用户名: 密码: 验证码:
超塑性与塑性变形和成形实验装置及测量方法的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
超塑性与塑性变形和成形实验装置及测量方法的研究对材料科学的发展起着重要的作用。实验装置是合理选择材料、研究新材料和新工艺的基本手段和依据,为进一步研究超塑性与塑性成形性能奠定了实验基础。先进的测量方法是设计、制造出综合性能及单项性能均优良的产品的保证,随着逆向工程的发展,测量方法更侧重于获得工件的几何形状信息。本文针对超塑性与塑性变形和成形实验装置及测量方法的现状进行分析,并结合研究所科研项目的需要,在导师的指导下,研制了力热磁耦合实验装置,任意体积测量仪,任意面积测量仪和任意曲面曲率测量仪。
     力热磁耦合实验装置通过采用炉外加热气体和动态密封技术解决了在高温下既要对试样进行防氧化保护,又能在温度和磁场的耦合作用下进行力学性能实验的难题;任意体积测量仪和任意面积测量仪不仅能够测量坯料和成形件的体积和面积,而且还能测出成形过程中每道工序成形件的体积和面积,甚至上道工序与下道工序对应部分的体积和面积。再根据金属塑性变形的体积不变定律,为制订成形的工艺方案提供依据;任意曲面曲率测量仪采用球形测头变弦宽法测量曲面的曲率,从结构上克服了针形测头的缺点,具有结构简单、适应性广和测量精度高的优点。
Plastic forming process is an important foundation of machinery manufacturing industry. As a branch of advanced manufacturing technology, plastic forming process has become its development direction. With the development of science and technology, plastic forming technology has increasingly presented a trend of technology convergence. The trend puts forward new requirements for those researchers engaged in theoretical research and technological development of plastic forming, as promotes research and development of the experimental apparatus and measurement methods for superplastic and plastic forming. The thesis analyzes the status-quo of the experimental apparatus and measurement methods for superplastic and plastic forming, and then under a tutor, load and magneto-thermal coupled analysis apparatus, arbitrary volume measurement instrument, arbitrary area measurement instrument and arbitrary surface curvature measuring instrument are developed.
     In the field of superplastic and plastic forming, it is very important to understand mechanical properties of materials during deformation and study it through experiment. The interdisciplinary trend results in more attention to mechanical properties of materials under multi-field. The existing experimental apparatus for superplastic and plastic forming can not solve the interference problem of the temperature field with the magnetic field and the conflict problem between the seal oxidation of the furnace and the friction between the chuck bars and muffle furnace mouth. These problems induce that it is more difficult to perform load and magneto-thermal coupled analysis. So development of the load and magneto-thermal coupled analysis apparatus, which can solve the above problems, is a burning question. The load and magneto-thermal coupled analysis apparatus described in this thesis is composed of the argon purification device, the temperature control and heating device outside the furnace, the pressure-regulating device, the magneto-thermal coupled analysis apparatus, the electronic universal material testing machine and the control system. The argon purification device inputs the purified argon into the temperature control and heating device outside the furnace; the purified argon heated to the set temperature value is inputted into the pressure-regulating device; the high-temperature argon which is regulated pressure to the set pressure value is inputted into the load and magneto-thermal coupled analysis apparatus; the load and magneto-thermal coupled analysis apparatus, which may instead of the heating furnace of the conventional electronic universal material testing machine, is fixed between its movable crossbeam and frame. Using the heating device outside the furnace and dynamic sealing technologies, the load and magneto-thermal coupled analysis apparatus can perform oxidation protection for the test specimen and furthermore can make mechanical properties test under magneto-thermal coupled condition.
     With the rapid development of science and technology, the measuring technique plays an important role for national development. So many industrially developed countries attach great importance to the study of the various measurement techniques. Traditional measurement method is only applied to measure simple parts, and with the development of modern manufacturing and processing technologies, the shape of the workpiece becomes increasingly complex, and the measurement method can not meet the requirement. CMM is developed in recent decades, and its measuring accuracy is very high. But CMM measurement speed is too slow; its cost is high; furthermore because probe must contact with workpiece surface, it is easy to scratch the surface of the workpiece. The non-contact measurement methods have the faster measuring velocity, but Point cloud processing and surface modeling is very time-consuming. In order to meet the practical needs of research projects, arbitrary volume measurement instrument, arbitrary area measurement instrument and arbitrary surface curvature measuring instrument are developed. The arbitrary surface curvature measuring instrument is used to solve the difficult problem to measure the curvature radius of axisymmetrical surface of revolution during the superplastic free bulging; the arbitrary volume measurement instrument is used to solve the measurement problem of the overall and partial volume; the arbitrary area measurement instrument is used to solve the measurement problem of the overall and partial area.
