用户名: 密码: 验证码:
定向碳纳米管薄膜的热化学气相沉积法制备及其血液相容性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
碳纳米管是一维新型纳米材料,具有低密度、高强度和极大的长径比。定向碳纳米管是它们沿着轴向生长的有序结构,具有优异的性能和广阔的应用前景,成为世界范围内的研究热点之一。
     本论文首先利用K575X磁控溅射镀膜仪在硅基体上沉积一层镍催化剂薄膜,通过高温氨气对催化剂薄膜进行预处理,使催化剂由连续薄膜转变为纳米颗粒,探讨了刻蚀时间、温度和催化剂薄膜原始厚度等工艺参数对纳米颗粒显微结构的调控作用,寻找镍催化剂薄膜的刻蚀规律,获得具有良好形态的催化剂颗粒的基底,并初步分析氨气在其变化过程中的作用机制;其次,采用热化学气相沉积法在经氨刻蚀后获得的镍催化剂颗粒上制备定向碳纳米管薄膜,通过SEM、TEM、XRD和Raman等测试手段,对其进行表征与分析,研究制备工艺条件与碳纳米管薄膜的表面形貌和微观结构间的关系,并对工艺参数进行优化;在此基础上,通过对催化剂结构形貌和碳纳米管成核过程的的研究,提出了一种定向竹节型结构碳纳米管的生长机制,并构建了适合此类碳纳米管的生长模型;此外,本文还利用接触角测量仪测量了标准液在不同工艺条件下制备的碳纳米管薄膜表面上的接触角,并深入研究了制备工艺参数对碳纳米管薄膜表面界面特性的影响;最后探索了碳纳米管薄膜作为生物医用材料在血液相容性方面的潜在应用,采用体外法对碳纳米管薄膜的血液相容性进行了实验评价和对比研究,包括血小板粘附实验测定碳纳米管薄膜抗血小板黏附性能、动态凝血实验测定碳纳米管薄膜抗凝血性以及溶血实验评价碳纳米管薄膜对红细胞膜的破坏程度。通过对碳纳米管薄膜的表面界面特性表征和血液相容性评价,寻找影响碳纳米管薄膜血液相容性的主要因素,并对碳纳米管薄膜表面界面特性对其血液相容性的影响机理进行了初步探讨。获得的主要结论如下:
     1、高温氨刻蚀可以调控硅基体表面镍催化剂颗粒的尺寸、密度和均匀性;只有恰当的刻蚀时间、温度和催化剂薄膜原始厚度才可以在硅基表面获得高密度、直径均匀细小的镍催化剂颗粒;实验中较理想的高温氨刻蚀工艺条件是刻蚀时间、温度和催化剂薄膜原始厚度分别为12min、800℃和10nm。
     2、通过热化学气相沉积法成功制备出了定向碳纳米管薄膜;通过调控不同的制备工艺参数,实现了碳纳米管薄膜的可控性生长;并获得制备定向碳纳米管薄膜的优化工艺参数:生长温度850℃,反应时间10min,乙炔浓度16.7%,催化剂薄膜厚度10nm左右。
     3、研究发现:D峰和G峰的强度比值I_D/I_G能够定量表征所研究的碳纳米管的纯度和有序度,I_D/I_G越低,说明该定向碳纳米管薄膜的非晶态碳成分越少,石墨化程度越高。
     4、提出了一种基于生长-停止相间隔的动力学和空间位阻效应的定向竹节型结构碳纳米管的生长模型;利用EDX无损检测方式可以快速地推测出此类碳纳米管遵循顶端生长方式;通过XRD分析判断出在生长碳纳米管的过程中起催化作用的是金属镍颗粒而不是碳化镍。
     5、通过采用接触角测量仪研究了不同工艺参数制备的碳纳米管薄膜的表面界面特性。结果表明:仅仅通过升高生长温度就可以使得其表面润湿性能大幅度提高——从亲水79.9°到超疏水155.4°;随着生长时间的增加其接触角先增加然后趋向稳定;随着乙炔浓度的增大其接触角先增大,然后骤然减小:通过调节催化剂厚度,碳纳米管薄膜表面的接触角可以从一般疏水95.7°到超疏水160.2°。此外,还发现随着碳纳米管薄膜表面接触角的提高,色散极性比γ_s~d/γ_s~p减少、界面自由能γ_(sl)增加、粘附功W_a降低。
     6、碳纳米管血液相容性体外评价实验表明:碳纳米管薄膜的介入确实改善了基体的血液相容性,显著抑制了基体表面血小板黏附数量和激活百分数,有利于增强其抗血小板黏附性能;延长了动态凝血时间,有利于提高其抗凝血性能;降低了溶血率,大大改善了外环境,减少了异体材料对红细胞的毒害,这对维持红细胞的结构和功能的完整起了重要的作用;并且可以通过调整制备工艺参数来获得具有良好血液相容性的碳纳米管薄膜。
     7、通过考察碳纳米管薄膜表面界面特性与其血液相容性的关系表明:碳纳米管薄膜表面的强疏水性、低色散极性比γ_s~d/γ_s~p和黏附功W_a、高界面自由能γ_(sl),有利于碳纳米管薄膜血液相容性的改善。此外,碳纳米管的血液相容性还与其表面微纳结构有关。
Carbon nanotubes(CNTs) are novel one-dimensional nano-materials with low density, high intensity and large aspect ratio.Aligned CNTs films are ordered groups of these nano-structures,which are all arranged along an identical direction,and are expected to have excellent properties implying promising applications,becoming one of the research hotspots in the world.
     Nickel catalyst thin films were deposited firstly on silicon substrates by K575X magnetron sputtering coater.The effects of ammonia pretreatment on the change of catalyst films from continuous one to the one with nanoscale particles were investigated. The nanostructures of the Ni thin films as a function of etching time,temperature and initial thickness of the catalyst film were discussed.The etching rules of the nickel catalyst film