用户名: 密码: 验证码:
针阵列对板电晕放电及其与催化结合脱硝研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文对针-板式直流电晕放电电极间距进行优化,修正推导伏安关系式,并使用光学发射光谱进行电晕放电微观特性研究;将电晕放电与TiO_2光催化剂以及一种MnO_x催化剂耦合协同作用去除NO_x,并初步分析了去除机理。
     绪论中首先给出了电晕放电定义、分类,综述了各类电晕放电在环境污染治理中的应用现状,并指出它们的优点和缺点。然后对光学发射光谱法OES诊断等离子体研究进展进行了综述,认为目前国内外用OES法对针板式直流电晕放电的研究尚未开展,针板式直流电晕放电的微观特性需深入研究。接着着重对低浓度NO_x的危害和污染现状进行了综述,得出低浓度NO_x危害隐蔽而持久,更为广泛且难以防范,开展对低浓度NO_x去除的研究工作势在必行。最后对等离子体法和催化法脱硝现状进行了综述,认为两种方法在脱硝过程中存在诸多缺陷,指出将二者结合共同作用是脱硝的未来发展方向,提出用针阵列对板电晕放电、纳米TiO_2和MnO_x三者协同作用去除低浓度NO_x。
     以放电功率密度大小为判据,兼顾放电稳定性,分别考察针板间距d_(NP)和相邻针尖间距d_(NN)对针-板式直流电晕放电的影响,确定最佳相邻针尖间距约为20mm,最佳针板间距为20-30mm,以此为根据设计出优化的放电反应器结构。
     近似推出针对板直流电晕放电伏安关系式为c=I/U(U-U_s),测量最优电极结构下电晕放电的伏安特性,根据测得的U、I值作出c-U曲线,以c-U曲线形状为判据区分放电阶段。考察针尖半径α对伏安特性的影响,发现只有当α约为1mm时实验曲线c-U中平滑段c值与计算结果相吻合,用U_c代替伏安关系式中的U_s,修正推导得到针-板式电晕放电伏安关系式为,I≈(?)。综合考虑放电区能量密度和放电稳定性,得到最佳针尖半径为小于等于lmm。最后考察了相对湿度对伏安特性和放电稳定性的影响。
     利用光学发射光谱仪对多针对板电晕放电中放电间隙内的N_2发射光谱进行测量,放电反应器置于暗箱中以避免外界对光谱测量的影响,将光谱仪的光纤耦合入口固定在暗箱侧壁的小孔内,小孔孔径为光纤耦合入口直径(为lmm),在小孔前方安装孔径为1.1mm的细直管,只采集与光纤耦合入口在同一直线上的发光,避免放电区其它区域的发光被同时接收。反应器可上下和左右移动,发射光谱单次测量可得到光纤耦合入口所在直线上的光强之和。用内层光强之和减去外层光强之和,得到针尖周围各点处光谱强度,由此确定了电离区形貌。分析得到高能电子数n_e与光谱强度成正比,故电离区内高能电子分布被确定。N_2的第二正带跃迁发射光谱强度I_(SPB)在电离区内的总和(?)与放电电流近似成正比,计算确定了(?)与n_e之间的数值关系,提出一种通过测量电晕放电电离区内I_(SPB)的大小粗略测定n_e的方法。
     用微弧放电法制备和固定TiO_2,达到TiO_2制备和固定一次完成,得到的TiO_2粒径为纳米级,同时机械强度高。将制得的TiO_2作为地电极,实现电晕放电与光催化剂耦合PPC,共同作用去除较低浓度NO_x。将PPC对NO_x的去除效果与单纯使用电晕放电的去除效果进行比较,并考察了放电极性、放电功率对PPC去除NO_x效果的影响。PPC法脱硝在放电功率较高时仍具有较高的能量效率,解决了等离子体放电脱硝中放电功率高则能量效率低的问题。对正电晕放电产生NO_x的规律和机理进行了初步研究,认为电晕放电自身产生NO_2,故PPC无法完全脱除NO_2。
     将以硅铝分子筛为载体、掺杂Fe等过渡金属的MnO_X催化网安装在PPC装置后以完全去除NO_2,对MnO_x催化网对NO_2的去除效果和使用寿命进行了考察。对使用前后的MnO_x催化网进行线性扫描和红外光谱分析,得到使用后催化剂比表面积、总孔容和总孔面积明显减小,N-O键增多,初步分析认为NO_2被MnO_x催化网去除的机理为先吸附后发生催化反应为酸。
In this thesis, the distance of the discharge electrode for multi-needle-to-plate dc corona discharge has been optimized. The voltage-current relationship has been been modified and re-deduced. The microscopic characteristics of corona discharge are studied using optical emission spectrometry. Corona discharge is used to remove NO_x coupling with TiO_2 photocatalyzer and a kind of MnO_x photocatalyzer, and the removal mechanism is analysised preliminarily.
