用户名: 密码: 验证码:
吉林省新立城水库农业非点源污染系统模拟与管理策略研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于近年来,随着经济全球一体化、生产效率的不断提高以及气候变迁等因素的影响和作用下,环境问题日益趋于严重,同时也吸引了越来越多的研究者参与环境治理的研究中。环境污染主要有点源与非点源两大污染类型,点源污染已经有相当丰富的治理技术和经验积累,非点源污染由于其发生范围的广泛性、成因的复杂性和模糊性、危害的滞后性以及研究治理的艰难性等特征也已成为研究的主要热点。我国作为世界的人口大国、农业大国,长期粗放型的农业生产经营模式,较低的生产力水平和环保意识,使得我国农业非点源污染隐患较深。吉林省是我国主要的粮食产区之一,其在追求粮食高产的过程中大量投施化肥农药等有机化学物质,仅农田化肥施用强度单向指标就远高于全国平均水平。为实现农业可持续发展,建立环境友好型的社会,治理和保护农业生态环境已成为迫在眉睫的主要任务。本论文是基于以上背景下展开的。
     本文在构建吉林省新立城水库流域的农业非点源AnnAGNPS模型的过程中,通过数据统计计算、文献资料整理确定了构建新立城水库流域农业非点源污染模型的相关输入参数。其中包括利用STRM卫星图片建立数字高程图(DEM);利用吉林省土肥站提供的1:25万土壤信息图来提取新立城库区流域土壤参数;利用长春市土地规划局提供的新立城库区土地利用图来制作了相关的数字土地利用图;通过计算和统计数据整理确定化肥、农药、土壤可侵蚀性因子K值以及降雨侵蚀力R等主要参数的值;通过对2008年全年的气象数据进行统一输入编辑得到了关于气候数据的dayclim.inp文件。运行模型得到了流域内泥沙侵蚀量、总氮输出和总磷输出,并对降雨量同三者进行了相关分析。基于以上研究基础,提出了针对新立城水库流域非点源污染的管理策略。
In environmental pollution, the research of point source pollution has been already maturer in the domestic and foreign area, and its controlling technology and the managing experience are quite rich. Nowadays, the non-point source pollution is taking more and more attention of researchers around the world because its pollution area is big, pollution is complicated and serious compared to the point source pollution. Studies have shown that non-point source pollution is the major problem of causing surface water pollution, and the most important thing is that fertilizers, pesticides and other organic matter in agricultural process make the largest contribution to non-point source pollution.
     China has large population, the government has long been in the implementation and advocacy of the policy --“food as the key link”in order to solve the problem of 1.3 billion people. As the“three treasure”of agriculture increase both production and income, pesticides,fertilizers and improved varieties are performing important roles in the process of solving the problem of grain.
     However, pesticides and fertilizers brought many environment pollution problems as the same time of helping agricultural income. Many of our lakes, rivers appear ecology pollution disaster such as blue-green algae and red tide because we overused organic substances like fertilizers for a long time. As our agricultural non-point source pollution research got off to a late start, it has many long-standing problems. So it is particularly important that reducing and controlling of pollution and studying the way be suited to China agricultural non-point pollution with its managing measure.
     Jilin province, as China’s important commodity grain base, is more and more dependent on large inputs of fertilizers and pesticides in recent years as the farmers wants to maximize their economic benefits with the continents improvement on grain price and production. Over fertilization and pesticide residues has already become the major killer of environmental pollution. At the same time, global warming trends are becoming more and more evident, Jilin Province where located in north-easten area have clear phenomenon in the past few years of rainfall decrease and temperature increase and so on.
     As Xinlicheng reservoir is the important water supply source of Changchun City which short of water, how to protect existing surface water reservoir, ensure domestic water safety and satisfy the needs of agricultural manufacturing water are the important subject of current research, especially the agricultural non-point pollution, furthermore it has far-reaching practical significance to water pollution of Xinlicheng reservoir especially agricultural non-point pollution’s systemic research.
     This paper take Changchun Xinlicheng reservoir as the object of study, investigate the natural resources, climate characteristics and social attributes as well as agricultural production of this area, and conducted a study of the following points through large amounts of data reading, data acquisition with the combination of non-point source pollution software AnnAGNPS and the support of geographical information technique GIS.
