用户名: 密码: 验证码:
厌氧氨氧化混培物包埋固定化特性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
厌氧氨氧化微生物只在高细胞浓度下才具有活性,生长缓慢且较难培养。如何获得足够的生物量并使之保持在反应器中不流失,便成为ANAMMOX应用的技术瓶颈之所在。微生物包埋固定后,可以防止微生物流失,增加其局部浓度,进而实现反应器快速启动并提高活性和耐冲击性。目前,国内外对固定化条件下的厌氧氨氧化缺乏系统的研究报道,鉴于固定化技术对于解决厌氧氨氧化生物量维持的可行性,有必要对固定化厌氧氨氧化工艺进行深入的研究。
     为此,本研究在富集厌氧氨氧化污泥的基础上,筛选了最佳固定化载体,优化了最佳固定化条件,并且探明了固定化小球的理化性质,明确了环境条件对固定化厌氧氨氧化的影响及其生物学特性。同时采用ASBR反应器,实现了厌氧氨氧化反应器的快速启动,探讨了固定化厌氧氨氧化工艺的耐冲击性能和有机环境下的运行特性。
     首先采用ASBR作为反应器,以好氧硝化污泥为种泥,成功启动厌氧氨氧化反应器,达到了富集厌氧氨氧化混培物的目的。反应器运行到60d时,反应器内总氮负荷已经达到0.47 kg/m~3.d,此时氨氮和亚硝酸氮的去除率都已达到80%,反应器已经表现出良好的厌氧氨氧化性能,经过126d的培养,反应器稳定运行在厌氧氨氧化状态时,反应器的总氮容积负荷(以N计)最高可达到0.53 kg/m~3.d,总氮去除率平均为83%。利用扫描电镜和透射电镜观察显示有典型厌氧氨氧化菌形态的细菌存在。
     研究采用包埋法固定化微生物的方法,选择四种材料(海藻酸钠SA、聚乙烯醇PVA、羧甲基纤维素钠CMC、聚乙烯醇与海藻酸钠混合液PVA-SA)作为固定化载体,通过对不同载体的固定化操作、固定化小球的厌氧氨氧化活性、理化性质,包埋材料成本等因素的分析比较,选择出PVA-SA作为固定化包埋材料,制作出了PVA-SA固定化厌氧氨氧化小球,并优化了固定化条件。
     对PVA-SA固定化厌氧氨氧化小球的理化性质的分析测定表明,PVA-SA固定化厌氧氨氧化小球有良好的机械强度与表面特性,有较好的扩散性能。通过扫描电镜、透射电镜观察,直观描述了小球的构造和表面特性。HRT影响实验得出,固定化厌氧氨氧化反应受到HRT的影响明显大,应不短于24h才能维持反应器内部厌氧氨氧化性能。温度在25~40℃范围内,进水pH6~8之间时,固定化厌氧氨氧化反应器基本能保持高效稳定的运行,固定化之后,厌氧氨氧化微生物对温度和pH的耐受范围有所扩大。
     采用特异性引物成功从固定化小球内微生物总DNA中扩增出厌氧氨氧化特异性16SrDNA,证明了厌氧氨氧化微生物在固定化小球内部事实存在,测序结果固定化小球内部厌氧氨氧化微生物(EU661861)属于Planctomycetales属,其16SrDNA序列与其它的已发现的厌氧氨氧化菌差异较大,基本可以断定实验中起厌氧氨氧化作用的优势种群是一种尚未报道的的新型厌氧氨氧化菌。实验证明厌氧氨氧化的反应速率与生物量的增长呈直线关系。利用细菌的比生长速率(μ)与比基质利用速率( U)之间的关系,可以求得固定化厌氧氨氧化生物产率系数(Y)=0.0645mgVS (mgNH_4~+)~(-1);细胞衰减常数(b)=0. 0452mgVS(gVS·d)~(-1) ,其数学表达式为μ= 0.0645U - 0.0452(r2=0.9641)。
     采用ASBR反应器和固定化厌氧氨氧化小球,实现了厌氧氨氧化反应器的快速启动,总氮容积负荷从0.355 kgN/m~(-3)d~(-1)提高到0.63 kgN/m~(-3)d~(-1),氨氮与亚硝氮去除率始终维持在90%左右,具有高稳定性。基质浓度对厌氧氨氧化反应的影响主要体现在亚硝氮浓度,反应器在受到2倍和3倍进水基质负荷的冲击后,能够在5-8天恢复性能。进水pH冲击实验证明固定化厌氧氨氧化反应器具备更高的抗碱性冲击性能,而酸性冲击对其影响甚大。在以有机物进水运行期间,有机物严重的影响了厌氧氨氧化反应的性能,但反应器可以较快的恢复性能。研究结果充分证明的固定化厌氧氨氧化工艺的可行性和有效性,具有良好的应用前景。研究丰富了厌氧氨氧化研究内容,为基于固定化技术的厌氧氨氧化工艺开发奠定了理论基础。
Anaerobic ammonium oxidation (ANAMMOX) has been put forward recently as a promising alternative to treat ammonium rich wastewaters. However, the ANAMMOX bacteria have a low growth rate and the biomass yield is low. For these reason, maintaining a sufficient amount of ANAMMOX sludge in a reactor is the main factor in the development of a stable and high-rate ANAMMOX system. Fortunately, immobilization is an efficient method to prevent biomass from being washed out and to promote hyper-concentrated cultures. Compared with natural microorganism technology, immobilization of microorganism technology has the advantages such as high cell density, strong endurance of toxicity, easy separation of produce, low operating expenses, simple maintenance management and little residual sludge etc. In order to promote the application of ANAMMOX process, it was necessary to research immobilized ANAMMOX process.