were summarized.Good-shape catalyst particles were obtained on the substrates.And the functional mechanism of ammonia was primarily analyzed.Aligned CNTs films were prepared secondly on nickel particles which derived from ammonia etching through thermal CVD method.Modern measuring and testing techniques such as SEM,TEM,XRD and Raman spectrum were employed to characterize the sample properties.The relationship between surface morphologies of CNTs and technological conditions were investigated to optimize the preparation parameters.Based on the morphology of catalyst and the nucleation of CNTs,the growth mechanism of aligned bamboo-shaped CNTs was studied and growth model was proposed.Contact angles(CA) of standard solution on CNTs films prepared in different conditions were measured.Then the relationship between surface-interface properties of CNTs and technological parameters was studied.Potential applications of CNTs films for blood compatibility in biomedicine were investigated.The property of prevention of platelet adhesion, anticoagulant property and damage degree to erythrocytes of CNTs films were investigated by platelet adhesion test,dynamic clotting time test and hemolysis assessment in vitro,respectively.The main factors influencing the blood compatibility of CNTs films were analyzed according to the characterization of surface-interface properties and the evaluation of blood compatibility of CNTs films in vitro.The relationship between surface-interface properties and blood compatibility of CNTs films were preliminary discussed.The principal results of this thesis were listed as follows.
     1、The size,density and homogenization of Ni nanoparticles on Si were adjusted through high temperature NH_3 etching.The appropriate processing time of ammonia, the processing temperature and initial film thickness are the key factors to obtain high dense.The better conditions for the fabrication of the uniform,small and high density transition metal catalyst nanoparticles on Si substrates are as follows:the etching duration of about 12min,the temperature of 800℃and initial film thickness of 10nm.
     2、Aligned CNTs films were prepared successfully by thermal CVD on etched Ni films. Controllable growth of CNTs films was implemented by adjusting different technogical parameters.Optimum preparation parameters of aligned CNTs films is obtained as follows:the growth temperature of 850℃,the growth time of 10min, C_2H_2 concentration of 16.7%and film thickness of 10nm.
     3、The results suggest that the intensity ratio I_D/I_G indicates the purity and degree of order in aligned CNTs.A lower I_D/I_G means less amorphous carbon and higher graphitization in aligned CNTs.