     1. To set up Xinlicheng reservoir area basin agricultural non-point pollution model’s related input parameters through data count analyses and documentation arrange including digit elevation chart establishment, Xinlicheng reservoir basin soil parameter collection using 1:250,000 soil information chart from the soil department of Jilin Province, digital soil utilization chart production with the help of Xinlicheng reservoir area soil utilization from Jinlin Province soil project office. To ensure the value K the corrosive factor of fertilizers, pesticides and soil and value R the corrosive factor of rainfall and to get climate tax bureau’s dayclim.inp document through the past climate data’s unite input and edit.
     2. To get this research area basin total nitrogen, the total phosphorus and silt total output through establishing and operation of Xinlicheng reservoir basin agricultural non-point pollution AnnAGNPS model. This practice study period is from Jan. 2008 to Dec. 2008, during the time, total nitrogen output is 75.24 tons, total phosphorus output is 355.75 tons and the silt total output is 47596.32 tons. Months from May to Sep in a year are the major pollution load time, above 85% of the year total output.
     3. The adoption of agricultural non-point source model of the reservoir area Xinlicheng basin modeling, the study area on agricultural non-point source pollution in the region, which make the region suitable for agricultural non-point source pollution management strategy. This article is based on watershed management, through the vigorous promotion and popularization of agricultural non-point source pollution of knowledge, focused on pollution in the regional construction of non-point source pollution model, as well as the construction of terraced fields in line with local conditions, isolation buffer strips, straw and other agricultural food technology to the comprehensive management of Xinlicheng reservoir non-point source pollution problems.
引文
[1]章立建,朱立志.我国农业立体污染防治对策研究[J].农业经济问题,2005(2): p4-7
    [2]章立建,侯向阳,杨正礼.当前我国农业立体污染防治研究的若干重要问题[J].中国农业科技导报, 2005. 7(1): p3-6.
    [3]刘毅,赵永新.中外专家呼吁:农业面源污染已到非治不可地步.人民网http://www.people.com.cn/GB/huanbao/35525/2959668.html 2004.
    [4]崔键,马友华,赵艳萍等,农业面源污染的特性及防治对策.中国农学通报, 2006.22(1):p:335-340.
    [5]牛志明,解明曙.非点源污染模型在土壤侵蚀模拟中的应用和发展动态[J].北京林业大学学报.2001,23(2)78-84.
    [6]Wes Byne, Predicting Sediment Detachment and Channel Scour in the Process -Based Planning Model ANSWERS-2000 , 2000,Blacksburg,Virginia
    [7]胡雪涛,陈吉宁,张天柱.非点源污染模型研究[J].环境科学,2002,23(3):124-128
    [8]王艳芳.土壤氮素转化与运移理论的研究进展[J].宁夏农学院学报,2004, 25(1): 53-56
    [9]李怀恩,沈晋.非点源污染数学模型[M].西安:西北大学出版社,1996.
    [10]李怀恩,沈冰,沈晋.暴雨径流污染负荷计算的响应函数模型[J].中国环境科学,1999(01)15-18.
    [11]张瑜芳,张蔚榛.排水农田中氮素运移、转化及流失规律的研究[J].水动力学研究与进展,1996,11(3):251-260.
    [12]陈欣,郭新波.采用AGNPS模型预测小流域磷素流失的分析[[J].农业工程学报,2000,16(5):44-47.
    [13]吕唤春.千岛湖流域农业非点源污染及其生态效应的研究[D].浙江大学,2002:3-46.
    [14]陈国湖.农业非点源污染模型AGNPS及GIS的应用[J].人民长江,1998, 29(4):20-22.
    [15]陈欣,郭新波.采用AGNPS模型预测小流域磷素流失的分析[J].农业工程学报, 2000,16(5):44-47.
    [16]王飞儿,吕唤春,陈英旭等.基于AnnAGNPS模型的千岛湖流域氮、磷输出总量预测[J].农业工程学报,2003,19(6):281-284.