     Firstly, the definition and classification of corona discharge is given in introduction. The application status of various corona discharges in environmental pollutuion control is overviewed, and their advantages and disadvantages are pointed out. Then the research progress of plasma diagnostics using optical emission spectrophy (OES) is overviewed and it is safely to say that the study of needle-to-point dc corona discharge using OES has not yet been developed, the microscopic characteristics of needle-to-point dc corona discharge need to be further studied. The pollution status of low concentration NO_x is emphatically overviewed. The harm of low concentration NO_x is thought to be concealed and persistent. Furthermore, since the wide existence of low concentration NO_x cause great difficulty in its preventing, it is imperative to develop the removal research. Finally, the denitration status using plasma and catalytic methods are overviewed respectively and it is found out that these two methods are characterized by various defects when singly applied. Based on the above investigation, it is believed that making them coupling is the development direction of denitration in future. Thus a method using muti-needle-to-plate corona discharge, TiO_2 and MnO_x coupling to remove low concentration NO_x is proposed accordingly.
     The effects of the distances of needle-to-plate d_(NP )and those of needle-to-needle d_(NN) on point-to-plate dc corona discharge are investigated to achieve the greatest discharge power density and also the best discharge stability. The optimal distances of d_(NP) and d_(NN) are determined as 20-30mm and 20mm respectively. Then the optimal structure of discharge reactor is designed accordingly.
     The voltage-current relationship is deduced as c=I/U(U-U_s) approximately, and the voltage-current characteristics in optimal discharge reactor structure are detected. c-U curves are obtained according to U and I, and the discharge stages are distinguished from the shape of c-U curve. The effect of needlepoint radiusαon voltage-current characteristics is investigated, and find out that only whenαis let to be 1mm, the calculateion value of c is in agreement with the value in c-U curve smooth stage. Using U_c to replace U_s, the voltage-current relationship of point-to-plate corona discharge ismodified to be I≈(?). In respect of both discharge power densityand the discharge stability comprehensively, the optimal value ofαis decided to be less than 1mm. At last, the effects of RH on voltage-current characteristics and discharge stability are investigated.
     The emission of N_2 in discharge gap is detected using optical emission spectrophy. The discharge reactor was put in lightproof box to avoid the disturbance from outside lights. A small hole was drilled in one sidewall of the box, and the fibre was mounted coupling to the inlet (1mm) into the hole. A tube with the inner diameter of 1.1mm was set in the front of the hole. In this way, only the light from a certain direction emitted from the discharge reactor could transfer into the inlet through the tube. The reactor could be moved in the vertical direction of the fibre, and the spectrometry can collect the total emission along the fibre inlet in single-shot measurement. The spectral intensity at every point around needlepoint is obtained by subtracting the sum of emission at outer layer from the sum at inner layer, and the morphology of ionization region is determined. The analysis result shows that the number of energetic electron n_e is near liner to spectral intensity, so the distribution of energetic electron is determined.The sum intensity (?) of N_2 second positive band peak I_(SPB) in ionization region is found to be liner to I approximately, and the numerical relations between (?) and n_e is determined through calculating. Then a method for measuring n_e through detectingI_(SPB) in ionization region is presented.
     Use micro-arc discharge to prepare TiO_2 photocatalyzer. By this method, TiO_2 preparation and laden are fulfilled in one step, and TiO_2 are of nano particle size and fine mechanical strength. Using this TiO_2 plate as ground electrode to obtain one kind method for corona discharge and photocatalysis coupling (PPC), and PPC is applied to remove low concentration NO_x. The removal effect of NO_x by PPC is compared with that by corona discharge alone, and the influences of discharge polarity and discharge power to the plasma-photocatalysis synergistic effect are also investigated. The result shows that PPC still has relative higher energy efficiency when discharge power is high, which resolves the problem of lower energy efficiency in DeNO_x using plasma method. The production principle and mechanism of NO_x by positive corona discharge is analyzed, and it is found that positive corona discharge can produce NO_2, so PPC cannot remove NO_2 completely.