     4、A new growth mechanism based on dynamics alternation between growth-stop and steric hindrance was proposed,and it can give a qualitative explaination for the experiment results.EDX spectroscopy with non-destructive testing quickly indicated that the growth of CNTs conformed to tip-growth model,and XRD testing confirmed that Ni nanoparticles acted as the catalyst,not nickel carbide compound occurred during the CNTs growth period.
     5、The results obtained from surface-interface properties of CNTs films prepared in different conditions indicated that increasing the temperature could improve the wettability of CNTs surface with the contact angle ranging form 79.9°to 155.4°; contact angle increase of the time and ultimately kept steady;contact angle increased firstly and sharply decreased with the rising concentration of acetylene;contact angle changed from 95.7°to 160.2°by means of adjusting the thickness of nickel films. With the increase of contact angle for CNTs films,γ_s~d /γ_s~p and work of adhesion W_a decreased,while interfacial free energyγ_(sl) increased.
     6、Blood compatibility test for CNTs films in vitro indicated that CNTs films could improve the blood compatibility of substrate.Due to the interposition of CNTs,the number of platelets adhered and activated decreased,dynamic clotting time extended, haemolysis ratio decreased.It also improved the external environment,reduced the toxicity to erythrocyte and played an important role in maintaining the normal morphology and function of erythrocyte.In addition,CNTs films with excellent blood compatibility could be prepared via optimizing the technological parameters.
     7、Through investigation of the relation between surface-interface properties of CNTs and its blood compatibility,it indicated that several factors can be used to improve its blood compatibility such as strong hydrophobicity,low ratio of dispersive/polar component of the surface energyγ_s~d /γ_s~p and work of adhesion W_a,high interfacial free energyγ_(sl).Moreover,the micro-nano structure is also closely related to its blood compatibility.
引文
[1]M Meyyappan主编,刘忠范等,译.碳纳米管-科学与应用[M].北京:科学出版社,2007
    [2]HW Kroto,JR Heath,SCO Brien,et al.C_(60):Buckminster fullerene[J].Nature,1985,318:162-164
    [3]S Iijima.Helical microtubules of graphitic carbon[J].Nature,1991,358:56-58
    [4]TW Ebbesen,HJ Lezec,H Hiura,et al.Electrical conductivity of individual carbon nanotubes[J].Nature,1996,382:54-56
    [5]R Saito,MS Dresselhaus,G Dresselhaus.Physical properties of carbon nanotubes[M].London:Imperial Cooege Press,1998
    [6]R Satio,M Fujita,G Dtrddelhus,et al.Electronic structure of chiral graphene tububles[J].Appl.Phys.Lett.,1992,60:2204-2206
    [7]HP Li,CS Shi,XW Du,et al.The influences of synthesis temperature and Ni catalyst on the growth of carbon nanotubes by chemical vapor deposition[J].Materials Letters,2008,62:1472-1475
    [8]K Hiroshi,K Ippei,S Hirokazu,et al.High growth rate of vertically aligned carbon nanotubes using a plasma shield in microwave plasma-enhanced chemical vapor deposition[J].Carbon,2004,42:2753-2756