     In this research, the ANAMMOX sludge was cultured by the anaerobic sequencing batch reactor (ASBR). The best entrapped support was obtained by comparing immobilization operation, nitrogen removal ratio and cost of entrapped materials etc. and the best operating conditions was demonstrated by orthogonal experiment. The functional microbial group was identified by making specific 16srDNA clone library. In addition, the effect of hydraulic retention time (HRT), pH, and temperature on immobilized beads were investigated. Then, with immobilized ANAMMOX beads as seed, the start-up, operation, impact factors of ANAMMOX ASBR were investigated in detail.
     ANAMMOX ASBR was successfully started up within 126d, with aerobic nitrifying sludge as inoculum. When the ANAMMOX ASBR was run at stable state, the volumetric load rate was 0.53 kg(TN)/m~3.d, and the average removal efficiency of total nitrogen was 83%. SEM and TEM showed that the typical ANAMMOX bacteria exist in the sludge.
     Four materials, sodium carboxymethylcellulose (Na-CMC), sodium alginate (SA), polyvinyl alcohol (PVA), and mixed liquor of polyvinyl alcohol and sodium alginate (PVA-SA), were prepared as carriers for entrapping ANAMMOX sludge. The best entrapment support PVA-SA was selected by comparing ANAMMOX efficiency, the physical characters, immobilization operation, and costs of entrapment materials and so on. Moreover, PVA-SA gel entrapment orthogonal test was performed, consequently, the PVA-SA immobilized live ANAMMOX beads were prepared.
     The physicochemical characteristics of PVA-SA immobilized ANAMMOX beads were investigated. The results indicated that the PVA-SA immobilized ANAMMOX beads had preferable mechanical strength, surface structure and diffusibility. By means of scanning electron microscopy, transmission electron microscopy and digital photography, the surface structure of PVA-SA immobilized bead is loose and finely porous which facilitates diffusion of the nitrogen,and the ANAMMOX bacteria were confirmed in gel beads. Then, the effect of hydraulic retention time (HRT), pH, and temperature on immobilized biomass were investigated. The effect of pH and temperature on the ANAMMOX process was evidently weakened in PVA-SA immobilized gel beads and the effect of HRT on the ANAMMOX reaction was reversely significant, which could be the key parameter of the immobilized ANAMMOX system. Stable operation could be achieved in an ASBR, which proved that gel immobilization was an excellent method to maintain the ANAMMOX biomass.
     PCR amplification, cloning, and phylogenetic analysis of the 16S rRNA genes were performed to identify the ANAMMOX bacteria immobilized in the gel bead culture. The results demonstrated that there are one ANAMMOX bacterial species existing in the gel beads (GenBank accession numbers EU661861). Phylogenetic analysis based on 16S rRNA sequences revealed that these bacteria were groups of distantly relative microorganisms from the Planctomycete community, had a common node with the recently described anaerobic ammonia-oxidizing group KSU-1(AB057453) of the Planctomycetales. The test results indicated that the efficiency of ANAMMOX has linear relationship with the growth of biomass, it showed the sufficient ANAMMOX biomass maintain in reactor is necessary. The kinetic characteristics of anaerobic ammonia oxidation was studied, The cell yield was 0.0645mgVS (mgNH_4~+)~(-1) and the cell decay coefficient was 0.0452mgVS (g VS·d)~(-1), the Mathematical expression wasμ= 0.0645U - 0.0452 (r2=0.9641).
     Finally, the ASBR was performed using ANAMMOX bacteria entrapped in a gel carrier. There appeared to be no lag phase in activity of the ANAMMOX bacteria, because the seed sludge was ANAMMOX enrichment, nitrogen removal quickly increased, and the removal ratios of ammonium and nitrite by gel beads were 81.3% and 76.5% until day 10, respectively. Although nitrogen loading increased in the influent, nitrite and ammonium concentration in the effluent decreased to below 15 mg/L and 10 mg/L after 30 day, the nitrogen conversion rate continuously increased and reached an average of 0.58 kg N/m~3 per day after day 60. The effect of pH and substrate shocks on the performance of ANAMMOX reactor was investigated. Whether the reactor was affected by substrate or pH shocks, the performance was considerably affected. Comparing with substrate shocks, the reactor was more sensitive to pH shocks. The performance was able to recover from the disturbances at all the tested shocks within 5-11 days. The recovering velocity was relatively stable, which did not increase with the intensity of the shocks. But the reactor was easier to recover from high pH shocks than low high pH shocks. The organic carbon substrate test demonstrated that the organic matter could inhibit the ANAMMOX, under organic carbon condition, the heterotrophic denitrification was enhanced, and the nitrate nitrogen produced from ANAMMOX reaction could be removed.
