用户名: 密码: 验证码:
南方典型重污染城市内河河水联合生物处理技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着城市发展和人口增加,城市内河污染日趋严重。研发适宜的水体净化技术是恢复河流生态系统健康并实现可持续发展的重要途径之一。本文以我国南方典型的重污染城市内河——深圳布吉河河水为研究对象,贯彻以河流为主体的流域治理理念,以研发高效、经济、可持续、占地面积小的水质净化技术为目的,运用原位-异位联合生物处理技术,结合微生物和水生植物的各自优势处理重污染河水,以期为我国污染水体的生物修复计划提供借鉴。
     布吉河水质污染状况及微生物群落结构分析表明,布吉河属于典型的耗氧性有机污染,氮素污染是布吉河水质最突出的问题。水体中平均COD和BOD浓度分别为211±50.2 mg/L和117±21.3 mg/L,总氮和氨氮浓度分别为29.8±8.86 mg/L和24.4±8.3 mg/L。氮循环菌群落分布及其功能研究表明,快速的生长能力和较强的活性,使氨化菌和反硝化菌在河流中广泛分布,分别为1012 MPN/ml和106MPN/ml。硝化细菌在水体和底泥中分别仅约102 MPN/ml和104 MPN/g。相关性分析表明,非点源污染的存在,是河流污染严重的原因之一。此外,河流生态系统中氮素循环相关菌群的数量分布严重失衡,使氮素的转化和去除途径受阻,导致大量的氮素以氨氮的形式滞留于水体,加重了河流的氮素污染。因此,采取一些行之有效的生物治理措施迫在眉睫。
     采用新型的强化生物膜-活性污泥复合工艺(EHYBFAS)对上游高污染河水进行异位处理。复合工艺能够在短停留时间(HRT=3.5h)内有效去除有机污染物,当进水负荷为0.33~0.93 kg BOD/(m3·d)和0.93~2.53 kg COD/(m3·d)时,BOD和COD的平均去除率分别为86.0±3.6%和83.7±4.6%。当进水负荷为0.15~0.32 kg TN/(m3·d)和0.11~0.22 kg NH4+-N/(m3·d)时,总氮和氨氮的去除率分别为25.7±7.2%和22.2±12.7%。MPN-Griess检测结果表明,硝化菌占总菌量的比例在混合液中为0.21%~0.3%之间,在生物膜载体上为0.12%~0.6%之间。自养菌比例过低,削弱了硝化反应,是导致氮素去除率低的主要原因。采用PCR-DGGE对不同生物反应池中的氨氧化细菌(AOB)进行检测,结果显示EHYBFAS工艺完成了AOB的自然选择,与缺氧池相比,好氧池内的AOB菌数量差异不显著,表明好氧池内亚硝化速率较慢。对主要条带进行克隆测序共获得9种不同的16s rDNA序列,其GenBank登陆号为GU073369-GU073378,BLAST结果表明,其中5个序列与已知的Nitrosomonas sp.属细菌均有大于98%的相似性。此外,在活性污泥1号数学模型与生物膜上碳氧化和硝化的经验公式相结合的基础上,建立了生物膜-活性污泥全耦合数学模型,且能够较好的反映出水水质的变化。
     为配合EHYBFAS工艺对污染河水的异位处理,尝试以河道空间作为处理场所,采用生物接触氧化工艺进一步净化河流水质。以布吉河水质净化厂出水口下游600 m处河水作为试验进水,模拟河道状况设计动态小试试验装置,通过添加微生物功能菌剂构建生物强化系统。生物接触氧化技术能有效去除氮素。平均出水总氮和氨氮浓度分别为13.37±3.52 mg/L和7.28±2.61 mg/L。投加高效菌剂后,TN去除率为50.32%,比投菌前高24.42%,氨氮去除率为60.1%,比投菌前高25.6%。此外,生物膜载体有效增加了微生物生物量,特别是投加高效菌剂后,硝化细菌数量明显增加,占细菌总数的1.31%。微生物群落的DGGE图谱和数量分析也表明,投加的高效菌剂,增加了微生物的群落多样性和种群数量,特别是硝化细菌的数量,优化了氮素循环相关菌群的结构分布。
     为了再现城市内河的生态景观功能,在生物接触氧化技术处理污染河水的基础上,探讨生物接触氧化工艺结合水生植物处理河水的效果,研究适合河流生态系统恢复的原位生物处理技术。结果表明,水生植物-生物接触氧化工艺能够有效去除氮素,平均出水总氮和氨氮浓度分别为15.5±1.84 mg/L和6.6±0.56 mg/L。种植植物后, TN去除率为56.9%,比种植植物前提高21.0%,氨氮去除率为72.5%,比种植植物前提高28.9%。水生植物增加了水体中微生物的生物量,特别是硝化细菌,其占总菌量的比例从种植植物前的0.12%增长到种植植物后的0.39%,优化了氮循环相关菌群的结构分布。
Urban river are often heavily polluted, a situation that is not confined to a particular geographic region of the world, but common to all areas subject to urbanization. It is the potentially cost-effective and environmentally acceptable remediation technology that has been particularly emphasized as a significant approach so as to realize healthy and sustainable river ecosystem. Taking a typical polluted urban stream in Shenzhen (China) as the target stream, the aim of this study is to discuss the pollutants removal by combined bio-trentment technology.
     The results would provide a basis for reasonable, highly effective, economical remediation technology for the bioremediation scheme of the polluted urban stream. Results of pollution survey indicated that Buji stream suffered from serious organic and nitrogen pollution. The mean value of COD, BOD, TN and NH4+-N were 211±50.2 mg/L, 117±21.3 mg/L, 29.8±8.86 mg/L and 24.4±8.3 mg/L respectively. The investigation of ecological structure and functions of nitrogen-related bacteria showed that fast growth rate and high activity of ammonifying bacteria and denitrifying bacteria made them predominant in Buji stream. The MPN of ammonifying bacteria and denitrifying bacteria reached about 1012 MPN/ml and 106 MPN/ml respectively in Buji stream. In contrast, the MPN of nitrifying bacteria in water and sediment were about 102 MPN/ml and 104 MPN/g respectively. The imbalance distribution of various nitrogen-related bacteria resulted in ammonia nitrogen accumulation and serious nitrogen pollution in Buji stream.