     The arbitrary volume measurement instrument:plastic forming obeys the condition of constant volume. During the precision plastic forming process, the volume of workpiece is accurately determined in the first place. The volume of workpiece includes the exact volume of the workpiece added to the thermoplastic forming loss and machining allowance. The author develops the arbitrary volume measurement instrument based on the patent whose name is the arbitrary-shape workpiece volume measurement instrument. The instrument can not only measure the volume of workpiece with arbitrary form and density larger than water, but also that with density less than water, and that it can measure the local volume of workpiece. The instrument is characterized by simple structure and high accuracy. By the instrument, the whole and local volume value of an auto connecting-rod in each forming step was measured. It provides an important means to work out connecting-rod forming process.
     The arbitrary area measurement instrument:during sheet metal forming, the data need to be identified as follows:the area of blank and formed part, the area of formed part in each process and the area corresponding to the last process. The author develops the arbitrary area measurement instrument based on the patent whose name is the arbitrary-shape sheet metal parts area measurement instrument. The instrument can not only measure the area of sheet metal parts with arbitrary-shape and density larger than water, but also that with density less than water, and that it can measure the local area of sheet metal parts. According to the law of the constant volume in deformation and the assumption that the thickness of sheet metal parts is constant, the forming process plan is worked out. The instrument is characterized by simple structure and high accuracy.
     The arbitrary surface curvature measuring instrument:the measurement techniques of complex surface are widely used in industrial, medical and military fields. In recent years, the continuous development of Reverse Engineering promotes its development. The surface measurement aims not only to evaluate the quality of surface but also to obtain information on the geometry of surfaces. According to the patent named as surfaces measurement, the working principle, structure, measuring method and accuracy analysis of the arbitrary surface curvature measuring instrument are introduced. Fixed chord-width measurement method has simple structure, poor adaptability and low accuracy, so it has gone out of use. The variable chord-width measurement method has made an essential breakthrough in its principle, so it has wide adaptability and high precision. But needle-shaped probe used in variable chord-width measurement method restricts its application. The variable chord-width measurement method with spherical probe described in this thesis overcomes the shortcomings of needle-shaped probe, so it is characterized by simple structure, wide adaptability and high accuracy.
引文
[1]郝南海,常志良.塑性成形力学[M].北京:兵器工业出版社,2001.
    [2]董湘怀,黄树槐等.塑性加工技术的发展趋势[J].中国机械工程,2000,9:1074-1079.
    [3]N.R.CHITKARA, M.A.BHUTTA. Near net shape spline forging an experimental investigation and a simple upper bound analysis [J]. International Journal of Mechanical Sciences,1995,37(12):1247-1268.
    [4]Yuh-Min Chen, Ching-Ling Wei. Computer-aided feature-based design for net shape manufacturing [J]. Computer Integrated Manufacturing Systems,1997, 10(2):147-164.
    [5]B.P.Bewlay, M.F.X.Gigliotti, C.U.Hardwicke, etc. Net-shape manufacturing of aircraft engine disks by roll forming and hot die forging [J]. Journal of Materials Processing Technology,2003,135:324-329
    [6]王建国.材料力学性能测试与评价技术进展[J].工程与实验,2008:1-15.
    [7]王洸宗.高低温材料试验机及其发展动向[J].试验技术与试验机,1982,(3):36-41.
    [8]王宝军.电子万能试验机的发展[J].试验技术与试验机,1989,(3):3-8.
    [9]游学见.国内外材料试验机技术发展的回顾与展望[J].试验技术与试验机,1981,(5):24-26.
    [10]魄幼鹏.材料试验机的现状与展望[J].现代制造工程,2003:82-83.
    [11]刘丽雯.材料试验机发展新动向[J].中国仪器仪表,1993,(5):23-24.