     MnO_x catalytic gauze is installed behind the PPC device, which hopes to remove NO_2 completely. MnO_x is supported by silicon-aluminium molecular sieve and doped with transition metals such as Fe. Removal effect and service life of MnO_x on NO_2 is detected. MnO_x catalytic gauzes are analyzed using BET、SEM and IR before and after treatment. The result shows that the specific surface area, total pore volume and average pore size of MnO_x reduce dramatically, and the infrared absorption band of N-O enhances. The removal mechanism of NO_2 using MnO_x catalyzer is preliminarily believed as absorption-catalysis process.
引文
[1] 徐学基,诸定昌.气体放电物理.上海:复旦大学出版社,1992.
    [2] 朱益民.正直流流光放电等离子体源装置.中国,实用新型,00201301.0.2000.
    [3] 王学海,方向晨.烟气同时脱硫脱硝的研究进展.当代化工,2008,37(2):197-199.
    [4] S. Masuda, M. Hirano, K. Akutsu. Enhancement of electron beam denitrization process by means of electric field. Radiat. Phys. Chem., 1981, 17: 223-228.
    [5] A. Mizuno, J. S. Clements, R. H. Davis. Combined treatment of SO_2 and high resistivity fly ash using a pulse energized electron reactor. Proc. Ind. Int. Conf. Tokyo, Japan: Electrostatic Precipitation, 1984. 879-885.
    [6] G. Dinelli, L. Civitano, M. Rea. Industial experiments onpulse simultaneous removal of NO_x and SO_x from flue gas. IEEE Trans. Ind. Appl., 1990, 26 (3): 535-541.
    [7] Y. H. Lee, W. S. Jung, Y. R. Choi. Application of pulsed corona induced plasma chemical process to an industrial incinerator. Environ. Sci. Technol., 2003,37 (11): 2563-2567.
    [8] 吴祖良,高翔,李济吾等.电晕放电自由基簇射同时脱硫脱硝反应特性研究.高校化学工程学报,2008,22(2):325-331.
    [9] J. S. Chang, K. Urashima, Y. X. Tong et al. Simultaneous removal of NO_x and SO_2 from coal boiler flue gases by DC corona discharge ammonia radical shower systems: pilot plant tests. J. Electrostat, 2003, 57 (3-4): 313-323.
    [10] 董冰岩,张大超.脉冲放电烟气脱硫脱硝技术研究进展.环境污染治理技术与设备 2006,7(9):17-20.
    [11] 林和健,林云琴.低温等离子体技术在环境工程中的研究进展.环境技术,2005,1:2l-24.
    [13] 梁文俊,李依丽,王艳磊,张书景,金毓(山人王).低温等离子体法去除苯和甲苯废气性能研究.环境污染治理技术与设备,2005,6(5):5l-55.
    [14] 袁学远,陶冶,刘培英.直流电晕放电降解甲苯的特性研究.环境污染治理技术与设备,2006,7(8):l20-123.
    [15] 胡平,孙春宝,丁德玲.脉冲电晕法去除甲苯废气的研究.安全与环境工程2007,14(2):68-71.
    [16] 丁德玲,胡平,孙春宝.脉冲电晕法去除二甲苯废气的研究中国环保产业,2007,3:35-42.
    [17] 魏长宽,李靖,朱天乐,李凤岐.能量注入对放电等离子体去除气相苯系物的影响.环境工程学报,2008,2(2):239-242.
    [18] 黄立维,陈金媛,松田仁树.线-筒式脉冲电晕反应器降解三氯乙烯废气研究.高校化学工程学报,2007,21(4):689-694.
    [19] 李坚,李洁,梁文俊,等.等离子体法去除甲醛的实验研究,高电压技术,2007,33(2):171-173.
    [20] 李战国,胡真,赵新胜,等.非平衡等离子体治理有机含磷气体的实验研究.安全与环境学报,2006,6(1):84-86.
    [2l] 季金美,M.A.Malik,姜玄珍.脉冲电晕放电降解CFC-113和CCl_4.环境科学,1999,9:52-54.
    [22] 冉振亚,夏刚,吴海淘,白裕彬.非平衡等离子体净化发动机尾气的研究.车用发动机,2007,168(2):62-64.
    [23] 王伟,杜传进,徐翔.等离子体净化柴油车尾气的能耗研究.武汉理工大学学报,2005,27(12):93-95.
    [24] 王建明,袁武建,汤启丰,等.等离子体技术在恶臭净化中的应用.能源环境保护,2005,19(4):33-35.
    [25] 施耀,阮建军,李伟,等.乙硫醇在脉冲电晕反应器内的降解特性.化学反应工程与工艺,2004,20(4):316-321.
    [26] 李战国,胡真,闫学锋.低温等离子体治理 H_2S 污染的实验研究.环境污染治理技术与设备,2006,7(10):106-108.