     From the above results, it is believed that gel entrapment was supposed to be a highly effective technique for immobilized ANAMMOX bacteria. The immobilized ANAMMOX can bring great economic benefits due to easy separation and maintenance of the ANAMMOX bacteria in the reactor. The results proved the feasibility and good prospect of immobilized ANAMMOX, and laid a theoretical foundation for ANAMMOX process based on immobilization technique.
引文
[1]国家环境保护部,2007年中国环境状况公报[M].北京:国家环境保护部, 2008:4-18.
    [2] Focht D D, Versrractc W. Biochemical ecology of nitrification and dinitrification[J]. Adv in Microb Ecol. 1977, 1: 135-214
    [3] Domenic C, Thomas C H. Heterotrophic nitrification among denitrifiers[J]. Appl Environ Microbiol. 1984, 47(4): 620-623
    [4] Mark P, Dennis D, Focht N. Kinetic analysis N2O production by Nitrosomonas europaea an examination of nitrifier denitrification[J]. Appl Environ Microbiol. 1985, 49(5): 1134-1141
    [5] Lesley A, Van Niel E W J, et al. Simultaneous nitrification and dinitrification in aerobic chemostat cultures of Thiosphaera Pantotropha[J]. Appl Environ Microbiol. 1988, 54(11): 2812-2818
    [6] Robertson L A, Kuenen J G. Combined heterotrophic nitrification and aerobic dinitrification in thiosphaera pantotropha and other bacteria[J]. Ant Van Leeuwenhoek. 1990, 56: 289-299
    [7]吕锡武,李峰,稻森悠平等.氨氮废水处理过程中的好氧反硝化研究[J].给水排水. 2000, 26(4): 17-20
    [8] Mulder A, Van de Graaf A A, Robertson L A, et al. Anaerobic ammonium oxidation discovered in a denitrifying fluidized bed reactor[J]. FEMS Microbiol Ecol. 1995, 16(3): 177-184.
    [9] Strous M , Heijnen J J , Kuenen J G, et al. The sequencing batch reactor as a powerful tool to study very slowly growing microorganisms[J]. Applied and Environmental Microbiology, 1998, 50 (5) : 589- 596.
    [10] Jetten MSM , Strous M , van de Pas-Schoonen K T ,et al.The anaerobic oxidation of ammonium[J] .FEMS Microbiology Reviews , 1999 , 22 :421 - 437.
    [11]胡勇有,雒怀庆,陈柱,厌氧氨氧化菌的培养与驯化研究[J].华南理工大学学报(自然科学版), 2002, 30(11):160-164.
    [12]张蔚萍,陈建中.固定化微生物技术在环境工程中的应用[J].云南环境科学,2003,22(4):39-41.
    [13]王广金,褚良银,杨平,陈文梅,周先桃.固定化微生物技术及其在废水处理中的应用[J].重庆环境科学,2003,25(12):171-176.
    [14] Broda E. Two kinds of lithotrophs missing in nature[J]. Z Allg Mikrobiol. 1977,17: 491-493
    [15] Van de Graaf A A, Mulder A, De Bruijn P, et al. Anaerobic oxidation of ammonium is a biologically mediated process[J]. Appl Environ Microbiol. 1995, 61(4): 1246-1251
    [16] Van de Graaf A A, De Bruijn P, Robertson L A, et al. Metabolic pathway of anaerobic ammonium oxidation on the basis of N-15 studies in a fluidized bed reactor[J]. Microbiology. 1997, 143(7): 2415-2421
    [17] Schalk J, Oustad H, Kuenen J G, et al. The anaerobic oxidation of hydrazine: a novel reaction in microbial nitrogen metabolism[J]. FEMS Microbiol Lett. 1998, 158(1): 61-67
    [18] Strous M, Kuenen J G, Jetten M S M. Key physiology of anaerobic ammonium oxidation[J]. Appl Environ Microbiol. 1999, 65(7): 3248-3250
    [18] Thamdrup B, Dalsgaard T. Production of N2 through anaerobic ammonium oxidation coupled to nitrate reduction in marine sediments[J]. Appl Environ Microbiol. 2002, 68 (3): 1312-1318
    [19] Dalsgaard T, Canfield D E, Petersen J, et al. N2 Production by the anammox reaction in the anoxic water column of Golfo Dulce[J], Costa Rica. Nature. 2003, 422 (6932): 606-608
    [20] Kuypers M M, Sliekers A O, Lavik G, et al. Anaerobic ammonium oxidation by anammox bacteria in the black sea[J]. Nature.2003, 422 (6932): 608-611
    [21] Devol A H. Solution to a marine mystery. Nature, 2003, 422(6932): 575-576