    [12]宋玉泉,管志平.杠杆式定载荷材料试验机:中国,01133358.8[P].2001-10-27.
    [13]宋玉泉,程永春.超塑性拉伸真实恒应变速率实验控制装置:中国,00117802.4[P].2000-5-20.
    [14]文雨生,周战强.材料试验机的发展[J].国外科技资料,1994,(2-3):30-34.
    [15]王学智,李春明.我国试验机标准化工作的回顾与展望[J].试验技术与试验 机,2006,(3):69-77.
    [16]李敏贤,闵乃燕,安桂华,等.精密成形技术发展前沿[J].中国机械工程,1999,11(1-2):183-186.
    [17]J. Cai, T. A. Dean, Z. M. Hu. Alternative die designs in net-shape forging of gears. Journal of Materials Processing Technology,2004,150:48-55
    [18]B. I. Tomov, V.I.Gagov. Modeling and description of the near-net-shape forging of cylindrical spur gears [J]. Journal of Materials Processing Technology,1999,92: 444-449
    [19]T. A. Dean. The net-shape forming of gears [J]. Materials and Design,2000,21: 271-278
    [20]Tan Xie, Dewei Jia, Peng Jiang, Zhe Wei. Development and application of precision plastic forming technology in China[J]. Chinese Journal of Mechanical Engineering,2001,37(7):100-104.
    [21]J. C. Choia, Y. Choib. Precision forging of spur gears with inside relief[J]. International Journal of Machine Tools & Manufacture,1999, (39):1575-1588.
    [22]M.Hirschvogel. Some Applications of Cold and Warm Forging[J]. J.Mater. Proc. Tech.,1992,35:343-356
    [23]V.Magard. Cold Forging of Net or Near-net-shape components [J]. J. Mater. Process. Technol.,1992,35:429-430
    [24]Shinsaku Onodera, Kenichi Sawai. Modern Cold Forging Applications for the Manufacture of Complex Automotive Parts[J]. J. Mater. Proc. Tech.,1994, 46:169-183
    [25]Shinichiro Fujikawa. Cold and Warm forging Applications in the Automotive Industry[J]. J.Mater.Proc.Tech.,1992,35:317-342
    [26]H.Kudo. Towards net-shape forming[J]. Journal of Material Processing Technology,1990,22(3):307-342
    [27]Richard Douglasa, David Kuhlmannb. Guidelines for precision hot forging with applications[J]. Journal of Materials Processing Technology,2000, (98):182-188.
    [28]周贤宾.塑性加工技术的发展——更精、更省、更净[J].中国机械工程,2003,14(1):85-87.
    [29]R.Kopp. Some Current Development Trends in Metal Forming Technology[J]. Journal of Materials Processing Technology,1996, (60):1-10
    [30]L. M. H. Brito, J. M. C. Rodrigues, P. A. F. Martins, M. J. M. Barata Marques. Precision forging of industrial battery terminals:an analysis of the preform geometry[J]. Journal of Materials Processing Technology,1995, (52):289-300.
    [31]A. G. Mamalis, D. E. Manolakos, K. Baldoukas. Simulation of the precision forging of bevel gears using implicit and explicit FE techniques [J]. Journal of Materials Processing Technology,1996,(57):164-171.
    [32]宋玉泉.辊压塑性精成形机:中国,95109871.3[P].1995-09-21.
    [33]宋玉泉,王明辉,宋家旺,管晓芳.精成形辊锻机[J].塑性工程学报,2007,14(1):72-75.
    [34]胡正寰,张康生,王宝雨,张巍.楔横轧理论与应用[M].北京:冶金工业出版社,1996.
    [35]Zb. Pater. Theoretical method for estimation of mean pressure on contact area between rolling tools and workpiece in cross wedge rolling processes[J]. International Journal of Mechanical Sciences,1997,39(2):233-243.