    [27] 聂勇,李伟,施耀,等.脉冲放电等离子体治理炼油厂恶臭气体研究.环境科学学报,2004,24(4):672-677.
    [28] 张国兰,耿世彬,杜雁霞.低温等离子体去除室内气态污染物的发展现状.洁净与空调技术,2004(1):11-14.
    [29] M. Okubo, T. Yamamoto et al. Electric air cleaner composed of non-thermal plasma reactor and electrostatic precipitator. IEEE Trans on IA, 2001, 37 (5): 1505-1511.
    [30] 王晓明,史文祥,赵莹,等.等离子体室内空气净化技术研究进展.高电压技术,2004,30(1):48-51.
    [3l] 罗跃辉,杨兰均,冯允平,等.放电等离子体空气灭菌净化技术的研究.高电压技术,2001,27(5):39-40.
    [32] 朱益民.非热放电荷电净化餐饮油烟装置研究.环境保护科学,2003,29(4):l-4.
    [33] 朱益民,孔祥鹏,陈海丰,等.针阵列对板电晕放电捕集微粒研究.北京理工大学学报,2005,128(25):137-140.
    [35] 朱益民,孔祥鹏,张卓然,等.针阵列对板电晕放电对副流感病毒灭活的研究.北京理工大学学报,2005,128(25):165-168.
    [36] 朱益民,王晓臣,公维民.非热放电对室内空气净化效果研究.中国消毒学杂志,2004,2l(3):213-215.
    [37] L. Matti, P. Peeter. The multi-avalanche nature of streamer formation in inhomogeneous fields. J. Phys. D: Appl. Phys., 1994,27(5): 970-978.
    [38] P. A. Vitello, B. M. Penetrante, J. N. Bardsley. Multi-dimensional modeling of the dynamic morphology of streamer corona. Non-Thermal Plasma Techniques for Pollution Control, Penetrate B M & Schultheis S E (Ed.), 1993, G34 (A): 249-272.
    [39] P. A. Vitello, B. M. Penetrante, J. N. Bardsley. Simulation of negative streamer dynamics in nitrogen. Phys. Review E, 1994,49(6): 5574-5598.
    [40] C. R. Vidal, J. Cooper, E. W. Smith. Hydrogen Stark-broadening tables. Astrophys. J. Suppl.,1973, 25 (214): 37-136.
    [41] J. Torres, J. Jonkers, M. J. Van de Sande et al. An easy way to determine simultaneously the electron density and temperature in high-pressure plasmas by using Stark broadening. J. Phys. D, 2003,36 (13): 55-59.
    [42] R. B. Gadri. One atmosphere glow discharge structure revealed by computer modeling. IEEE Trans. Plasma Sci., 1999,27 (1): 36-37.
    [43] F. Massines, A. Rabehi, P. Decomps et al. Experimental and theoretical study of a glow discharge at atmospheric pressure controlled by dielectric barrier. J. Appl. Phys., 1998, 83 (6): 2950-2957.
    [44] 王艳辉,王德真.介质阻挡均匀大气压辉光放电数值模拟研究.物理学报,2003,52(7):1694-1700.
    [45] M. Akyuz, A. Larsson, V. Cooray et al. 3D simulations of streamer branching in air. J. Electrostat, 2003,59: 115-141.
    [46] K. Adamiak, P. Atten. Simulation of corona discharge in point-plane configuration. J. Electrostat, 2004,61: 85-98.
    [47] R. Barni, P. Esena, C. Riccardit. Chemical kinetics simulations of an atmospheric pressure plasma device in air. Surface & Coatings Technology, 2005,200: 924-927.
    [48] 王文春,隋淑萍.正脉冲电晕放电SO_2产生的SO(A~3Π→X~3∑)发射光谱研究.吉林工学院学报,1997,18(1):1-4.
    [49] 王文春,吴彦,李学初.(SO_2,N_2)气体中脉冲放电SO发射光谱测量实验研究.分子科学学报,1999,15(1):l-5.
    [50] 王文春,吴彦,李学初,等.NO,N_2气体中电晕放电高能电子密度分布的光谱实验研究.环境科学学报,1998,18(1):51-55.
    [51] 吴桂林,雷明凯,刘延伟,等.等离子体基低能离子注入的光谱诊断.分析测试学报,1998(17):1-4.
    [52] J. L. Zhang, X. L. Deng, P. S. Wang et al. Emission spectrum diagnostics of argon DC discharge. Vacuum, 2000, 59 (1): 80-87.