     Full-scale enhanced hybrid biofilm-activated sludge process (EHYBFAS) with short hydraulic retention time (HRT=3.5h) was a novel and promising for wastewater treatment. Results indicated that EHYBFAS were capable of achieving efficient organic removals. The average removals of BOD and COD achieved 86.0±3.6% and 83.7±4.6% at organic loading rates of 0.33~0.93 kg BOD/(m3·d) and 0.93~2.53 kg COD/(m3·d), respectively.The removal of TN and NH4+-N were 25.7±7.2% and 22.2±12.7% when the influent volume loading was 0.15~0.32 kg TN/(m3·d) and 0.11-0.22 kg NH4+-N/(m3·d), respectively. In EHYBFAS system, nitrogen-related bacteria were rich but the proportion of nitrifying bacteria was very low (0.21~0.3% in mixed liquor, 0.12~0.6% in fibrous carriers), which could weaken nitration and finally resulted in low removal rate of TN and NH4+-N. AOB community was investigated by PCR-DGGE. Results demonstrated the natural successions of AOB were completed successfully. The prominent bands were excised from DGGE gels and sequenced. Nine 16s rDNA sequences were obtained and the Genbank accession no. was from GU073369 to GU073378. Sequence analyses revealed five 16s rDNA sequences belonged to Nitrosomonas lineage and the similarity ranged from 98 to 99%. A fully coupled biofilm-activated sludge model is proposed and the simulation results indicate that the numerical simulation values of the coupled model were more consistent with real values.
     The combined bio-treatment technology of in-situ and en-situ was a practical and feasible method for stream regulation. In this study, a pilot-scale biological contact oxidation ditch (BCOD) was bioaugmented by inoculating enriched nitrifying bacteria for treatment of nitrogen-rich stream water. Results showed that the augmented BCOD obtained the effluent concentration of 13.4±3.5 mg/L of TN and 7.3±2.6 mg/L of NH4+-N, respectively. The removals of TN and NH4+-N reached 50.3% and 60.1%. The microbial biomass increased greatly in biofilm carriers especially after bioaugmentation and nitrifying bacteria accounted for about 1.31% of the nitrogen-related bacteria. Concomitant increases in the diversity of the bacterial community were also observed which had optimized the community structure of nitrogen-related bacteria and enhanced denitrification capacity.
     The introduction of aquatic plants into BCOD for treatment of polluted stream water not only improved treatment effect but also could overcome the defects of phytoremediation measures such as high operating conditions, long processing time and large occupation area. Results showed that the effluent TN and NH4+-N concentration were 15.5±1.84 mg/L and 6.6±0.56 mg/L and the removals of TN and NH4+-N reached 56.9% and 72.5% respectively. In addition, microbial biomass increased greatly due to aquatic plant especially the nitrifying bacteria which accounted for about 0.39% of the nitrogen-related bacteria from the initial 0.12%. The results had optimized the community structure of nitrogen-related bacteria and enhanced denitrification capacity.
引文
1 O. E. Sala, F. S. Chapin III, J. J. Armesto, E. Berlow, J. Bloomfield, R. Dirzo, E. Huber-Sanwald, L. F. Huenneke, R. B. Jackson, A. Kinzig, R. Leemans, D. M. Lodge, H. A. Mooney, M. Oesterheld, N. L. Poff, M. T. Sykes, B. H. Walker, M. Walker, and D. H. Wall. Global biodiversity scenarios for the year 2100. Science. 2000, 287(5459):1770~1774
    2 J. N. Houser and W. B. Richardson. Nitrogen and phosphorus in the Upper Mississippi River: transport, processing, and effects on the river ecosystem. Hydrobiologia. 2010, 640(1):71~88
    3 C. J. Walsh, A. H. Roy, J. W. Feminella, P. D. Cottingham, P. M. Groffman and R. P. Morgan II. The urban streamsyndrome: current knowledge and the search for a cure. J North Am Benthol Soc. 2005, 24(3):706~723
    4 M. J. Paul, J. L. Meyer. Streams in the urban Landscape. Annu Rev Ecol Syst. 2001, 32:333~365
    5 S. A. Morley, J. R. Karr. Assessing and restoring the health of urban streams in the Peuget Sound Basin. Conservation Biol. 2002, 16(6):1489~1509
    6 P. J. Whalen, L. A. Toth, J. W. Koebel and P. K. Strayer. Kissimmee River restoration: a case study. Water Sci Technol. 2002, 45(11):55~62
    7 W. J. Mitsch, J.C. Lefeuvre and V. Bouchard. Ecological engineering applied to river and wetland restoration. Ecol Eng. 2002, 18(5): 529~541
    8 P. A. Bukaveckas. Effects of channel restoration on water velocity, transient storage, and nutrient uptake in a channelized stream. Environ Sci Technol. 2007, 41 (5):1570~1576