    [22]林丰妹,郑平,赵洋阳,胡宝兰,陈健松.气提式内循环反应器运行性能的研究.生物工程学报[J], 2002, 18(4): 492-496
    [23] Zheng P, Lin F M, Hu B L, Chen J S. Start-up of anaerobic ammonia oxidation bioreactor with nitrifying activated sludge[J]. J Environ Sci. 2004, 16(1): 13-16
    [24] Zheng P, Lin F M, Hu B L, Chen J S. Performance of Anammox granular sludge bed reactor started up with nitrifying granular sludge[J]. J Environ Sci. 2004, 16(2): 339-342
    [25] Gable J E. Anaerobic ammonium oxidation during soil aquifer treatment[J]. Arizona state university, 2002, FEMS Microbiol. Rev., 22, 421–437
    [26] Strous M, van Gerven E, Zheng P, et al. Ammonium removal from concentrated waste streams with the anaerobic ammonium oxidation(ANAMMOX) process in different reaction configuration[J]. WatRes.1997, 31: 1955-1962
    [27]胡宝兰,郑平,管丽莉. Anammox反应器中氨氧化菌的分离鉴定及特性研究.浙江大学学报(农业与生命科学版)[J]. 2001, 27(3): 314-316
    [28] De Bruijn P, Van de Graaf A A, Jetten M S M, et al. Growth of Nitrosomonas europaea on Hydroxylamine[J]. FEMS Microbiol Lett. 1995, 125: 179-184
    [29] Schmidt I, Bock E. Anaerobic ammonia oxidation with nitrogen dioxide by Nitrosomonas eutropha. Arch Microbiol[J]. 1997, 167: 106-111
    [30]郑平,胡宝兰,徐向阳.厌氧氨氧化菌好氧代谢特性的研究.浙江大学学报(农业与生命科学版) [J]. 2000, 26(5): 521-526
    [31]雒怀庆,胡勇有.厌氧氨氧化污泥中效应菌的分子生物学研究[J].微生物学报. , 2005, 45(3): 335-338
    [32]胡宝兰,郑平,胡安辉. Anammox反应器的启动及其菌群演变的研究[J].农业工程学报. 2005, 21(7): 107-110
    [33] Van de Graaf A A, De Bruijn P, Robertson L A, Jetten M S M, Kuenen J G. Autotrophlic growth of anaerobic ammonium-oxidizing micro-organisms in a fluidized bed reactor[J]. Microbiology. 1996, 142(8): 2187-2196
    [34] Toh S K, Webb R I, Ashbolt N J. Enrichment of autotrophic anaerobic ammonium-oxidizing consortia from various wastewaters[J]. Microb Ecol. 2002, 43(1): 154-167
    [35] Strous M, Heijnen J J, Kuenen J G, Jetten M S M. The sequencing batch reactor as a powerful tool for the study of slowly growing anaerobic ammonium-oxidizing microorganisms[J]. Appl Microbiol Biotechnol. 1998, 50(5): 589-596
    [36] Thuan TH, Jahng DJ, Jung JY, Kim DJ, Kim WK, Park YJ, Kim JE, Ahn DH. Anammox bacteria enrichment in upflow anaerobic sludge blanket (UASB) reactor[J]. BIOTECHNOLOGY AND BIOPROCESS ENGINEERING ,2004,9 (5): 345-351
    [37]杜兵,司亚安,孙艳玲,刘寅.推流固定化生物反应器培养ANAMMOX菌[J].中国给排水,2003,19(7):62-65
    [38]杜兵,司亚安,孙艳玲,刘寅,田刚,ANAMMOX微生物高负荷培养方法研究[J],给水排水,2004,30(10):33-36
    [39] Strous M, Fuerst J A, Kramer E H M, et al. Missing litotroph identified as new planctomycete[J]. Nature. 1999, 400(6743): 446-449
    [40] Jetten M S M, Wagner M, Fuerst J, et al. Microbiology and application of theanaerobic ammonium oxidation (‘anammox’) process. Current Opinion in Biotechnology[J]. 2001, 12(3): 283-288
    [41] Kuenen J G, Jetten M S M. Extraordinary anaerobic ammonium oxidizing bacteria[J]. ASM News. 2001, 67: 456-463
    [42] Egli K, Franger U, Alvarez P J J, et al. Enrichment and characterization of ananmmox bacterium from a rotating biological contractor treating ammonium-rich leachate[J]. Arch Microbiol. 2001, 175(3): 198-207
    [43] Schmid M, Twachtmann U, Klein M, et al. Molecular evidence for genus level diversity of bacteria capable of catalyzing anaerobic ammonium oxidation[J]. Sys Appl Microbiol. 2000, 23: 93-106
    [44] Kuypers M M, Sliekers A O, Lavik G, et al. Anaerobic ammonium oxidation by anammox bacteria in the black sea[J]. Nature, 2003, 422(6932): 608—611
    [45] Schmid M C , Walsh K, Webb R, et al. Candidatus‘‘Scalindua brodae’’, sp. nov., Candidatus‘‘Scalindua wagneri’’, sp. nov., two new species of anaerobic ammonium oxidizing bacteria. Syst[J]. Appl. Microbiol. 2003, 26: 529-538