    [53] 刘莉莹,张家良,马腾才,等.用发射光谱法测量氮气直流辉光放电的转动温度.光谱学与光谱分析,2002,22(16):1013-1018.
    [54] 闫颖,王宁会,李春荣,等.空气中高压脉冲电晕放电N_2的光谱实验研究.仪器仪表与分析监测,2004,(1):40-42.
    [55] 肖重发,徐勇,王文春,等.氮气大气压介质阻挡放电发射光谱诊断.大连理工人学学报,2004,(44):625-629.
    [56] 王文春,刘峰,张家良,等.利用发射光谱研究脉冲电晕放电中的自由基.光谱学与光谱分析,2004,24(11):1288-1292.
    [57] 孙明,吴彦,李杰,吴疆,等.低温等离子体烟气脱硫中OH自由基发生装置研究.大连理工大学学报,2004,(44):26-30.
    [58] 孙琪,朱爱民,牛金海,等.介质阻挡放电引发氮氧化物等离子体化学反应.物理化学学报,2005,21(2):192-196.
    [59] 闫颖,王宁会,李春荣,等.空气中脉冲电晕放电N_2(C~3Π_u-B~3Π_g)发射光谱的实验研究.中国测试技术,2005,31(2):43-44.
    [60] 孙明,吴彦,张家良,等.空气电晕放电中的OH自由基发射光谱.光谱学与光谱分析,2005,25(1):108-112.
    [6l] 孙明,吴彦.OH自由基提高电晕放电烟气脱硫效率的研究.北京理工大学学报,2005,25(Supp):197-199.
    [62] 刘晶,牛金海,徐勇,朱爱民,孙琪,聂龙辉.介质阻挡放电等离子体去除氮氧化物的发射光谱研究.物理化学学报,2005,21(12):1352-1356.
    [63] 唐晓亮,邱高,王良,等.介质阻挡放电等离子体发射光谱的检测分析.光散射学报,2006,118(12):156-160.
    [64] 王良,唐晓亮,邱高,等.发射光谱法测量常压介质阻挡放电氩等离子体的放电参数.大学物理,2006,25(2):58-60.
    [65] 唐晓亮,邱高,冯贤平,等.利用发射光谱进行常压介质阻挡放电等离子体诊断及其在材料表面改性上的应用.光散射学报,2005,17(1):19-21.
    [66] 唐晓亮,冯贤平,黎志光,等.常压介质阻挡放电等离子体发射光谱诊断及其在材料表面改性中的应用.光谱学与光谱分析,2004,124(11):1437-1440.
    [67] 戴乐阳,曹彪,曾美琴,等.用于材料表面改性的空气介质阻挡放电发射光谱研究.中国表面工程,2007,20(1):11-16.
    [68] 赵文华,张旭东,姜建国,等.尖板电晕放电光谱分析.光谱学与光谱分析,2003,23(5):955-957.
    [69] 李立春,董丽芳,杨丽,等.混合气体放电中等离子体发射光谱诊断.河北大学学报(自然科学版),2007,27(Supp),39-41.
    [70] 李慧玉,施芸城,冯贤平,等.潘宁型放电等离子体的发射光谱分析.物理实验,2005,25(7):15-17.
    [7l] 葛自良,马宁生.低温等离子替放电管发光光谱的检测分析.电工技术学报,2004,19(4):98-100.
    [72] D. J. Graham, J. Ch. Luo. Emission spectroscopy of nitrogen in a supersonic discharge N_2(X~l∑_g~+, v") vibrational distributions revealed by Penning ionization/first negative group spectra. Chemical Physics Letters, 1992,199 (5): 426-430.
    [73] V. M. Polushkin, A. T. Rakhimov, V. A. Samorodov et al. OES study of plasma processes in dc discharge during diamond film deposition. Diamond and Related Materials, 1994, 3 (11-12): 1385-1388.
    [74] G. Durry, G. Guelachvili. N_2 (B-A) Time-resolved fourier transform emission spectra from a pulsed microwave discharge. Journal of Molecular Spectroscopy, 1994, 168 (1): 82-91.
    [75] A. Bogaerts, R. Gijbels, J. Vlcek. Modeling of glow discharge optical emission spectrometry: Calculation of the argon atomic optical emission spectrum. Spectrochimica Acta Part B: Atomic Spectroscopy, 1998, 53 (11): 1517-1526.
    [76] M. Simek, V. Babicky, M. Clupek et al. Excitation of N_2(C~3Π_u) and NO(A~2Σ~+) statesina pulsed positive corona discharge in N_2, N_2-O_2 and N_2-NO mixtures. P. Journal of Physics D: Applied Physics, 1998, 31 (19): 2591-2602.