    [17]毛战坡,彭文启,尹澄清等.非点源污染物在多水塘系统中的流失特征研究[J].农业环境科学学报,2004,23(3):530-535
    [18]孙权,郑正,周涛.人工湿地污水处理工艺[J].污染防治技术,2001,14(4): 20-23.
    [19]刘雯,崔理华,朱夕珍等.水平流—垂直流复合人工湿地系统对污水的净化效果研究.农业环境科学学报, 2004,23(3):604-606
    [20]陈泽坦,刘奎.有害生物综合治理( IPM)与可持续农业[J].热带农业科学, 2000, 86(4):69-82.
    [21]杨开宝,郭培才.梯田田埂水分耗散及其对作物产量的影响初探[J].水土保持通报,1994,14(4):43-47
    [22]仓恒瑾,许炼峰,李志安等,农业非点源污染控制中的最佳管理措施及其发展趋势[J],生态科学,2005,2(24),173-177
    [23]经济合作与发展组织.税收与环境:互补性政策[M].北京:中国环境科学出版社, 1996,41-42
    [24]胡雪涛,陈吉宁,张天柱.非点源污染模型研究[J].环境科学,2002,23 (3):124-128.
    [25]Knisel W G. CREAMS: a field scale model of chemicals, runoff and erosionfrom agricultural management system[R]. Report No.26.ARS,USDA,1980.
    [26]Knisel W G.Davis F M.Leonard R A, et al.GLEAMS version 2.10.USDA-ARS, Coastal plain[R]. Experiment Station.Southeast Watershed Research Laboratory. Tifton, Georgia, 1993.
    [27] Skaggs R W. DRAINMOD reference report [R]. Interim technical release, Biological and Agricultural Engineering Department, North Carolina State University, Raleigh NC, 1989.
    [28] Hutson J L , Wagenet R J. L EACHM: leaching estimation and chemistry model: a process based model of water and so lute movement transformations, plant up take and chemical reactions in the unsaturated zone [R ]. SCAS Research Series No. 92- 3. New York: Cornell University, Ithaca, N Y, 1992.
    [29]A huja L R, DeCoursey D G, Barnes B B, et al. Characteristics of macrospore transport studied with the ARS root zone water quality model [J]. Transactions of the ASAE,1993, 36: 369-380.
    [30]陈欣,郭新波.采用AGNPS模型预测小流域磷素流失的分析[J].农业工程学报, 2000,16(5):44-47.
    [31]王中根,刘昌明,黄友波.SWAT模型的原理、结构及应用研究[J].地理科学进展,2003,22(1):79- 86.
    [32]李怀恩,沈晋.非点源污染数学模型[M].西安:西北大学出版社,1996.
    [33]李怀恩,沈冰,沈晋.暴雨径流污染负荷计算的响应函数模型[J].中国环境科学, 1998(01) :15-18.
    [34]张瑜芳,张蔚榛.排水农田中氮素运移、转化及流失规律的研究[J].水动力学研究与进展,1996,11(3):251-260.
    [35]陈欣,郭新波.采用AGNPS模型预测小流域磷素流失的分析[[J].农业工程学报,2000,16(5):44-47.
    [36]吕唤春.千岛湖流域农业非点源污染及其生态效应的研究[D].浙江大学, 2002:3-46.
    [37]陈国湖.农业非点源污染模型AGNPS及GIS的应用[J].人民长江, 1998, 29(4):20-22.
    [38]陈欣,郭新波.采用AGNPS模型预测小流域磷素流失的分析[J].农业工程学报, 2000,16(5):44-47.
    [39]王飞儿,吕唤春,陈英旭等.基于AnnAGNPS模型的千岛湖流域氮、磷输出总量预测[J].农业工程学报,2003,19(6)281-284.