    [46] Lindsay M R, Webb R I, Strous M, et al. Cell compartmentalisation in planctomy- cetes: novel types of structural organisation for the bacterial cell. Arch Microbiol[J]. 2001, 175: 413-429
    [47] Jetten M S M, Schmid M, Schmidt I, et al. Improved nitrogen removal by application of new nitrogen-cycle bacteria[J]. Rev Environ Sci Biotech. 2002, 1: 51-63
    [48]郑平,胡宝兰.厌氧氨氧化菌混培物生长及代谢动力学研究[J].生物工程学报. 2001, 17(2): 193-198
    [49] Strous M, van Gerven E, Kuenen J G, et al. Effects of aerobic and microaerobic conditions on anaerobic ammonium-oxidizing (anammox) sludge[J]. Appl Environ Microbiol. 1997, 63(6): 2446-2448
    [50] Schmidt I, Bock E, Jetten M S M. Ammonia oxidation by Nitrosomonas eutropha with NO2 as oxidant is not inhibited by acetylene[J]. Microbiol (UK). 2001, 147: 2247-2253
    [51] Sliekers A O, Derwort N, Campos Gomez J L, et al. Completely autrophic ammonia removal over nitrite in a single reactor system[J]. Wat Res. 2002, 36: 2475-2482
    [52] Wyffels S, Boeckx P, Pynaert K, et al. Nitrogen removal from sludge reject water by a two-stage oxygen-limited autotrophic nitrification denitrificationprocess[J]. Wat. Sci. and Tech. 2004, 49 (5-6): 57-64
    [53] Dapena-Mora A, Van Hulle S W, Campos J L, et al. Enrichment of Anammox biomass from municipal activated sludge: experimental and modeling results[J]. J Chem Technol Biotechnol. 2004, 79 : 1421-1428
    [54] Van Dongen U, Jetten M S M, Van Loosdrecht M C M. The SHARON-ANAMMOX process for treatment of ammonium rich wastewater[J]. Wat Sci Tech. 2001, 44(1): 153-160
    [55] Toh S K,Ashbolt N J. Adaptation of anaerobic ammonium-oxidising consortium to synthetic coke-ovens wastewater[J]. Appl Microbiol Biotechnol. 2002, 59(2-3): 344-352
    [56] Sliekers A O, Third K A, Abma W, et al. CANON and Anammox in a gas-lift reactor[J]. FEMS Microbiology Lett. 2003, 218: 339-344
    [57] Dapena-Mora A, Campos J L, Mosquera-Corral A, et al. Stability of the ANAMMOX process in a gas-lift reactor and a SBR[J]. J Biotechnol. 2004, 110: 159-170
    [58]郑平,冯孝善,Jetten M S M等. ANAMMOX流化床反应器性能的研究[J].环境科学学报. 1998, 18(4): 367-372
    [59]张少辉,郑平.厌氧氨氧化反应器启动方法的研究[J].中国环境科学.2004, 24(4): 496-500
    [60]胡宝兰,郑平,胡安辉等. Anammox反应器的启动及其菌群演变的研究[J].农业工程学报.2005, 21(7): 107-110
    [61]胡宝兰,陈旭良,郑平,等.两种Anammox反应器性能的对比研究[J ] .环境科学学报,2005 ,25(4) :545 - 551
    [62]左剑恶,杨洋,蒙爱红.厌氧氨氧化工艺在UASB反应器中的启动运行研究[J].上海环境科学. 2003, 22(10): 665-669
    [63]沈平,左剑恶,杨洋.接种不同污泥的厌氧氨氧化反应器的启动与运行[J].中国沼气. 2004, 22 (3): 3-7
    [64]杨洋,左剑恶等.接种不同普通污泥的厌氧氨氧化反应器的启动运行研究.环境科学(增刊)[J].2004, 25: 39-42
    [65]刘寅,杜兵,司亚安等.厌氧氨氧化菌的培养与推流式反应器氨厌氧工艺[J].环境科学. 2005, 26(2): 137-141
    [66]朱静平,胡勇有,梁辉强.基于SBR反应器的ANAMMOX工艺的启动运行[J].环境污染治理技术与设备. 2006, 7(2): 30-33
    [67]雒怀庆.厌氧氨氧化生物脱氮技术基础及其细菌群落的研究[D].博士学位论文.广州:华南理工大学, 2003
    [68] Ahn Y H, wang I S, Min K S. ANAMMOX and partial denitritation in anaerobic nitrogen removal from piggery waste[J]. Wat Sci Tech. 2004, 49 (5-6): 145-153
    [69]魏学军,邓华,谈红.厌氧氨氧化反应器的启动及运行[J].新疆环境保护. 2002, 24(1): 17-21
    [70] Wang J L, Kang J. The characteristics of anaerobic ammonium oxidation (ANAMMOX) by granular sludge from an EGSB reactor. Process Biochem[J]. 2005, 40: 1973-1978
    [71] Kuai L, Verstraete W. Ammonium removal by the oxygen-limited autotrophic nitrification-denitrification system[J]. Appl Environ Microbiol. 1998, 64(11): 4500-4506
    [72] Van Loosdrecht M C M, Jetten M S M. Microbiological conversions in nitrogen removal[J]. Water Sci Technol. 1998, 38: 1-7
    [73]金仁村,郑平,陈旭良,胡宝兰.厌氧氨氧化反应器快速启动方法的探讨[J].化工进展.2005,24(6):629-631
    [74] Dapena-Mora A , Arrojo B, Luis Campos J et al. Improvement of the settling properties of Anammox sludge in an SBR. Journal of Chemical Technology and Biotechnology[J]. 2004, 79: 1417-1420