    [36]Zb.Pater. A study of cross wedge rolling process[J]. Journal of Materials Processing Technology,1998,80-81:370-375
    [37]Yaomin Dong, Michael Lovell, Kaveh Tagavi. Analysis of interfacial slip in cross-wedge rolling:an experimentally verified finite-element model[J]. Journal of Materials Processing Technology.1998,80-81:273-281
    [38]Zb. Pater. Numerical simulation of the cross wedge rolling process including upsetting[J]. Journal of Materials Processing Technology,1999,92-93:468-473
    [39]Zb. Pater, W. Weronski, J. Kazanecki, A. Gontarz. Study of the process stability of cross wedge rolling[J]. Journal of Materials Processing Technology,1999,92-93: 458-462
    [40]Yamion Dong, Kaveh A. Tagavi, Michael R. Lovell. Analysis of interfacial slip in cross-wedge rolling:a numerical and phenomenological investigation[J]. Journal of Materials Processing Technology,2000,97(1-3):44-53
    [41]Zb.Pater. Theoretical and experimental analysis of cross wedge rolling process[J]. International Journal of Machine Tools and Manufacture,2000,40(1):49-63
    [42]Yaomin Dong, Kaveh A. Tagavi, Michael R. Lovell and Zhi Deng. Analysis of stress in cross wedge rolling with application to failure[J]. International Journal of Mechanical Sciences,2000,42(7):1233-1253
    [43]宋玉泉,郝滨海.板压滚动塑性精成形机:中国,95109500.5[P].1995-09-08.
    [44]宋玉泉,李志刚,王明辉,宋家旺.可调板式楔横轧机[J].中国机械工程,2007,18(1):1-4.
    [45]YuQuan Song, ZhiGang Li, MingHui Wang, XiaoFang Guan. Precision forming machine with rolling plate cross wedge rolling[J]. Science in China Series E: Technological Sciences,2009,52(11):3117-3121.
    [46]吕炎.锻造工艺学[M].北京:机械工业出版社,1995.
    [47]J.C.Ferreira, N.F.Alves. Integration of reverse engineering and rapid tooling in foundry technology [J]. Journal of Materials Processing Technology,2003,142(2): 374-382.
    [48]Saeid Motavalli. Review of reverse engineering approaches[C].23rd International conference on computers and industrial engineering,1998, (35):25-28.
    [49]刘德平,陈建军.逆向工程关键技术研究[J].机械制造,2005,43(6):25-28.
    [50]陈顶君,程俊廷.反求工程测量方法综述[J].机械,2004,31(4):19-20,23.
    [51]Riehard J. CamPbell. Free-Form 3D Object Recognition in range data using weak correspondence between local features[J]. International Journal of Pattern Recognition and Article Intelligence,2003,17(7):1245-1277
    [52]Sung Joon Ahn, Wolfgang Rauh. Circular coded target for automation of optical 3D-measurement and camera calibration [J]. International Journal of Pattern Recognition and Article Intelligence,2001,15(6):905-919.
    [53]潘伟,赵毅,阮雪榆.采用光栅投影的三维测量方法[J].光电工程,2003,30(2):28-31.
    [54]赵毅,王明辉,马品奎,宋家旺.热态锻件结构光三维测量技术[J].中国机械工程,2006,17(S1):125-128.
    [55]王明辉,宋家旺,赵毅,宋玉泉.反求工程与连杆的快速成形[J].中国机械工程(增刊),2006,17(S1):230-233,238.
    [56]詹艳然,吴乐尧,王仲仁.数值方法在坯料尺寸计算中的应用[J].金属成形工艺,2002,20(2):25-27.
    [57]高涛,刘郁丽,杨合,王鹏.塑性成形过程反向模拟技术的研究现状与发展趋势[J].机械科学与技术,2004,23(10):1219-1222.
    [58]赵新海,赵国群,王广春.金属体积成形预成形设计的现状及发展[J].塑性工程学报,2000,7(3):2-6.
    [59]宋玉泉,宋家旺,管晓芳.氩气保护动态密封热磁力耦合材料试验机:中国,200610017268.1[P].2006-10-25.
    [60]宋玉泉,宋家旺.任意形状工件的体积测量仪:中国,01138762.9[P].2001-12-03.
    [61]宋玉泉,李志刚.任意形状板件面积测量仪:中国,01272259.6[P].2002-10-9.
    [62]宋玉泉,李达,杨申申,等.曲面测量仪:中国,200510016865.8[P].2005-06-13.
    [63]Karch J, Birringer R, Gleiter H. Ceramics ductile at low temperature [J]. Nature, 1987,330:556-558.