    9 V. Eila, A. Liikanen, V. P. Salonen and P. J. Martikainen. A new gypsum-based technique to reduce methane and phophorus release from sediments of eutrophied lakes: Gypsum treatment to reduce internal loading. Water Res. 2003, 37(1):1~10
    10孙从军,王敏,程曦.硅藻土混凝剂在污染河水处理中的应用.上海环境科学. 2003, 22(4):275~278
    11 S. Hossain, B .D. Eyre and L. J. McKee. Impacts of dredging on dry season suspended sediment concentration in the Brisbane River estuary, Queensland, Australia. Estuar, Coastal Shelf Sci. 2004, 61(3): 539~545
    12 B. Pimpunchat, W. L. Sweatman, G. C.Wake, W. Triampo and A. Parshotam. Amathematical model for pollution in a river and its remediation by aeration. Appl Math Lett. 2009, 22(3):304~308
    13 T. P. Murphy, A. Lawson, M. Kumagai and J. Babin. Review of emerging issues in sediment treatment. Aquat Ecosystem Health Manage. 1999, 2(4): 419~434
    14 M. Neal, M. Harrow, H. Wickham, C. Neal, H. P. Jarvie, S. M. Howarth, P. G. Whitehcad and R. J. Williams. The water quality of the River Kennet: initial observations on a lowland chalk stream impacted by sewage inputs and phosphorus remediation. Sci Total Environ. 2000, 251-252 (5): 477~495
    15 N. J. S. Desmet, , S. Van Belleghem, P. Seuntjens, T. J. Bouma, K. Buis and P. Meire. Quantification of the impact of macrophytes on oxygen dynamics and nitrogen retention in a vegetated lowland river. Physics and Chemistry of the Earth, Parts A. 2008, 6(2):1~11
    16王淑梅,王宝贞,金文标,等.污染水体就地综合净化方法在福田河综合治理中的应用.给水排水. 2007, 33(6):12~15
    17周启星,宋玉芳,孙铁珩.生物修复研究与应用进展.自然科学进展. 2004, 14(7):721~728
    18 J. D. Coates, R. T. Anderson. Emerging techniques for anaerobic bioremediation of contaminated environments. Trends Biotechnol. 2000, 18(10): 408~412
    19张宗才,张新申,江涛,等. CMF微生物菌剂修复河流污水的动力学分析. 四川环境. 2004, 23(3):22~25
    20薛维纳,裴红艳,杨翠云,等.复合微生物菌剂处理城市污染河流的静态模拟.上海师范大学学报(自然科学版). 2005, 34(2):91~94
    21陈彬.加拿大微生物技术在上海市中心城区黑臭河道治理中的应用.上海水务. 2006, 22(3):45~46
    22汪红军,胡菊香,吴生桂,等.生物复合酶污水净化剂处理黑臭水体的研究.水利渔业. 2007, 27(1):68~70
    23刘军.日本河流与湖泊的水生植物净化技术现状.贵州环保科技. 2004, 110:7~10
    24 E. Brouwer, R. Bobbink and J. G. M. Roelofs. Restoration of aquatic macrophyte vegetation in acidified and eutrophied softwater lakes: an overview. Aquat Bot. 2002, 73(4): 405~431
    25高阳俊,孙从军. 2种浮床植物对大清河水质净化效果的研究.安徽农业科学. 2009, 37(7):3183~3185
    26李睿华,管运涛,何苗,等.河岸混合植物带处理受污染河水中试研究.环境科学. 2006, 27(4):651~654
    27黄亮,黎道丰,蔡庆华,等.不同水生植物对滇池入湖河道污水净化效能的比较.生态环境. 2008, 17(4):1385~1389
    28 B. S. O. De Ceballos, H. Oliveira, C.M. Meira, A. Konig, A.O. Guimar?es and J. T. de Souza. River water quality improvement by natural and constructed wetland systems in the tropical semi-arid region of Northeastern Brazil. Water Sci Technol. 2001, 44(11-12): 599~605
    29 S. R. Jing, Y. F. Lin, D. Y. Lee and T. W. Wang. Nutrient removal from polluted river water by using constructed wetlands. Bioresour Technol. 2001, 76(2):131~135
    30 S. Zhou, M. Hosomi. Nitrogen transformations and balance in a constructed wetland for nutrient-polluted river water treatment using forage rice in Japan. Ecol Eng. 2008, 32(2):147~155
    31张雨葵,杨扬,刘涛.人工湿地植物的选择及湿地植物对污染河水的净化能力.农业环境科学学报. 2006, 25(5):1318~1323
    32 K. Furukawa, Y. Ichimatsu, C. Harada, S. Shimozono and M. Hazama. Nitrification of polluted urban river waters using zeolite-coated nonwovens. J Environ Sci Health. 2000, 35(8): 1267~1278
    33 Y. S. Park, J. H. Moon, D. S. Kim and K. H. Ahn. Treatment of a polluted stream by a fixed-bed biofilm reactor with sludge discharger and backwashing system. Chemi Eng J. 2004, 99(3): 265~271
    34王荣昌,文湘华,景永强,等.悬浮载体生物膜反应器修复受污染河水试验研究.环境科学. 2004, 25:67~69
    35王超,王沛芳,侯俊.河流污染水体的仿生植物直接强化净化技术现场试验研究.河流生态修复技术研讨会. 2005
    36张辉,温东辉,李璐,等.附加回流的生物接触氧化工艺净化滇池大清河水质的示范工程研究.环境工程学报. 2009, 3(2):199~204
    37刘建康,谢平.揭开武汉东湖蓝藻水华消失之迷.长江流域资源与环境,1999, 8 ( 3 ) :312-319
    38 D. Jung, A.Cho, Y. G. Zo, S. I. Choi and T. S. Ahn. Nutrient removal from polluted stream water by artificial aquatic food web system. Hydrobiologia. 2009, 630(1):149~159
    39贾亚梅.鱼类生物操纵在苏州水环境治理中的应用研究.河海大学硕士论文. 2006
    40黄民生,徐亚同,戚仁海.苏州河污染支流一绥宁河生物修复试验研究.上海环境科学. 2003, 22(6): 384~389
    41李文奇,周怀东,刘玲花.水生植物与生物膜滤床系统净化河道污水研究.第一届全国水力学与水利信息学学术大会. 2003, 1
    42周志华,温明霞,李广志.物理-生物-生态技术相结合治理污染河道水体研究.北京水务. 2007, 3:28~31
    43韩波波,杨清海,李秀艳.生物栅对绥宁河河水修复效果的研究.辽东学院学报. 2007, 14(3):150~153
    44高尚,黄民生,吴林林,等.生物净化槽对黑臭河水净化的中试研究.中国环境科学. 2008, 28(5):433~437
    45 H. Van Limbergen, E. M. Top and W. Verstreete. Bioaugmentation in activated sludge: current features and future perspectives. Appl Microbiol Biotechnol. 1998, 50:16~23
    46 L. O. Odokuma, A. A. Dickson. Bioremediation of a crude oil polluted tropical rain forest soil. Global J Environ Sci. 2003, 2: 29~40