    [75] Dague R R, Habben C E, Pidaparti S R. Initial studies on the anaerobic sequencing batch reactor[J]. Water Sci Technol. 1992, 26(9-11): 2429-2432
    [76] Ndon U J, Dague R R. Effect of temperature and hydraulic retention time on anaerobic sequencing batch reactor treatment of low-strength wastewater[J]. Water Res. 1997, 31(10): 2455-2466
    [77] Zaiat M, Rodrigues J A D, Ratusznei S M, et al. Anaerobic sequencing batch reactors for wastewater treatment: a developing technology[J]. Appl Microbiol Biotechnol. 2001, 55: 29-35
    [78]傅大放,靳强,周培国等.厌氧序批式活性污泥工艺(ASBR)特性研究[J].中国给水排水. 2000, 16(10): 1-5
    [79]李亚新,田扬捷.厌氧序批式反应器(ASBR)工艺特性初探[J].给水排水. 2002, 28(7): 23-26
    [80]朱静平.有机碳源环境下厌氧氨氧化生物脱氮技术研究.[D]博士学位论文.广州:华南理工大学, 2007.
    [81] Hao X D, Heijnen J J, van Loosdrecht M C M. Model-based evaluation oftemperature and inflow variations on a partial nitrification-ANAMMOX biofilm process[J]. Water Res. 2002, 36: 4839-4849
    [82]郝晓地,曹秀芹,曹亚莉等.厌氧氨氧化细菌在生物膜系统中起主要脱氮作用的模拟预测[J].环境科学学报. 2004, 24(6):1007-1013
    [83]雒怀庆.厌氧氨氧化生物脱氮技术基础及其细菌群落的研究[D].博士学位论文.广州:华南理工大学, 2003
    [84] Radovich .J. M.,MASS TRANSFER LIMITATIONS IN IMMOBILIZED CELLS[J],Biotechnology Advances[J],1985, 3(1):1-12.
    [85] BM McLean, K Baskaran, MA Connor. The use of algal-bacterial biofilms to enhancenitrification rates in lagoons experience under laboratory and pilot-scale conditions[J].Water Scienceand Technology. 2000, 42(10): 187-194.
    [86]蒋宇红,黄霞.几种固定化细胞载体的比较[J],环境科学,1993, 14 (2):11-15.
    [87] Seung Hoon Song, Suk Soon Choi , Kyungmoon Park , Young Je Yoo. Novel hybrid immobilization of microorganisms and its applications to biological denitrification[J]. Enzyme and Microbial Technology 37 (2005) 567–573
    [88] Turtakovsky, Buris, Petti , Luca , Gulot , Serge. Microorganisms immobilized in chitosan crosslinked with lignosulphonate for purification of waste water [ P] . US 6051411 . 2000 - 04 - 18.
    [89] Yuan Yukang. Immob ilization of microbial cells and enzymes in calcium alginate - polyethylene glycol - polyethylene imide beads [ P] .US 6153416 . 2000 - 11 - 28.
    [90] Chih Cheng Chang, Szu Kung Tseng, Hsien Kai Huang. Hydrogenotrophic denitrification with immobilized Alcaligenes eutrophus for drinking water treatment[J]. Bioresource Technology 69 (1999): 53-58
    [91] Etsuo K. Simultaneously by polylectrlyte complex coimmobililzed Nitrosomonas europare and Pseudomonas denitrificans cells[J]. Biotechnology and Bioengineering, 1988, 31(4):382-384.
    [92]李花子,王建龙,文湘华,施汉昌.聚乙烯醇硼酸固定化方法的改进[J].环境科学研究,2002, 15(5):26-27
    [93]谭佑铭,王萌,罗启芳.固定化反硝化菌涂层电极及模拟脱氮装置的研制[J].卫生研究. 2004,33(4):407-409
    [94] Ichimura Kunihiro, Watanabe Akira, Mishima Koji, Endo Kaneaki. Ammonium-nitrogen removal from wastewater by immobilized nitrifyingbacteria. Jpn. Kokai Tokkyo Koho JP 61259798 [86259798 ] ( IPC C02F2003/ 34) , 18 Nov , 1986 , Appl . 85/ 99678 , 13 May 1985 :5
    [95] M. Matsumura, T. Yamamoto, Pi-chao Wang,el al. Rapid nitrification with immobilized cells using macro-porous cellulose carrier[J]. Wat. Res. Vol. 31, No. 5, pp. 1027-1034, 1997
    [96] In-Soung Chang , Chi-Il Kim , Byeong-Uk Nam. The influence of poly-vinyl-alcohol (PVA) characteristics on the physical stability of encapsulated immobilization media for advanced wastewater treatment[J]. Process Biochemistry 40 (2005) 3050–3054
    [97]田小光,彭万霖,于德水,张介弛,金永焕.海藻酸铝固定化酵母生产高浓度酒精的研究[J].微生物学通报,1995, 22(5): 282-284
    [98]宋向阳,毛连山,杨富国,勇强,余世袁.海藻酸铝固定化酵母生产酒精的研究[J].林产化学与工业,2002, 22(2): 43-46
    [99]段俊英,柴明.改进固定化增殖细胞有稳定性及发酵乙醇性能有探讨[J] .生物工程学报, 1990, 6(4):344-346.