    [77] M. Simek, S. Debenedictis, G. Dilecce et al. Time and space resolved analysis of N_2(C~3Π_U) vibrational distributions in pulsed positive corona discharge. Journal of Physics D: Applied Physics, 2002, 35 (16): 1981-1990.
    [78] M. Simek. The modelling of streamer-induce demission in atmospheric pressure, pulsed positive corona discharge: N_2 second positive and NO-γ systems. Journal of Physics D: Applied Physics, 2002, 35 (16): 1967-1980.
    [79] M. Simek, M. Clupek, V. Babicky et al. Production of reactive species by atmospheric pressure streamers in N_2-O_2 mixtures.Pure and Applied Chemistry, 2006, 78 (6): 1213-1225.
    [80] S. V. Pancheshnyi, S. V. Sobakin, S. M. Starikovskaya et al. Discharge dynamics and the production of active particles in a cathode-directed streamer. Plasma Physics Reports, 2000,26 (12): 1054-1065.
    [81] K. Shimizu, T. Oda. Emission spectrometry for discharge plasma diagnosis. Science and Technology of Advanced Materials, 2001, 2 (3-4): 577-585.
    [82] B. Benstaali, P. Boubert, B. G. Cheron et al. Density and Rotational Temperature Measurements of the OH and NO Radicals Produced by a Gliding Arc in Humid Air. Plasma Chemistry and Plasma Processing, 2002,22 (4): 553-571.
    [83] K. Shimizu, S. Saeki, G. Yamada et al. Emission spectrometry of NO or activated nitrogen species in non-thermal plasma. Conference Record-LAS Annual Meeting (IEEE Industry Applications Society), 2002,3: 1802-1809.
    [84] G. B. Zhao, M. D. Argyle, M. Radosz. Optical emission study of nonthermal plasma confirms reaction mechanisms in volving neutral rather than charged species. Journal of Applied Physics, 2007, 101 (3): art.no.033303.
    [85] G. Dileccel, P. F. Ambrico, S. De. Benedictis. New N_2(C~3Π_u,v) collision quenching and vibrational relaxation rateconstants: 2.P.G. emission diagnostics of high-pressure discharges. Plasma Sources Science and Technology, 2007,16 (1): 45-51.
    [86] V. G. Novikov, V. V. Ivanov, K. N. Koshelev et al. Calculation of tine mission spectra in discharge plasma: The influence of reabsorption in spectral lines. High Energy Density Physics, 2007,3(1-2): 198-203.
    [87] 姜辉,叶庆春.氮氧化物致病机制及净化技术原理研究.齐鲁医学杂志,2006,2l(2):183-l86.
    [88] W. Smith, T. Anderson, H. A. Anderson et al. Nitrogen dioxide and carbon monoxide intoxication in an indoor ice arena. Wisconsin, 1992, Morb Mortal Wkly Rep, 1992, 41 (21): 383-385.
    [89] N .B. Hampson. Carbon monoxide poisoning at an indoor ice arena and bingo hall-seattle, 1996, Morb Mort Wkly Rep, 1996,45: 265-267.
    [90] A. S. Pennanen, R. O. Salonen, M. Vahteristo et al. Two-year follow-up study of nonregulatory recommendations for better air quality in indoor ice arenas, Environ Int, 1998,24: 881-887.
    [91] M. Rosenlund, G. Bluhm. Health effects resulting from nitrogen dioxide exposure in an indoor ice arena. Arch Environ Health, 1999,54: 52-57.
    [92] 郑小明.环境保护中的催化治理技术.化学工业出版社,北京,2002.
    [93] 朱天乐,郝吉明,崔翔宇.富氧条件下碳氢化合物选择性催化还原 NO 研究进展.环境污染治理技术与设备,2000,l(2):2l-33.
    [94] Ed Cichanowicz. Selective catalytic reduction controls NO_x in Europe. Power Engineering, 1997,1:28-32.
    [95] K. Takaki, S. Masaki, M. Seiji et al. Effect of electrode shape in dielectric barrier discharge plasma reactor for NO_x removal. IEEE Transactions on Plasma Science, 2004, 32(11): 32-38.
    [96] P. Wagner, P. E. G. Cook. SCR succeeds at Logan generating plant. Power Engineering, 1997, 1:28-32.
    [97] A. Amimazmi, M. Bboudart. Decomposition of nitric on platinum. J.Catal., 1975, 39: 383-394.