    47 S. EI. Fantroussi, S. N. Agathos. Is bioaugmentation a feasible strategy for pollutant removal and site remediation. Curr Opin Microbiol. 2005, 8:268~275
    48 M. A. Head, J. A. Oleszkiewicz. Bioaugmentation for nitrification at cold temperatures. Water Res. 2004, 38(3):523~530
    49 C. Y. Young. The use of enzymes and biocatalytic additives for wastewater treatment process. Water Pollut Control Fed Highlights. 1976, 13:5
    50 Z. T. Yu, W. W. Mohn. Bioaugmentation with resin-acid-degrading bacteria enhances resin acid removal in sequencing batch reactors treating pulp mill effluents. Water Res. 2001, 35(4):883~890
    51 R. Saravanane, D. V. S. Murthy and K. Krishnaiah. Bioaugmentation and treatment of cephalexin drug-based pharmaceutical effluent in an upflow anaerobic fluidized bed system. Bioresour Technol. 2001.76(3):279~281
    52孙炜,熊振湖,刘春,等.生物强化及在环境污染物生物治理中的新进展.天津城市建设学院学报. 2006, 12(1):20~54
    53 S. J. Wang, K. C. Loh. New cell growth pattern on mixed substrates and substrate utilization in cometabolic transformation of 4-chlorophenol. Water Res. 2000, 34(15):3786~3794
    54 A. Farrell, B. Quilty. The enhancement of 2-chlorophenol degradation by a mixed microbial community when augmented with Pseudomonas putida CPI.Water Res. 2002, 36(10): 2443~2450
    55 J. W. Grave, T. W. Joyce. A critical review of the ability of biological treatment systems to remove chlorinated organics discharged by the paper industry. Water SA. 1994, 20(2):155~160
    56方芳,朱润晔,张丽丽,等.好氧颗粒污泥共代谢降解MTBE及微生物群落研究.环境科学学报. 2008, 28(11):2206~2212
    57 K. B. Gregory, M. G. Mason, H. D. Picken, L. J. Weathers and G. F. Parkin. Bioaugmentation of Fe (0) for the remediation of chlorinated aliphatic hydrocarbons. Environ Eng Sci. 2000, 17(3):169~181
    58姚珺,赵野,何苗.共代谢对难降解有机物生物降解性能的影响.环境科学与技术. 2006, 29(3):11~12
    59安淼,周琪,李晖,等. 2,4-二氯代酚的共代谢降解研究.中国给水排水. 2005, 21(12):53~55
    60帖靖玺.生物强化技术处理焦化废水中难降解有机物及其相关性分析.西安建筑科技大学硕士毕业论文. 2003, 4:32~43
    61苏俊峰,马放,侯宁,等.复合硝化菌群处理氨氮废水.南京工业大学学报(自然科学版). 2009, 31(2):39~42
    62 V. Ivanov, X. H. Wang, S. T. L. Tay and J. H. Tay. Bioaugmentation and enhanced formation of microbial granules used in aerobic wastewater treatment. Appl Microbiol Biotechnol. 2006, 70(3):374~381
    63崔建涛,李建新,王育红,等.细胞固定化技术的研究进展.农产品加工(学刊). 2007,(1):24~26
    64翟晓萌,李道堂.海藻酸钠固定化包埋微生物处理有机微污染源水.环境科学. 2000, 21(6):81~84
    65 C. F. Degiorgi, R. A. Pizarro, E. E. Smolko, S. Lora and M.Carenza. Hydrogels for immobilization of bacteria used in the treatment of metal-contaminated wastes. Radiat Phys Chem. 2002, 63(1):109~113
    67刘书宇,马放,姜钦鹏.生物强化生态床修复景观水过程中氮转化积累研究.北京工业大学学报. 2008, 34(6): 642~645,651
    66 S. R. Guiot, F. Lepine and K. Tawfiki-Hajji. Immobilization strategies for bioaugmentation of anaerobic reactors treating phenolic compounds. Water Sci Technol. 2000, 42(5-6): 245~250
    68 T. Bouchez, D. Patureau, P. Dabert, S. Juretschko, J. Doré, P. Delgenès, R. Moletta and M. Wagner. Ecological study of a bioaugmentation failure. EnvironMicrobiol. 2000, 2(2):179~190
    69 S. V. Mohan, N. C. Rao, K. K. Prasad and P.N. Sarma. Bioaugmentation of an anaerobic sequencing batch biofilm reactor (AnSBBR) with immobilized sulphate reducing bacteria (SRB) for the treatment of sulphate bearing chemical wastewater. Process Biochem. 2005, 40: 2849~2857
    70陈兵红.沸石固定化细胞处理农村生活污水中氨氮效果研究.环境科学与技术. 2009, 32(7):131~135
    71王坤,刘永军.活细胞固定化技术在焦化废水生物处理中的应用试验.环境科技. 2009, 22(4):25~27,33
    72 B. Atkinson, F. Mavittuna. Immobillied cell systems. Biochem Eng & Biotech Handbook. 1991, (2): 768
    73 H. McLaughlin, A. Farrell and B. Quilty. Bioaugmentation of activated sludge with two pseudomonas putida strains for the degradation of 4-chlorophenol. J Environ Sci Health Part A. 2006, 41:763~777
    75山丹,马放,王金生,等.生物强化技术提高SBR系统对低温苯胺废水处理能力的研究.环境工程学报. 2009, 3(4):578~580
    74 F. Ma, J. B. Guo, L. J. Zhao, C. C. Chang and D. Cui. Application of bioaugmentation to improve the activated sludge system into the contact oxidation system treating petrochemical wastewater. Bioresour Technol. 2009, 100:597~602
    76 L. Semprini, M. E. Dolan, M. A. Mathias, G. D. Hopkins and P. L. McCarty. Bioaugmentation of butane-utilizing microorganisms for the in situ cometabolic treatment of 1,1-dichloroethene, 1,1-dichloroethane, and 1,1,1-trichloroethane. Eur J Soil Biol. 2007, 43: 322~327
    77马亚莉,袁林江. SBR无厌氧段生物强化除磷的诱导研究.中国给水排水. 2009, 25(11):8~11
    78刘亚,林逢凯,胥峥.复合酶生物促进剂强化生物处理模拟PVA废水研究.环境污染与防治. 2009, 31(8):74~78
    79 G. D. Digiovanni, J. W. Neilson, I. L. Pepper and N. A. Sinclair. Gene-transfer of alcaligenes-eutrophus jmp134 plasmid pJP4 to indigenous soil recipients. Appl Environ Microbiol. 1996, 62(7):2521~2526