    [9]PM Ajayan,O Stephan,C Collex,et al.Aligned carbon nanotube arrays formed by cutting a polymer resin-nanotube composite[J].Science,1994,265(5176):1212-1214
    [10]WA de Heer,WS Bacsa,A Chatelain,et al.Aligned carbon nanotube films:production and optical and electronic properties[J].Science,1995,268(5212):845-847
    [11]DA Waiters,MJ Casavant,XC Qin,et al.In-plane-aligned membranes of carbon nanotubes[J].Chem.Phys.Lett.,2001,338:14-20
    [12]SG Rao,L Huang,W Setyawan,et al.Large-scale assembly of carbon nanotubes[J].Nature,2003,425:36-37
    [13]B Vigolo,A Penicaud,C Coulon,et al.Macroscopic fibers and ribbons of oriented carbon nanotubes[J].Science,2000,290:1331-1334
    [14]SM Huang,B Maynor,XY Cai,et al.Ultralong,well aligned single-walled carbon nanotube architectures on surfaces[J].Advanced Materials,2003,15:1651-1655
    [15]H Yu,WP Zhou,GQ Ning,et al.Fabrication of ordered single-walled carbon nanotube performs [J].Carbon,2005,43(10):2232-2234
    [16]SS Fan,MG Chapline,NR Franklin,et al.Self-oriented regular arrays of carbon nanotubes and their field emission properties[J].Science,1999,283:512-514
    [17]R Andrews,D Jacques,AM Rao,et al.Continuous production of aligned carbon nanotubes:a step closer to commercial realization[J].Chem.Phys.Lett.,1999,303:467-474
    [18]S K Srivastava,V D Vankar,V K V N Singh,et al.Effect of substrate morphology on growth and field emission properties of carbon nanotube films[J].Nano.Res.Lett.,2008,3:205-212
    [19]M Meyyappan,L Delzeit,A Cassell,et al.Carbon nanotube growth by PECVD:a review[J].Plasm.Sourc.Sci.Technol.,2003,12:205-216
    [20]Y Saito,Y Tani,N Miyagawa,et al.High yield of single-walled carbon nanotubes by arc discharge using Rh-Pt mixed catalysts[J].Chem.Phys.Lett.,1998,294:593-598
    [21]常保和,解思深,李文治,等.用电弧放电法大面积地制备离散的碳纳米[J].中国科学(A),1998,28,(2):151-152
    [22]赵廷凯,柳永宁.温控电弧放电法大量制备单壁碳纳米管[J].物理学报,2004,53(11):3961-3965
    [23]Sun X,Bao WR,Lv YK,et al.Synthesis of high quality single-walled carbon nanotubes by arc discharge method in large scale[J].Materials Letters,2007,61:3956-3958
    [24]张海燕,陈可心,朱燕娟,等.CO_2连续激光蒸发制备单壁碳纳米管及其Raman光谱的研究[J].物理学报,2002,51(2):444-448
    [25]K Mitsuhiro and T Yoshiaki.Production of single-wall carbon nanotubes by a XeCl excimer laser ablation[J].Thin Solid Films,2006,506:255-258
    [26]BEB Thiruvengadachari.Deposition of carbon layers from cyclohexane by thermal chemical vapor deposition[D].Kuvempu University,India,Doctoral Thesis,2005
    [27]徐军明.定向碳纳米管及其复合膜的制备与表征[D].浙江大学博士学位论文,2004
    [28]刘华平,程国安,赵勇,等.铁催化薄膜的微观结构对碳纳米管阵列生长的影响[J].人工晶体学报,2005,34(4):682-686
    [29]MJ Bronikowski.CVD growth of carbon nanotube bundle arrays[J].Carbon,2006,44:2822-2832
    [30]彭邦华,张永毅,姚亚刚,等.超长单壁碳纳米管的化学气相沉积生长[J].科学通报,2007,52(7):741-747
    [31]YJ You,MZ Qu,GM Zhou,et al.Growth of thin carbon nanotubes on MoCoMgO catalyst[J].Diam.Relat.Mater.,2007,16:205-208
    [32]WK Hsu,M Terrones,H Terrones,et al.Electrochemical formation of novel nanowires and their dynamic effects[J].Chem.Phys.Lett.,1998,284:177-183