    [64]McFadden S X, Mishra R S, Valiev R Z, et al. Low-temperature superplasticity in nanostructured nickel and metal alloys[J]. Nature,1999,398:684-686.
    [65]Yuquan Song, Zhiping Guan, Minghui Wang, Jiawang Song. Mechanical analysis of temperature impact on stability during superplastic tensile deformation[J]. Science in China Series E:Technological Sciences,2006,49(6): 641-654
    [66]Michel I, Molotskii. Theoretical basis for electro-and magnetoplasticity[J]. Materials Science and Engineering A,2000,287:248-258.
    [67]郑明新,张人估,朱永华,等.电塑性效应及其运用[J].中国机械工程,1997,8(5):91-94.
    [68]Sprecher A F, Mannan S. L. Conrad H. On the mechanisms for the electroplastic effect in metals[J]. Acta Metal,1986,34(7):1145-1162.
    [69]Molotskii M, Fleurov V. Magnetic effects in electroplasticity of metals [J]. Physical Review B,1995,52(22):15829-15834.
    [70]#12
    [71]Okazaki K, Kagawa M, Conrad H. Effect of strain rate, temperature and interstitial content on the electroplastic effect in titanium[J]. Scripta Metallurgica, 1979,13:473-477.
    [72]Okazaki K, Kagawa M, Conrad H. An evaluation of the contributions of skin, pinch and heating effects to the electroplastic effect in titanium[J]. Materials Science and Engineering,1980,45:109-116.
    [73]Okazaki K, Kagawa M, Conrad H. Additional results on the electroplastic effect in metals[J]. Scripta Metallurgica,1979,13:277-280.
    [74]Sprecher A F, Mannan S L, Conrad H. On the temperature rise associated with electroplastic effect in titanium[J]. Scripta Metallurgica,1983,17:769-772.
    [75]Okazaki K, Mannan S L, Conrad H. Study of the electroplastic effect in metals[J]. Scripta Metallurgica,1978,12:1063-1068.
    [76]Silveira V L A, Porto M F S, Mannheimer W A. Electroplastic effect in copper subjected to low density electric current[J]. Scripta Metallurgica,1981,15: 945-950.
    [77]Conrad H, Gllo, Sprecher A F. Effect, of an electric field on the recovery and recrystallization of Al and Cu[J]. Scripta Metallurgica,1989,23:821-824.
    [78]Conrad H, Karam N, Mannan S. Effect of electric current pulses on the recrystallization of copper[J]. Scripta Metallurgica, 1983,17:411-416.
    [79]Conrad H, Karam N, Malman S, Sprecher A F. Effect of electric current pulses on the recrystallization kinetics of copper[J]. Scripta Metallurgica, 1988,22: 235-238.
    [80]Conrad H, Karam N, Mannan S. Effect of prior cold work on the influence of electric current pulses on the recrystallization of copper[J]. Scripta Metallurgica, 1984,18:275-280.
    [81]Conrad H, GLIo Z, Sprecher A F. Effects of electropulse duration and frequency on grain growth in Cu[J]. Scripta Metallurgica,1990,24:359-362.
    [82]Longdon T G, Hori S, Tokizane. Superplasticity in Advanced Materials. The Japan Society for Research on superplasticity[J]. OSAKA,1991:847.
    [83]何景素,王燕文.金属的超塑性[M].北京:科学出版社,1986.
    [84]Backofen W A, Turner I R, Avery D H. Superplasticity in an Al-Zn alloy [J]. Trans. ASM. Quart,1964,57(6):980-990.
    [85]Song Yuquan. Mechanical analysis of superplastic tensile forming[J]. Chinese Journal of Mechanical Engineering,2003,39(10):64-72.
    [86]Conrad H, Cao W D, Lu X P, Sprecher A F. Effect of an Electric Field on the Superplasticity of 7475A1[J]. Scripta Metallurgica,1989,23:697-702.
    [87]Cao W D, Lu X P, Sprecher A F, Conrad H. Superplastic deformation behavior of 7475A1 alloy in an electric field[J]. Materials Science and Engineering A,1990, 129:157-166.