    80 J. Winkler, K. N. Timmis and R. A. Snyder. Tracking the response of burkholderia -cepacia G4-5223 Pr1 in aquifer microcosms. Appl Environ Microbiol. 1995, 61(2):448~455
    81 S. Bathe, T. V. K. Mohan, S. Wuertz and M. Hausner. Hausner M. Bioaugmentation of a sequencing batch biofilm reactor by horizontal gene transfer. Water Sci Technol. 2004, 49 (11-12): 337~344
    82 Y. V. Nancharaiah, H. M. Joshi, M. Hausner and V. P.Venugopalan. Bioaugmentation of aerobic microbial granules with Pseudomonas putida carrying TOL plasmid. Chemosphere. 2008, 71(1):30~35
    83 S. V. Mohan, C. Falkentoft, Y. V. Nancharaiah, B. S. M. Sturm, P. Wattiau, P. A. Wilderer, S. Wuertz and M. Hausner. Bioaugmentation of microbial communities in laboratory and pilot scale sequencing batch biofilm reactors using the TOL plasmid. Bioresour Technol. 2009, 100:1746~1753
    84何延青,吴永强,刘俊良,等.处理水中微污染有机物的工程菌的研究.环境工程. 2004, 22(4):60~65
    85马放,郭静波,赵立军,等.生物强化工程菌的构建及其在石化废水处理中的应用.环境科学学报. 2008, 28(5):885~891
    86 B. M. Wilen, J. L. Nielson, K. Keiding and P. H. Nielson. Influence of microbial activity on the stability of activated sludge flocs. Collids and Surfaces B: Biointerfaces. 2000, 18(2):145~156
    87赵立军,马放,赵庆建,等.生物强化技术在污水厂快速启动中的工程应用.哈尔滨工业大学学报. 2007, 39(12):1886~1889
    88 N. Boon, J. Goris, P. De Vos, W. Verstraete and E. M.Top. Bmaugmentation of activated sludge by an indigenous 3-chloroaniline-degrading comamonas testosterone strain I2gfp. Appl Environ Microbiol. 2000, 66(7):2906~2913
    89 T. Bouchez, D. Patureau, P. Dabert, M. Wagner, J. P. Delgenès and R. Moletta. Successful and unsuccessful bioaugmentation experiments monitored by fluorescent in situ hybridization. Water Sci Technol. 2000, 141(12) 61~68
    90 D. Park, D. S. Lee, Y. M. Kim and J. M. Park. Bioaugmentation of cyanide-degrading microorganisms in a full-scale cokes wastewater treatment facility. Bioresour Technol. 2008, 99 (6): 2092~2096
    91 I. P. Thompson, C. J. van der Gast, L. Ciric and A. C. Singer. Bioaugmentation for bioremediation: the challenge of strain selection. Environ Microbiol. 2005, 7(7):909~915
    92 G. A. Kowalchuk, J. R. Stephen, W. De Boer, J. I. Prosser, T. M. Embley, and J. W .Woldendorp. Analysis of ammonia-oxidizing bacteria of theβ-subdivision of the class proteobacteria in coastal sand dunes by denaturing gradient gelelectrophoresis and sequencing of PCR-amplified 16S ribosomal DNA fragments. Appl Environ Microbiol. 1997, 63(4):1489~1497
    93 L. Ovre?s, L. Forney, F. L. Daae, and V. Torsvik. Distribution of bacterioplanklon in meromictic lake selenvannet, as determined by denaturing gradient electrophoresis of PCR-amplified gene fragments coding for 16S rRNA. Appl Environ Microbiol. 1997, 63 (9):3367~3373
    94 M. J. Ferris, G. Muyzer, and D. M. Ward. Denaturing dradient gel electrophoresis profiles of 16S rRNA defined populations inhabiting a hot spring microbial mat community. Appl Environ Microbiol. 1996, 62(2):340~346
    95金赞芳,李文腾,潘志彦.一株反硝化菌的分离鉴定和系统发育分析.环境科学与技术. 2006, 29(7):37~44
    96 G. Muyzer, K. Smalla. Application of denaturing gradient gel electrophoresis (DGGE) and temperature gradient gel electrophoesis (TGGE) in microbial ecology. Gene Molicular Microb. 1998, 73 (1):127~141
    97 E. O. Casamayor, H. Sch?fer, L. Ba?eras, C. Pedrós-Alióand G. Muyzer. Identification and spatiotemporal difference between merobial assemblages from two neighboring sulfurous lakes: comparison by miroscopy and denaturing gradient gel electrophoresis. Appl Environ Microbiol. 2000, 66(2):499~508
    98马放,任南琪,杨基先.污染控制微生物学实验.哈尔滨:哈尔滨工业大学出版社. 2002.39~43
    99马放,王弘宇,周丹丹,等.好氧反硝化菌株X31的反硝化特性.华南理工大学学报(自然科学版). 2005, 33(7): 42~46
    100东秀珠,蔡妙英.常见细菌系统鉴定手册.科学出版社.2001
    101布坎南R.E.,吉木斯N.E.伯杰氏细菌鉴定手册.第八版.科学出版社. 1984
    102 Garrity G. M., J. A. Bell and T. G. Lilburn. Taxonomic outline of the prokaryotes Bergey’s Mannual of Systematic Bateraology, 2nd Edition. 2004
    103国家环境保护局.《水和废水检测分析方法》编委会.第四版,中国环境科学出版社. 2002
    104樊英鑫.三种形态氮对金鱼藻生长与生理特性的影响.南京:南京林业大学.硕士学位论文. 2007, 8~9
    105 E. Lyautey, C. R. Jackson, J. Cayrou, J. L. Rols and F. Garabétian. Bacterial community succession in natural river biofilm assemblages. Microbial Ecology.2005, 50(4):589~601
    106 V. Andreoni, L. Cavalca, M.A. Rao, G. Nocerino, S. Bernasconi, E. Dell’Amico, M. Colombo and L. Gianfreda. Bacteria communities and enzyme activities of PAHs polluted soils. Chemosphere. 2004, 57(5):401~412
    107 T. Vallaeys, E. Topp, G. Muyzer, V. Macheret, G. Laguerre, A. Rigaud and G. Soulas. Evaluation of denaturing gradient gel electrophoresis in the detection of 16S rDNA sequence variation in rhizobia and methanotrophs. FEMS Microbiol Ecol. 1997, 24(3):279~285