    [33]WK Hsu,S Trasobares,H Terrones,et al.Electrolytic formation of carbon sheathed mixed Sn-Pb nanowires[J].Chem.Mater.,1999,11:1747-1751
    [34]C Journet,P Bernier.Production of carbon nanotubes[J].Appl.Phys.A-Mater.,1998,67:1-9
    [35]D Laplaze,P Bernier,W K Maser,et al.Carbon nanotubes:The solar approach[J].Carbon,1998,36(5-6):685-688
    [36]L Alvarez,P Bernier,D Laplaze,et al.Large scale solar,production of fullerenes and carbon nanotubes[J].Synthetic Metals,1999,103(1-3):2456-2457
    [37]W Vander,R L Chem,T M Ticich,et al.Diffusion flame synthesis of single-walled carbon nanotubes[J].Phys.Lett.,2000,323:217-223
    [38]曹峰,杨涵,傅强,等.不同燃料对火焰法制备一维碳纳米材料的影响[J].电子显微学报,2004,23(4):391-391
    [39]CX Pan,QL Bao.Well-aligned carbon nanotubes from ethanol flame[J].J.Mat.Sci.Lett.,2002,21:1927-1929
    [40]CX Pan,YL Liu,F Cao.Synthesis of carbon nanotubes and nanofibers from ethanol flames[C].第六届新型碳材料学术研讨会,2003,10
    [41]夏晓红,罗永松,梁英,等.水热法制备棒状纳米氧化铁及其在碳纳米管制备中的应用[J].功能材料与器件学报,2006,12(6):505-508
    [42]D Zhou,EV Anoshkina,L Chow,et al.Synthesis of carbon nanotubes by electrochemical deposition at room temperature[J].Carbon,2006,44:1013-1024
    [43]J Y Huang,H Yasuda,H Mori.Highly curved carbon nanostructures produced by ball-milling[J].Chem.Phys.Lett.,1999,303:130-134
    [44]卢怡,朱珍平,刘振字.催化剂对爆炸法合成碳纳米管的影响[J].新型炭材料,2004,19:1-6
    [45]DC Lee,FV Mikuiec,B A Korgel.Carbon nanotube synthesis in supercritical toluene[J].J.Am.Chem.Soc.,2004,126:4951-4957
    [46]张晓峰,杨小勇,齐炜炜,等.燃烧法合成碳纳米管的实验方案设计[J].工程热物理学报,2006,27(2):357-359
    [47]M Yudasaka,T Komatsu,T Ichihashi,et al.Single-wall carbon nanotube formation by laser ablation using double-targets of carbon and metal[J].Chem.Phys.Lett.,1997,278:102-106
    [48]T Guo,P Nikolaev,A Thess,et al.Catalytic growth of single-walled nanotubes by laser vaporization[J].Chem.Phys.Lett,1995,243:49-54
    [49]Y Wang,F Wei,GH Luo,et al.The large-scale production of carbon nanotubes in a nanoagglomerate fluidized-bed reactor[J].Chem.Phys.Lett.,2002,364:568-572
    [50]TT Chen,YM Liu,Y Sung,et al.Experimental investigation on carbon nanotube grown by thermal chemical vapor deposition using non-isothermal deposited catalysts[J].Mater. Chem.Phy.,2006,97:511-516
    [51]JC Hulteen,HC Chen,CK Chamblisss,et al.Template synthesis of carbon nanotube and nanofiber arrays[J].Nano.Strut.Mater.,1997,9:133-136
    [52]WZ Li,SS Xie,LX Qian,et al.Large-scale synthesis of aligned carbon nanotubes[J].Science,1996,274:1701-1703
    [53]ZW Pan,SS Xie,BH Chang,et al.Very long carbon nanotubes[J].Nature,1998,394(6694):631-632
    [54]M Terrones,N Grobert,J Olivares,et al.Controlled production of aligned-nanotube bundles[J].Nature,1997,388(6637):52-55
    [55]ZF Ren,ZP Huang,JW Xu,et al.Synthesis of large arrays of well-aligned carbon nanotubes on glass[J].Science,1998,282(5391):1105-1107
    [56]C Dang,TZ Wang.Study on effects of substrate temperature on growth and structure of alignment carbon nanotubes in plasma-enhanced hot filament chemical vapor deposition system[J].Appl.Surf.Sci.2006,253:904-908
    [57]王必本,张兵,郑坤,等.氨气浓度对碳纳米管生长影响的研究[J].人工晶体学报,2004,33(1):100-104