    [98] R.T. Wu, T.Y. Chou, C.T. Yeh. Enhancement effect of gold and silver on nitric oxide decomposition over Pd/Al_2O_3 catalysts. Appl. Catal. B, 1995, 6: 105-116.
    [99] S. Xie, M. P. Rosynek, J. H. Lunsford, Catalytic reaction of NO over 0-7% Ba/MgO catalysts, J.Catal., 1999,188:24-31.
    [100] B. Ganemi, E. Bjornbom, B. Demirel et al. CuZSM-5: material characteristics and NO decomposition. Microporous and Microporous materials, 2000, 38: 287-300.
    [101] V. I. Parvulescu, P. Grange, B. Delmon. NO decomposition over physcial mixtures of CuZSM-5 with zeolites or oxides, Appl. Catal. B, 2001,33: 223-237.
    [102] C. T. Goralskijr, W. F. Schneider. Analysis of the thermodynamic feasibility of NO_x decomposition catalysis to meet next generation vehicle NO_x emissions standards. Appl. Catal. B, 2002: 263-277.
    [103] 滕加伟,宋庆英,于岚,卢文奎,陈庆龄.催化法去除氮氧化物的研究进展.环境污染治理技术与设备,2000,1(1):38-45.
    [104] S. Morikawa, H. Yoshida, T. Takahosh et al. Improvement of V_2O_5-TiO_2 catalyst NO_x reduction with NH_3 in flue gases. Chem. Lett., 1981,251-254.
    [105] G. C. Bond, S. F. Tahir. Vanadium oxide monolayer catalysts preparation characterization and catalytic activity. Appl. Catal., 1992,71:1-31.
    [106] R. M. Heck. Catalytic air pollution control: commercial technology.Published by Van Nostrand Reinhold, USA, 1995, 161-178.
    [107] F. Nakajima. Air pollution control with catalysis. Catal. Today, 1992, (1): 1-20.
    [108] M. Iwanoto. Proceedings of meeting of catalytic technology for removal of nitrogen monoxide. Tokyo, Japan, 1990,17-22.
    [109] W. Held, A. Koening, T. Richte et al. Catalytic NO_x reduction in net oxidizing exhaust gas. SAE paper, 1990,900496.
    [110] T. Inui, S. Iwamoto, S. Koja et al. Removal of nitric oxide on metalosilicate catalysts. Catal. Today, 1994, 22: 41-57.
    [111] V. A. Matyshak, A. N. Ilichev, A. A. Ukharsky et al. Intermediates in the reaction of NO_x reduction with propane over CuZSM-5 catalysts(by ESR, TPD, and IR-spectroscope in Situ). J. Catal. 1997, 171:245-254.
    [112] N. W. Cant, I. O. Y. Liu. The mechanism of the selective reduction of nitrogen oxide by hydrocarbons on zeolite catalysts. Catal. Today, 2000,63: 133-146.
    [113] S. Kazuo, H. Toshiyuki, O. Tetsuji. Effect of water vapor and hydrocarbons in removing NO_x by using non-thermal plasma and catalyst. IEEE Ind. Appl. Trans. 1998,3: 1865-1870.
    [114] H. Fujishima. Simultaneous NO_x, SO_x and diesel particulate removal using single-stage wet-type plasma and chemical hybrid process. Transactions of the Japan Society of Mechanical Engineers, 2004, Part B, 70 (691): 817-822.
    [115] Y. S. Mok. Reduction of nitrogen oxides from simulated exhaust gas by using plasma-catalytic process. Fuel Processing Technology, 2004, 86(3): 303-317.
    [116] J. V. Durme, J. Dewulf, C. Leys et al. Combining non-thermal plasma with heterogeneous catalysis in waste gas treatment: A review. Applied Catalysis B: Environmental, 2008,78: 324-333.
    [117] A. Fujishima, K. Honda. Electro-chemical photolysis of water at a semiconductor electrode. Nature, 1972,238: 37-38.
    [118] 陈燕,黄应平,潘家荣,等.模板介质体系中二氧化钛制备及光催化研究进展.三峡大学学报,2008,30(2):83-88.
    [119] 王毅,姜炜,刘宏英等.TiO_2 纳米管的制备及其光催化性能研究.纳米加工工艺,2006,6(3):52-55.
    [120] 郭忠,张宁,廖禹东.TiO_2光催化剂改性研究进展.广东化工,2007,34(6):67-69.
    [121] 徐安武,刘汉钦,李玉光.NO_x气相光催化氧化降解研究.高等学校化学学报,2000,21(8):1252-1256.