    108赵阳国.硫酸盐还原工艺调控及功能微生物群落动态学特征.哈尔滨工业大学博士论文. 2007, 33~38
    109 C. C. Morse, A. D. Huryn and C. Cronan. Impervious surface area as a predictor of the effects of urbanization on stream insect communities in Maine, U.S.A. Environ Monit Assess. 2003, 89(1): 95~127
    110 R. Miltner, D. White and C. O. Yoder. The biotic integrity of streams in urban and suburbanizing landscapes. Landscape Urban Plan. 2004, 69(1):87~100
    111 J. N. Galloway, J. D. Aber, J. W. Erisman, S. P. Seitzinger, R. W. Howarth, E. B. Cowling and B. J. Cosby. The nitrogen cascade. Bioscience. 2003, 53(4): 341~356
    112 S. D. Donner, C. J. Kucharik and J. A. Foley. Impact of changing land use practices on nitrate export by the Mississippi River. Global Biogeochem Cy. 2004, 18(1):1~21
    113 R. B. Alexander, R. A. Smith and G. E. Schwarz. Effect of stream channel size on the delivery of nitrogen to the Gulf of Mexico. Nature. 2000, 403(6771):758~761
    114 P. J. Mulholland, D. L. DeAngelis. Surface-subsurface exchange and nutrient spiraling. In: Streams and Ground Waters, J. B. Jones and P.J. Mulholland (Ed.), Academic Press, San Diego. 2000, 149~166
    115 B. J. Peterson, W. Wollheim, P. J. Mulholland, J. R.Webster, J. L. Meyer, J. L.Tank, E. Martí, W. B. Bowden, H. M. Valett, A. E. Hershey, W. H. McDowell, W. K. Dodds, S. K. Hamilton, S. Gregory and D. D. Morrall. Control of nitrogen export from watersheds by headwater streams. Science. 2001, 292(5514): 86~90
    116 P. J. Mulholland, H. M.Valett, J. R.Webster, S. A.Thomas, L.W. Cooper, S. K. Hamilton and B. J. Peterson. Stream denitrification and total nitrate uptakerates measured using a field 15N tracer addition approach. Limnol Oceanogr. 2004, 49(3):809~820
    117 P. J. Mulholland, A. M. Helton, G. C. Poole, R. O. Hall, S. K. Hamilton, B. J. Peterson, J. L.Tank, L. R. Ashkenas, L. W. Cooper, C. N. Dahm, W. K. Dodds, S. E. G. Findlay, S. V. Gregory, N. B. Grimm, S. L. Johnson, W. H. McDowell, J. L. Meyer, H. M.Valett, J. R. Webster, C. P. Arango, J. J. Beaulieu, M. J. Bernot, A. J. Burgin, C. L. Crenshaw, L. T. Johnson, B. R. Niederlehner, J. M. O'Brien, J. D. Potter, R. W. Sheibley, D. J. Sobota and S. M. Thomas. Stream denitrification across biomes and its response to anthropogenic nitrate loading. Nature. 2008, 452(7184): 202~205
    118 S. P. Seitzinger, R. V. Styles, E. W. Boyer, R. B. Alexander, G. Billen, R.W. Howarth, B. Mayer and N. V. Breemen. Nitrogen retention in rivers: model development and application to watersheds in the northeastern U.S.A. Biogeochemistry. 2002, 57/58(1):199~237
    119 S. E. Perryman, G. N. Rees and C. J. Walsh. Analysis of denitrifying communities in streams from an urban and non-urban catchment. Aquat Ecol. 2008, 42: 95~101
    120 M. J. Bernot, W. K. Dodds. Nitrogen retention, removal, and saturation in lotic ecosystems. Ecosystems. 2005, 8(4):442~453
    121 C. N. Dahm, H. M.Valett. Hyporheic zones. In: Hauer FR, Lamberti GA, Eds. Methods in Stream Ecology. San Diego: Academic Press. 1996
    122 F. J. Triska, V. C. Kennedy, R. J. Avanzino, G. W. Zellweger and K. E. Bencala. Retention and transport of nutrients in a third-order stream: channel processes. Ecology. 1989, 70(6):1877~1892
    123 J. R. Webster, B. C. Patten. Effects of watershed perturbation on stream potassium and calcium dynamics. Ecol Monogr. 1979, 49:51~72
    124 J. D. Newbold, J. W. Elwood, R. V. O’Neill and W. W. Van. Measuring nutrient spiralling in streams. Can J Fish Aquat Sci. 1981, 38: 860~863
    125 Stream Solute Workshop. Concepts and methods for assessing solute dynamics in stream ecosystems. J Nor Amer Bentholo Soc. 1990, 9(2):95~119
    126 R. D. DeLaune, L. M. Salinas, R. S. Knox, M. N. Sarafyan and C. J. Smith. Water quality of a coastal river receiving nutrient inputs: ammonium nitrogen transformations. J Environ Sci Health, Part A. 1991, 26(7):1287~1302
    127 M. J. Kemp, W. K. Dodds. Centimeter scale patterns of oxygen concentrationsand nitrification rates in prairie stream substrata. J Nor Amer Bentholo Soc. 2001, 20(3):347~357
    128 M. J. Kemp, W. K. Dodds. Comparisons of nitrification and denitriflcation in prairie and agriculturally influenced lotic ecosystems. Ecol Applic. 2002, 12(4):998~1009
    129 E. A. Strauss, N. L. Mitchell and G. A. Lamberti. Factors regulating nitrification in aquatic sediments: effects of organic carbon, nitrogen availability, and pH. Can J Fish Aquat Sci. 2002, 59(3):554~563
    130 S. Seitzinger, J. A. Harrison, J. K. B?hlke, A. F. Bouwman, R. Lowrance, B. Peterson, C. Tobias and G. V. Drecht. Denitrification across landscapes and waterscapes: a synthesis. Ecol Applic. 2006, 16(6):2064~2090
