testing and Materials,1979
    [126]冯峰,王辉,方涛,等.东湖沉积物中微生物量与碳、氮、磷的相关性.中国环境科学,2006,26(3):342-45
    [127]莫罹,黄霞等.粉末活性炭-MBR工艺处理微污染源水.中国给水排水,2002,18(12):16-19
    [128]Findlay R H,King G M,Watling L.Efficacy of phospholipids analysis in determining microbial biomass in sediments.Applied and Environmental Microbiology,1989,55:2888-2893
    [129]李今,马剑敏,张征,等.复合垂直流人工湿地中基质生物膜的特性.长江流域资源与环境,2006,15(1):54-57.
    [130]Mobarry,B K,M.Wagner,V.Urbain,et al.Phylogenetic probes for analyzing abundance and spatial organization of nitrifying bacteria.Applied Environmental Microbiology,1996,62(6):2156-2162.
    [131]苏俊峰,马放,王弘宇,等.利用PCR-DGGE技术分析生物陶粒硝化反应器中微生物群落动态.环境科学学报,2007,27(3):386-390
    [132]Truu J,Nurk K,Juhanson J,et al.Variation of microbiological parameters within planted soil filter for domestic wastewater treatment.Journal of Environmental Science and Health,2005,40(6-7):1191-1200
    [133]Cebron A,Coci M,Garnier J,et al.Denaturing gradient gel electrophoretic analysis of ammonia-oxidizing bacterial community structure in the lower Seine River:Impact of Paris wastewater effluents.Applied and Environmental Microbiology,2004,70(11):6726-6737
    [134]Park H D,Noguera D R.Evaluating the effect of dissolved oxygen on ammonia-oxidizing bacterial communities in activated sludge.Water Research,2004,38(14-15):3275-3286.
    [135]Kowalchuk G A,Stephen J R,Boer W D,et al.Analysis of ammonia-oxidizing bacteria of the beta subdivision of the class Proteobacteria in coastal sand dunes by denaturing gradient gel electrophoresis and sequencing of PCR-amplified 16S ribosomal DNA fragments.Applied and Environmental Microbiology,1997,63(4):1489-1497
    [136]李小鹏,张代均,曹琳,等.氨氧化菌在污水生物处理中的作用.给水排水,2004,20(5):24-27
    [137]Burrell P C,Phalen C M,Hovanec T A.Identification of bacteria responsible for ammonia oxidation in freshwater aquaria.Applied and Environmental Microbiology,2001,67(12):5791-5800
    [138]Bollmann A,Laanbroek H J.Influence of oxygen partial pressure and salinity on the community composition of ammonia-oxidizing bacteria in the Schelde estuary.Aquatic Microbial Ecology,2002,28(3):239-247
    [139]Purkhold U,Roser A,Juretschko S,et al.Phylogeny of all recognized species of ammonia oxidizers based on comparative 16S rRNA and amoA sequence anlysis:implications for molecular diversity surveys.Applied and Environmental Microbiology,2000,66(12):5368-5382
    [140] Bollmann A, Laanbroek H J. Continuous culture enrichments of ammonia-oxidizing bacteria at low ammonium concentrations. FEMS Microbiology Ecology, 2001, 37(3): 211-21
    [141] Stehr G, Bottcher B, Dittberner P, et al. The ammonia-oxidizing nitrifying population of the River Elbe estuary. FEMS Microbiology Ecology, 1995, 17(3): 177-186

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700