    [100]童群义,陈坚,堵国成,李华钟. PVA卡拉胶混合载体固定化大肠杆菌-酵母菌混合体系生产谷胱甘肽[J].工业微生物,2000, 30(4): 1-5
    [101] Pai S L. Continuous degradation of phenol by R. hodoccussp immobilizedon granular activeted carbon and incaccium alginate[J]. Bioresource Technol ,1995 ,51 (1) :37 - 42.
    [102] Lin J E , Wang H Y, Mckey R F. Use of coimmobilized biological systerms to degade toxic organic compounds [J]. Biotechnol and Bioengin , 1999 , 38(2) :273 - 279
    [103]刘树文,李华.改善固定化微生物细胞粒子机械强度的研究[J].微生物学杂志.2005, 25(4):32-34
    [104]倪红,杨艳燕,陈怀新.甲壳质/壳聚糖及其衍生物在生物领域中的应用[J].湖北大学学报(自然科学版),2001,23(1):77-81
    [105]王建龙,施汉昌.聚乙烯醇包埋固定化微生物的研究及进展[J] .工业微生物,1998 ,28 (2) :35 - 40.
    [106]尉迟力,夏仕文,李树本.甲烷生物催化氧化制甲醇[J].催化学报,1997, 18(6):503-507
    [107]曹国民,张彤,龚剑丽,等.固定化细胞单级生物脱氮研究[J] .中国环境科学,2000 ,20(3) :237 - 240.
    [108]普利锋,赵刚,王建龙.几种交联剂对PVA固定化活性污泥的活性比较[J].清华大学学报(自然科学版),2004 ,44(12):1603-1605
    [109]王玉建,李红玉.PVA-Ca (NO3 ) 2法包埋固定氧化亚铁硫杆菌研究[J].微生物学报,(2006) 46 (3):456-459
    [110]薛嵘,黄国兰,郭艳.改进的硫酸盐-聚乙烯醇法包埋藻菌脱氮除磷研究[J].环境污染与防治. 2005,27(7):556-558
    [111] Vanotti M.B.,Hunt P G.,Nitrification treatment of swine wastewater with acclimated nitrifying sludge immobilized in polymer pellets[J]. Tansactions of the Asae,2000, 43(2):405-414
    [112]王磊,兰淑澄.固定化硝化菌去除氨氮的研究[J]. ENV IRONMENTALSCIENCE, 1997, 7 (3) : 18 - 23.
    [113]宋吟玲,田永静,樊颖果.硝化细菌固定化细胞的研究[J].苏州城建环保学院学报,1999,12(4):45-48
    [114] Nilsson I, Ohlson S. Columnar denitrification of water by immobilized Pseudomonas denitrificans cells[J]. Eur J Appl Microbiol Biotechnol. 1982;14:86–90.
    [115] Kesseru, P.Kiss, I. Bihari, Z., Polyak B. Investigation of the denitrification activity of immobilized Pseudomonas butanovora cells in the presence of different organic substrates[J]. Water Res. , 2002. 36,1565–1571.
    [116] Peter Kesserü, Istvan Kiss, Zoltan Bihari, Bela Polyak . Biological denitrification in a continuous-flow pilot bioreactor containing immobilized Pseudomonas butanovora cells[J]. Bioresource Technology 87 (2003) 75–80
    [117]谭佑铭,罗启芳,王琳,王萌.固定化反硝化菌对富营养化水体脱氮的试验研究[J].中国卫生工程学. 2003,2(2): 65-68
    [118]谭佑铭,罗启芳.不同碳源对固定化反硝化菌脱氮的影响[J].卫生研究, 2003,32(2):95-97
    [119]史春龙.富营养化湖泊底泥中反硝化微生物及其反硝化作用的研究[D].南京:南京农业大学硕士论文,2002
    [120]田晋红,熊平,董莉仙,张传斌.固定化反硝化细菌脱氮的研究[J].西南农业大学学报(自然科学版).2004, 26(3):318-321
    [121] Tartakovsky B , Kotlar E , Sheintuch M. Coupled nitrificationdenitrification processes in a mixed culture of coimmobilized cells :analysis and experiment [ J ] . Chemical Engineering Science , 1996 , 51 ( 5) :2327-2336.