    131 M. M. M. Kuypers, G. Lavik, D. Woebken, M. Schmid, B. M. Fuchs, R. Amann, B. B. Jorgensen and M. S. M. Jetten. Massive nitrogen loss from the Benguela upwelling system through anaerobic ammonium oxidation. Proceedings of the National Academy of Sciences (USA). 2005, 102(18):6478~6483
    132 L. A. Robertson, T. N. P. Dalsgaard, Revsbech, and J. G. Keunen. Confirmation of aerobic denitrification in batch cultures using gas chromatography and 15N mass spectrometry. FEMS Microbiol Ecol. 1995, 18:113~120
    133 S. Hulth, R. C. Aller and F. Gilbert. Coupled anoxic nitrification/manganses reduction in marine sediments. Geochimica Cosmochimica Acta. 1999, 63:49~66
    134 B. S. Caruso. Project river recovery: restoration of braided gravel-bed river habitat in New Zealand′s high country. Environ Manage. 2006, 37(6): 840~861
    135 I. Poudevigne, D.Alard, R. S. E. W. Leuven and P. H. Nienhuis. A systems approach to river restoration: a case study in the lower seine valley, France. River Res Applic. 2002, 18: 239~247
    136 J. A. Cunningh, H. Rahme, G. D. Hopkins, C. Lebron and M. Reinhard. Enhanced in situ bioremediation of BTEX-contaminated groundwater by combined iInjection of nitrate and sulfate. Environ Sci Technol. 2001, 35(8):1663~1670
    137 X. M. Yang, D. Beckmann, S. Fiorenza and C. Niedermeier. Field study of pulsed air sparging for remediation of petroleum hydrocarbon contaminatedsoil and groundwater. Environ Sci Technol. 2005.39(18):7279~7286
    138 M. S. Faria, R. J. Lopes, J. Malcato, A. J.A. Nogueira and A. M.V. M. Soares. In situ bioassays with chironomus riparius larvae to biomonitor metal pollution in rivers and to evaluate the efficiency of restoration measures in mine areas. Environ Pollut. 2008, 151(1):213~221
    139 M. L. Pedersen, J. M. Andersen, K. Nielsen, and M. Linnemann. Restoration of skjern river and its valley: Project description and general ecological changes in the project area. Ecol eng. 2007, 30(2):131~144
    140 A. Cebron, T. Berthe and J. Garnier. Nitrification and nitrifying bacteria in the lower seine river and estuary (France). Appl environ microbiol. 2003, 69(12):7091~7100
    141 A. Kontas, F. Kucuksezgin, O. Altay and E. Uluturhan. Monitoring of eutrophication and nutrient limitation in the Izmir Bay (Turkey) before and after Wastewater Treatment Plant. Environ Int. 2004, 29(8): 1057~1062
    142 H. L. S. Tam, D. T. W. Tang, W. Y. Leung, K. M. Ho and P. F. Greenfield. Perofrmance evaluation of hybrid and conventional sequencing batch reactor and continuous processes. Wat Sci Technol. 2004, 50(10):59~65
    143 M. Fouad, R. Bhargava. Sludge production and settleability in biofilm-activated sludge process. J Environ Eng. 2005, 131(3): 417~424
    144 T. Sriwiriyarat, C. W. Randall. Evaluation of integrated fixed film activated sludge wastewater treatment processes at high mean cells residence time and low temperatures. J Environ Eng. 2005, 131(11):1550~1556
    145 M. Tizghadam, C. Dagot and M. Baudu. Wastewater treatment in a hybrid activated sludge baffled reactor. J Hazard Mater. 2008, 154(1-3):550~557
    146 B. Hooshyari, A. Azimi, and N. Mehrdadi. Kinetic analysis of enhanced biological phosphorus removal in a hybrid integrated fixed film activated sludge process. Int J Environ Sci Technol. 2009, 6 (1):149~158
    147 P. Artiga, V. Oyanedel, J. M. Garrido and R. Méndez. An innovative biofilm-suspended biomass hybrid membrane bioreactor for wastewater treatment. Desalination. 2005, 179(1-3):171~179
    148 M. F. Hamoda, H. A. AI-Sharekh. Perofrmance of a combined biofilm-suspended growth system for wastewater treatment. Wat Sci Tech. 2000, 41(1):167~175
    149 K. Mishima, K. Nishimura, M.Goi and N. Katsukura. Characteristics ofnitrification and denitrification of the media-anaerobic-anoxic-oxic process. Water Sci Technol. 1996, 34(1-2): 137~143
    150 S. Liu, B. Z. Wang, L. Wand, Y. W. Ding and H .J. Zhou. Full scale application of combined SBF-AS process for municipal wastewater treatment in small towns and cities in China. J Harbin Inst Technol (New Series). 2006, 13(3):347~353
    151 Y. Y. An, F. L. Yang, H. C. Chua, F. S. Wong and B. Wu. The integration of methanogenesis with shortcut nitrification and denitrification in a combined UASB with MBR. Bioresour Technol. 2008, 99(9):3714~3720
    152 A. Cebron, J. Garnier. Experimental nitrous oxide production and nitrification kinetics using natural communities from river waters (the Lower Seine, France). Aquat Microb Ecol. 2005, 41(1):25~38