    [88]Conrad H, Cao W D, Lu X P, Sprecher A F. Effect of electric field on cavitation superplastic aluminum alloy 7475[J]. Materials Science and Engineering A,1991, 138:247-258.
    [89]李世春.Zn-5%A1合金反常的电塑性效应[J].材料研究学报,1998,12(3):314-316.
    [90]Li Shichun, Conrad H. Electric field strengthening during superplastic creep of Zn-5wt% AI:A negative electroplastic effect[J]. Scripta Materialia,1998,39(7): 847-851.
    [91]Yang Di, Conrad H. Influence of an electric field on the superplastic deformation of 3Y-TZP[J]. Scripta Materialia,1997,36(12):1431-1435.
    [92]李淼泉,吴诗淳,刘郁丽.硬铝LY12CZ在强电场中超塑变形时的最佳条件[J].西北工业大学学报,1994,12(2):149-154.
    [93]吴诗淳,李淼泉.在电场下的超塑变形[J].中国机械工程,1993,4(5):16-17.
    [94]Li Miaoquan, Liu Yull, Wu Shlchun, et al. Superplastic Deformation'of Duralumln LY12CZ under an Electric Field[J]. J Mater Teclulol,1994,40(3): 385-394.
    [95]Li Miaoquan, Wu Shlchun. Effect of External Electic Field on the Cavitation during the Superplastic Deformation of Duralumin LY12CZ[J], Scripta. Metall et Mat,1994,31(1):75-79.
    [96]Li Miaoquan, Wu Shlchun. Electric field modification during superplastic deformation of LY12CZ Duralumin[J]. Acta Metall. Sin,1995,31(6):272-275.
    [97]李淼泉,吴诗淳.LY12CZ铝合金在强电场中的超塑性变形[J].塑性工程学报,1996,3(3):41-46.
    [98]李淼泉,吴诗淳.硬铝LY12CZ在强电场中的超塑胀形[J].航空学报,1995,16(4):505-508.
    [99]刘渤然,张彩碚,赖祖涵.在脉冲电流作用下Al-Li-Cu-Mg-Zr合金的超塑形变[J].材料研究学报,1999,13(4):385-389.
    [100]刘渤然,张彩碚,赖祖涵.冷轧态AI-Li-Cu-Mg-Zr合金在脉冲电流作用下超塑形变中的位错形态[J].材料研究学报,2000,14(2):218-220.
    [101]Liu Zhiyi, Liu Bing, Deng Xiaotie, etc. Effect of current pulse on mechanism of superplastic deformation of 2091 Al-Li alloy[J]. Acta Metall. Sin,2000,36(9): 944-951.
    [102]Liu Zhiyi, Xu Xiaochang, Cui Jianzhong. Effect of electric current pulse on grain growth in superplastic deformation of 2091 Al2Li alloy[J]. Transactions of Nonferrous Metals Society of China,2003,13(4):743-749.
    [103]Liu Zhiyi, Lei Yi, Li Sandong. Electro-dislocation multiplication and strain effect in 2091 A12Li alloy[J]. ransactions of Nonferrous Metals Society of China,2000,10(1):39-43.
    [104]Liu Zhiyi. Effect of current pulses on fracture morphology in superplastic deformation, of 2091 Al Li alloy[J]. Transactions of Nonferrous Metals Society of China,1999,9(3):514-518.
    [105]Liu Zhiyi, Liu Bing, Deng Xiaotie, etc. Effect of current pulse on dynamics of recrystall ization in 2091 A12Li alloy[J], Transactions of Nonferrous Metals Society of China,2000,10(6):837-842.
    [106]刘志义,崔建终,白光润.脉冲电流对2091铝锂合金动态再结晶行为的影响[J].稀有金属,1994,18(1):36-41.
    [107]刘志义,邓小铁,王引真.脉冲电流对2091铝锂合金动态再结晶动力学的影响[J].材料研究学报,2001,15(3):358-366.
    [108]李尧,扬贤镛,陈洪,顾韵秋,胡心斌.脉冲电流对Zn-22A1合金超塑性力学行为的影响[J].湖北工学院学报,1995,10(1):1-3.
    [109]Li Yao, Dong Xiaohua. Electrosuperplastic effect of Zn22%Al alloy[J]. Transactions of Nonferrous Metals Society of China,1996,6(3):151-154.