    [122] T. Ibusuki, K. Takeuchi. Removal of low concentration nitrogen oxides through photoassisted heterogeneous catalysis. Journal of Molecular Catalysis, 1994, (8): 93-102.
    [123] H. Ichiura, T. Kitaoka, H. Tanaka. Photocatalutic oxidation of NO_x using composite sheets containing TiO_2 and a metal compound. Chemosphere, 2003, 519: 855-860.
    [124] 胡晓宏,刘艳华,于琳宇,等.多孔纳米TiO_2薄膜的制备及其光催化去除NO的研究.西安交通大学学报,2008,42(1):87-90.
    [125] 周飞,杨学昌,高得力.等离子体 TiO_2 催化空气净化试验研究.清华大学学报,2007,47(4):462-465.
    [126] 严志宇,郭为军,公维民.微等离子体氧化法制备 TiO_2 光催化剂的活性研究.大连海事大学学报,2005,31(3):66-69.
    [127] 高玉周,严立,张世锋等.微等离子体氧化制备 Ti_O2 薄膜的结构特性.中国表面工程,2003,(6):35-37.
    [128] M. Wallin, C. Karlsson, M. Skoglundh et al. Selective catalytic reduction of NO_x with NH_3 over zeolite H-ZSM-5: influence of transient ammonia supply. J.Catal., 2003,218, 354-364.
    [129] 王晓臣,朱益民.多针对板负电晕放电电极间距确定.高电压技术.2003,29(7):40-42.
    [130] R. S. Sigmond. Simple approximate treatment of unipolar space-charge-dominated coronas: The warburg and the saturation current. J.Appl.Phys, 1982,53 (2): 891-898.
    [131] A. R. Martinez. Characteristics of DC corona discharge in humid, reduced-density air. J. Electrostat, 1992,29(2): 101-111.
    [132] Yu. Akishev, O. Goossens, T. Callebaut et al. The influence of electrode geometry and gas flow on corona-to-glow and glow-to-spark threshold currents in air. Journal of Physics D: Applied Physics, 2001,34:2875-2882.
    [133] T. Callebaut, I. Kochetov, Yu. Akishev et al. Numerical simulation and experimental study of the corona and glow regime of a negative pin-to-plate discharge in flowing ambient air. Plasma Sources Sci. Technol., 2004,13: 245-250.
    [134] K.φ.斯捷潘楚克,H.A.基那可夫.高电压技术.北京:机械工业出版社,1982:32.
    [135] Yuri P. Raizer. Gas Discharge Physics. Berlin Heidelberg: Springer-Verlag, 1991: 357.
    [136] 朱益民,孔祥鹏.多针对板电晕放电伏安特性研究.高电压技术.2006,32(158):57-68.
    [137] 李廷钧.发射光谱分析.北京:原子能出版社,1983:43.
    [138] V. Lisovskiy, J. P. Booth, K. Landry et al. Electron drift velocity in argon, nitrogen, hydrogen, oxygen and ammonia in strong electric fields determined from rf breakdown curves. J. Phys. D: Appl. Phys. 2006, 39: 660-665.
    [139] 严志宇,严志军,朱新河.微等离子弧放电催化水处理技术的研究.环境科学学报,27(4):595-599.
    [140] 严志宇,刘(?),公维民.微弧氧化技术在制备纳米 TiO_2 光催化剂中的应用.功能材料与器件学报,2007,3(13):241-245.
    [141] P. Guan, N. Hayashi, S. Satoh et l. NO_x treatment by DC streamer corona discharge with series gap. Vacuum, 2002,65: 469-474.
    [142] Shigeru Futamura, Aihua Zhang, Toshiaki Yamamoto. Behavior of N_2 and nitrogen oxides in non-thermal plasma chemical processing of hazardous air pollutants. IEEE Transactions on Industry Applications, 2000,36(6): 1507-1514.
    [143] N. Rehbein, V. Cooray. NO_x production in spark and corona discharges. J. Electrostat, 2001, 51-52: 333-339.
    [144] P. Martinez, D. K. Brandvold. Laboratory and field measurements of NO_x produced from corona discharge. Atmos. Environ, 1996, 30(24): 4177-4182.
    [145] J. Chen, P. Wang. Effect of relative humidity on electron distribution and ozone production by DC coronas in air. IEEE Trans Plasma Sci, 2005,33(2): 808-812.
    [146] D. K. Brandvold, P. Martinez, D. Dogruel. Polarity dependence of N_2O formation from corona discharge Atmospheric Environment (1967), 1989, 23(9): 1881-1883.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700