    153 S. Q. Xia, J. Y. Li and R. C. Wang. Nitrogen removal performance and microbial community structure dynamics response to carbon nitrogen ratio in a compact suspended carrier biofilm reactor. Ecol Eng. 2008, 32(3):256~262
    154 J. Li, X. H. Xing and B. Z. Wang. Characteristics of phosphorus removal from wastewater by biofilm sequencing batch reactor (SBR). Biochem Eng J. 2003, 16(3):279~285
    155 H. S. Lee, S. J. Park and T. I. Yoon. Wastewater treatment in a hybrid biological reactor using powdered minerals: effects of organic loading rates on COD removal and nitrification. Process Biochem. 2002, 38(1): 81~88
    156 G. A. Kowalchuk, Stephen J. R. Ammonia-oxidizing bacteria: a model for molecular microbial ecology. Annu Rev Microbiol. 2001, 55:485~529
    157 S. R. Konstantinov, W. Y. Zhu, B. A.Williams, S. Tamminga , W. M. de Vos and A. D. L. Akkermans. Effect of fermentable carbohydrates on piglet faecal bacterial communities as revealed by denaturing gradient gel electrophoresis analysis of 16S ribosomal DNA. FEMS Microbiol Ecol. 2003, 43(2):225~235
    158宋文清,杨海真.活性污泥1号数学模型(ASMI)中的组分.云南环境科学. 2003, 22(4):17~19
    159 K.V. Gernaey, M. C. M.van Loosdrecht, M.Henze,et al. Activated sludge wastewater treatment plant modeling and simulation: state of the art. Water Sci Technol. 2003, 19(2):763~783
    160 C. W. Randall, D. Sen. Full-scale evaluation of an integrated fixed- film activated sludge (IFAS) process for enhanced nitrogen removal. Water SciTechnol. 1996, 33(12):155~162
    161赵振,林卫青.污水处理厂计算机仿真模拟研究.上海环境科学. 2004, 24(2):59~64
    162 A. Nuhoglu, B. Keskinler, E.Yildiz. Mathematical modeling of the activated sludge process-the Erzincan case. Environ Eng. 2005, 121(9):2467~2473
    163 D. J. Batstone. Mathematical modeling of anaerobic reactors treating domestic wastewater: Rational criteria for model use. Environ Sci Bio-Technol. 2006, 5(6):57~71
    164 Y. M. Liang, Y. Qian and J. Hu. Research on the characteristics of start up and operation oftreating brewery wastewater with an AFB reactor at ambient temperatures. Water Sci Technol. 1993, 28(7):187~195
    165 U. Telgmann, H. Horn and E. Morgenroth. Influence of growth history on sloughing and erosion from biofilms. Wat Res. 2004, 38(17):3671~3684
    166 J. B. M. Meiberg, P. M. Bruinenberg and W. Harder. Effect of dissolved oxygen tension on the metabolism of methylated amines in Hyphomicrobium X in the absence and presence of nitrate: evidence for aerobic denitrification. J Gen Microbiol. 1980, 120:453~463
    167 S. K. Gupta, S. M. Raja and A. B. Gupta. Simultaneous nitrification-denitrification in a roating biological contactor. Environ Tech. 1994, 15(2):145~153
    168 D. Patureau, E. Rustrian, T. Bouchez, J. Delgenes. R. Moletta and E. Helloin. Combined phosphate and nitrogen removal in a sequencing batch reactor using the aerobic denitrifier, Microvirgula aerodenitrificans. Water Res. 2001, 35(1):189~197
    169李剑锋.一体式A/O膜生物反应器脱氮性能及在船舶污水处理中的应用研究.博士学位论文.大连理工大学. 2008, 47~48
    170 P. Battistoni, F. Fatone, D. Passacantando and D. Bolzonella. Application of food waste disposers and alternate cycles process in small-decentralized towns: A case study. Water Res. 2007, 41(4):893~903
    171 D. F. Juang, W. P. Tsai, W. K. Liu and J. H. Lin. Treatment of polluted river water by a gravel contact oxidation system constructed under riverbed. Int J Environ Sci Technol. 2008, 5(3):305~314
    172 R. C. Wang, X. H.Wen and Y. Qian. Influence of carrier concentration on the performance and microbial characteristics of a suspended carrier biofilmreactor. Process Biochem. 2005, 40(9):2992~3001
    173 G. Muyzer, E. C. De Waal and A. G. Uitterlinden. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-aamplified genes coding for 16S rRNA. Appl Environ Microbiol. 1993, 59(3):695~700
    174申颖洁,吴光夏,续曙光,等.新型填料曝气生物滤池去除氮化合物的效果.中国给水排水. 2009, 25(9):83~86
    175 C. L. A. Maas, A. L. Goodman, B. Cassidy, D. Turner and D. Carson. Full-scale results from a biofilm carrier process treating wastewater from an ethylene glycol reclamation facility. Proceedings of the Water Environment Federation. 2007, (15):28~42
    176邱东茹,吴振斌,刘保元,等.武汉东湖水生植被的恢复试验研究.湖泊科学. 1997, 9(2):1
    177 C. A. Arias, M. Del Bubba and H. Brix. Phosphorus removal by sands for use as media in subsurface flow constructed reed beds. Water Res. 2001, 35(5): 1159~1168
    178郭长城,王国祥,喻国华.利用水生植物净化水体中的悬浮泥沙.环境工程. 2006, 24(6):31~33
    179王郡,顾宇飞,朱增银,等.不同营养状态下金鱼藻的生理响应.应用生态学报. 2005, 16(2):337~340
    180谢田,朱富寿,陈刚,等.“网箱养草”净化水质生物技术初步试验结果-Ⅱ网箱内金鱼藻栽培形式及相关问题研究.贵州环保科技. 2004, 10(3):4~8
    181郭长城,喻国华,王国祥.高等水生植物对悬浮颗粒物再悬浮的影响.人民黄河. 2007, 29(4):37~38

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700