    [110]李尧,宋子凯.脉冲电流对Zn-22%Al合金组织及断裂行为的影响[J].上海有色金属,1996,17(3):103-106.
    [111]侯东芳,董晓华,李尧.脉冲电流对7475铝合金超塑性变形力学性能的影响[J].成组技术与生产现代化,2002,19(2):46-48.
    [112]侯东芳,董晓华,李尧,游敏,王选择.电流对金属超塑性变形中晶内位错形态的影响[J].三峡大学学报,2002,24(4):348-350.
    [113]周细枝,李尧,陈洪.电场和电流对7475铝合金再结晶的影响[J].轻合金加工技术,2001,29(7):43-44.
    [114]曾坤,张炼.钢铁高温防氧化脱碳涂料的研究[J].材料保护,2008,41(6):72-74.
    [115]Song Yuquan, Song Jiawang, Xiong Wei. A new experimental apparatus coupling loading, heating and magnetic field [J]. Acta Metall. Sin,2008,44(1):69-73.
    [116]Atmel.8-Bit Microcontroller AT89C55 with 20k Bytes flash[EB/OL]. http://datasheet. eeworld.com.cn/pdf/66376_ATMEL_AT89C55.pdf
    [117]沙占友,葛家怡,王彦朋.热电偶冷端补偿电路的优化设计[J].电测与仪表,2003,40(7):26-28,57.
    [118]Maxim Integrated Products, Inc. Cold-Junction-Compensated K-Thermocouple to Digital Converter MAX6675[EB/OL]. http://datasheets.maxim-ic.com/en/ds/ MAX6675.pdf
    [119]李敏,孟臣.RS232多串口扩展器件SP2538及其应用[J].国外电子元器件,2004,(4):43-47.
    [120]Analog Devices inc.16-Bit Sigma-Delta ADCs AD7705[EB/OL]. http://www. analog.com/static/imported-files/data_sheets/AD7705_7706.pdf
    [121]Maxim Integrated Products, Inc.8 Digit LED Display Driver ICM7218[EB/OL]. http://datasheets.maxim-ic.com/en/ds/ICM7218.pdf
    [122]栾贻国.基于UBET和FEM的模锻件预成形设计[J].塑性工程学报,2000,7(3):7-9
    [123]宋玉泉,宋家旺,王明辉,李志刚.任意形状工件的体积测量仪[J].吉林大学学报(工学版),2006,36(3):345-349.
    [124]宋玉泉.连杆辊压塑性精成型工艺及装置[P]:中国,97100921.X.1997-01-25.
    [125]李玉强,崔振山,张冬娟等.板料成形优化技术进展与质量工程研究[J].塑性工程学报,2005,12(2):11-16.
    [126]郑莹,吴勇国,李尚健.板料成形数值模拟进展[J].塑性工程学报,1996,3(4):34-47.
    [127]徐国艳,施法中.反向法在冲压件成形初级阶段的应用[J].塑性工程学报,2003,10(1):40-43.
    [128]王昱皓,施法中.板料冲压成形有限元反向分析中初始解确定方法的研究概况[J].锻压技术,2005,4:106-109.
    [129]宋玉泉,宋家旺,马品奎,王明辉.板成形面积测量的研究[J].中国机械工 程,2006,(S1):51-54.
    [130]陈毓勋.大曲率半径简易测量仪[J].航空工艺技术,1980,(7):28-29.
    [131]陈侃,尚颖,李军,施进发.汽车车身曲面测量方法和发展趋势[J].世界汽车,1998,(11):23-24.
    [132]石照耀,谢华锟,费业泰.复杂曲面测量技术的研究综述[J].机械工艺师,2000,(11):38-40
    [133]C. Butler. Investigation Into the Performance of Probes on Coordinate Measuring Machines[J]. Industrial Metrology,1991,2(1):59-70.
    [134]王国兴.用三坐标测量机对空间曲面的测量[J].计量技术,1995,(11):9-11.
    [135]殷西军.曲面测量技术及应用[J].陕西汽车,2002,(2):15-17.
    [136]宋玉泉,李达,管志平,杨申申.任意曲面曲率测量仪[J].吉林大学学报(工学版),2006,36(5):686-690.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700