    [122] UemotoH, SaikiH. Behavior of immobilized nitrosomonas europaea and paracoccus denitrifican in tubulargelfor nitrogen removal in wastewater[ J ].Prog. Biotechnol, 1996, 11: 695 - 701.
    [123]曹国民,赵庆祥,张彤.单级生物脱氮技术的进展[J] .中国给水排水,2000 ,16(2) :20 - 24. ,
    [124]曹国民赵庆祥龚剑丽张彤.固定化微生物在好氧条件下同时硝化和反硝化[J]。环境工程. 2000 ,18()5:17-19
    [125] Guo min Cao, Qing xiang Zhao, Xian2bo Sun, Tong Zhang. Characterization of nitrifying and denitrigying bacteria coimmobilized in PVA and kinetics model of biological nitrogen removal by coimmobilized cells[J]. Enzyme andMicrobial Technology, 2002, 30: 49 - 55.
    [126]张彤,曹国民,赵庆祥.固定化微生物脱氮技术进展[J].城市环境与城市生态,2000,13(2):17-20.
    [127]李亚静,孙力平,李计元: ANAMMOX反应器快速启动及对反硝化聚磷的影响研究[J].工业用水与废水,2006,37(4):16-19.
    [128] Grady Jr C P L, Daigger G T, Lim H C.废水生物处理[M].张锡辉,刘勇弟译.第二版.北京:化学工业出版社, 2003: 184-186
    [129]王文标,顾国维,刘鸿霞.序批式反应器的水力停留时间的理论探讨[J].环境科学学报. 2003, 23(4): 428-431
    [130]国家环境保护总局编.水和废水监测分析方法(第四版) [M].北京:中国环境科学出版社, 2002
    [131] Paul E, Plisson-Saune S, Mauret M, et al. Process state evaluation of alternating oxic-anoxic activated sludge using ORP, pH and DO[J]. Water Sci Technol. 1998, 38(3): 299-306
    [132] Chen K C, Chen C Y, Peng J W, et al.Real-time control of an immobilized-cell reactor for wastewater treatment using ORP[J]. Water Res.2002,36(1): 230-238
    [133]熊振湖,孙翠珍,刘青春. 2005.不同载体固定化藻菌共生系统的脱氮除磷效果[J].环境科学与技术, 28(1):82-85
    [134] WANG B E, HU Y Y. 2007. Comparison of four supports for adsorption of reactive dyes by immobilized Aspergillus fumigatus beads[J]. Journal of Environmental Sciences 19 451–457
    [135]蒋宇红,黄霞,俞毓馨.几种固定化细胞载体的比较[J].环境科学, 1992, 14(2): 11-15
    [136] Anthonisen A C, Loehb R C, Prakasam T B S, et al.,“Inhibition of nitrification by ammonia and nitrous acid,”J Wat Poll Contr Fed., vol. 48, no. 5, pp. 835-852, May 1976.
    [137] Egli K, Franger U, Alvarez P J J, et al.,“Enrichment and characterization of ananmmox bacterium from a rotating biological contractor treating ammonium-rich leachate,”Arch Microbiol., vol. 175, no. 3, pp. 198-207, March 2001.
    [138] Altschul, S.F., Gish, W., Miller, W., Myers, E., Lipman, D.J., 1990. Basic local alignment search tool[J]. Journal of Molecular Biology 215, 403-410.
    [139] Saitou, N., Nei, M., 1987. The neighbor-joining method, a new method for constructing phylogenetic trees[J]. Molecular Biology and Evolution 4,406–425.
    [140] Kartala B., Rattray J., van Niftrika L. A.,et al. Candidatus‘‘Anammoxoglobus propionicus’’a new propionate oxidizing species of anaerobic ammonium oxidizing bacteria[J]. Syst. Appl. Microbiol, 2007, 30(1):39-49.
    [141]董莲华,杨金水,袁红莉。氨氧化细菌的分子生态学研究进展[J],应用生态学报,2008,19(6):1381-1388.
    [142] Van der Star W.R., Abma W.R., Blommers D., et al .Startup of reactors for anoxic ammonium oxidation: Experiences from the first full-scale anammox reactor in Rotterdam[J]. Wat. Res., 2007 ,41(18): 4149 ~ 4163
    [143] Innerebner G., Insam H.,Whittle I. H., et al . Identification of anammox bacteria in a full-scale deammonification plant making use of anaerobic ammonia oxidation[J]. Syst. Appl. Microbiol., 2007, 30(5):408~412
    [144]郑平,唐崇俭,陈建伟,陈婷婷,汪彩华.菌种流加式厌氧氨氧化装置[J].中国专利,ZL200820165691.0, 2009-9-9.
    [145] Kazuichi Isaka, Yasuhiro Date, Tatsuo Sumino,Satoshi Tsuneda. 2007. Ammonium removal performance of anaerobic ammonium-oxidizing bacteria immobilized in polyethylene glycol gel carrier[J]. Appl Microbiol Biotechnol (2007) 76:1457–1465

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700