    [40]闰志刚,盛业华,左金霞.3S技术及其在环境信息系统中的应用.测绘通报, 2001,增刊:17-20
    [41]李怀恩.透水性流域非点源污染模型的初步研究[J].水利学报,1998(2) :16-19
    [42]李本纲,陶澎.地理信息系统在环境研究中的应用[J].环境科学,199819(3):87-90
    [43]王宏伟,程声通.多媒体3S综合集成技术及在环境科学中的应用[J].环境科学,1998,19(2):83-86
    [44]周慧平,许有鹏,葛小平.GIS支持下非点源污染模型应用分析.水土保持通报, 2003,23(3):60一63
    [45] He C,Riggs J F,Kang Y T. Integration of geographic information systems And a computer model to evaluate impacts of agricultural runoff on water quality. Water Resource Bulletin,1993,29(6):891一900
    [46]吉林省2007年环境状况公报:2007吉林省环境信息网http://hbj.jl.gov.cn/ghcw/hjtj/zlgb/200806/P020080604556604984708.doc 2008
    [47]胡远安,程声通等.遥感与GIS辅助下的非点源模型空间参数提取[J].重庆环境科学.2003,25(10):7—11
    [48]吴鹏鸣,姚荣奎等.环境监测原理与应用[M].北京:化学工业出版社,1995.
    [49]阎吉祥,龚顺生等.环境监测激光雷达[M].北京:科学出版社,2001.
    [50]王伟武,朱利中等.基于3s技术的流域非点源污染定量模型及其研究展望[J].水土保持学报.2002,16(6):39-44
    [51]史志华,蔡崇法等.基于GIS的汉江中下游农业面源氮磷负荷研究[J].环境科学学报,2002,22(4):473-477.
    [52]Rabus B, Eineder M, Roth A, et al. The shuttle radar topography mission a new class of digital elevation models acquired by spaceborne radar [J]. ISPRS Journal of Photogrammetry&Remote Sensing, 2003,57:241-262.
    [53]United States Geological Survey. Shuttle Radar Topography Mission docum- entation: SRTM Topo[EB /OL]. http: //edcftp.cr.usgs.gov/pub/data/srtm/Documentation/SRTM_Topo.txt.2003.
    [54]何电源.农业生态系统的养分平衡是可持续农业的重要条件[J].农业现代化研究,1999,20(4):241-243.
    [55]王淑平,周广胜等.土壤微生物量氮的动态及其生物有效性研究[J].植物营养与肥料学报,2003,9(1):87-90.
    [56]何电源.中国南方土壤肥力与作物栽培施肥[M].北京:科学出版社,1994.
    [57]张效朴,李伟波.吉林黑土上肥料施用量对玉米产量及肥料利用率的影响[J].玉米科学,2000,8(2):70-74.
    [58]改革30年吉林省粮食生产能力显著提高,吉林信息网. http://www.jllssc.com/htm/llfy.asp?bt01=20092131448240 2009
    [59]Richardson C W,Foster G R,Wright D A. Estimation of erosion index from daily rainfall amount. Transactions of the ASAE,1983.26(1):153-156.
    [60]Wischmeier W H,Mannering J V.Relating of soil prosperities to it serodibility [J]. Soil Science Society of American Proceedings, 1969, 33(1): 131-137
    [61]贾宁凤,基于AnnAGNPS模型的黄土高原小流域土壤侵蚀和养分流失定量评价[D].北京:中国农业大学,P53
    [62]Wischmeier W H,Johnson C B and Cross B V. A soil erodibility monographs for fearmland and construction sites [J]. Soil Water Conser,1971,26:189-193.
    [63]林芳荣,李学灵,吴亚蒂.面污染源管理与控制手册[M].广州:科学普及出版社广州分社,1987
    [64] Novotny N,Olem H.Water Quality:Prevention,Identification,and Management of Diffuse Pollution[M].Van Mostrand Reinhold,New York,l993
    [65]贺缠生,傅伯杰,陈利顶.非点源污染的管理及控制[J].环境科学,1998,19(5): 87-91.
    [66]王晓燕.非点源污染及其管理[M].北京:海洋出版社,2003.
    [67]高超,朱继业,窦贻俭等.基于非点源控制的景观格局优化方法与原则[J].生态学报,2004,24(1):109-116.
    [68]周慧平,高超,朱晓东.关键源区识别:农业非点源污染控制方法[J].生态学报, 2005,25(12):3368-3374
    [69]Sivertun A,Prange L. Non-point source critical area analysis in the Gissel watershed using GIS [J]. Environmental Modelling&Software,2003,18: 887-898.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700