    [58]陈新,胡征,王喜章,等.微波等离子体辅助化学气相沉积法低温合成定向碳纳米管阵列[J].高等学校化学学报,2001,22(5):731-733
    [59]王淼,李振华,竹川仁士,等.利用微波等离子体增强化学气相沉积法定向生长碳纳米管的研究[J].物理学报,2004,53(3):888-890
    [60]DJ Yang,Q Zhang,SF Yoon,et al.Effects of oxygen and nitrogen on carbon nanotube growth using a microwave plasma chemical vapor deposition technique[J].Surf.Coat.Technol.,2003,167:288-291
    [61]SK Srivastava,VD Vankar,V Kumar.Growth and microstructures of carbon nanotube films prepared by microwave plasma enhanced chemical vapor deposition process[J].Thin Solid Films,2006,515:1552-1560
    [62]Y Yabe,Y Ohtake,T Ishitobi,et al.Synthesis of well-aligned carbon nanotubes by radio frequency plasma enhanced CVD method[J].Diam.Relat.Mater.,2004,13:1292-1295
    [63]GW Ho,ATS Wee,J Lin,et al.Synthesis of well-aligned multiwalled carbon nanotubes on Ni catalyst using radio frequency plasma-enhanced chemical vapor deposition[J].Thin Solid Films 2001,388:73-77
    [64]朱清锋,张海燕,陈易明,等.热丝和射频等离子体化学气相沉积法制备定向碳纳米管薄膜[J].2008,28(9):1824-1827
    [65]Y Shiratori,H Hiraoka,M Yamamoto.Vertically aligned carbon nanotubes produced by radio-frequency plasma-enhanced chemical vapor deposition at low temperature and their growth mechanism[J].Mater.Chem.Phys.,2004,87:31-38
    [66]CM Hsu,CH Lin,HL Chang,et al.Growth of the large area horizontally-aligned carbon nanotubes by ECR-CVD[J].Thin Solid Films 2002,420:225-229.
    [67]Z Wang,DC Ba,F Liu,et al.Synthesis and characterization of large area well-aligned carbon nanotubes by ECR-CVD without substrate bias[J].Vacuum,2005,77:139-144
    [68]Z Wang,CH Yu,DC Ba,et al.Influence of the gas composition on the synthesis of boron-doped carbon nanotubes by ECR-CVD[J].Vacuum,2007,81:579-582
    [69]李明伟,胡征,王喜章,等.电晕放电等离子体增强化学气相沉积合成碳纳米管阵列[J].科学通报,2003,48(1):32-34
    [70]邹龙江,王旭珍,曲江英,等.化学气相沉积法制备定向碳纳米管及其生长机理的研究[J].化工新型材料,2006,34(41:9-10
    [71]CC Tang,Y Bando,D Golberg.Structure and nitrogen incorporation of carbon nanotubes synthesized by catalytic pyrolysis of dimethylformamide[J].Carbon,2004,(42):2625-2633
    [72]HM Cheng,F Li,X Sun,et al.Bulk morphology and diameter distribution of single-walled carbon nanotubes synthesized by catalytic decomposition of hydrocarbons[J].Chem.Phys.Lett.,1998,289:602-610
    [73]PJ Cao,DL Zhu,WJ Liu,et al.The effect of substrate morphology on the diameter distribution of carbon nanotubes grown on silica and ceramic substrates[J].Materials Letters,2007,61:1899-1903
    [74]YT Lee,NS Kim,J Park,et al Temperature-dependent growth of carbon nanotubes by pyrolysis of ferrocene and acetylene in the range between 700 and 1000℃[J].Chem.Phys.Lett.,2003,372:853-859
    [75]BC Satishkumar,A Govindaraj,CNR Rao,et al.Bundles of aligned carbon nanotubes obtained by the pyrolysis of ferrocene-hydrocarbon mixtures:role of the metal nanoparticles produced in situ[J].Chem.Phys.Lett.,1999,307:158-162
    [76]J Su,Y Yu,RC Che.Aligned array of N_2-encapsulated multilevel branched carbon nanotubes[J].Appl.Phys.A,2008,90:135-139
    [77]韩道丽,赵元黎,赵海波,等.化学气相沉积法制备定向碳纳米管阵列[J].物理学报,2007,56(10):5958-5963
    [78]CJ Lee,SC Lyu,HW Kim,et al.Large-scale production of aligned carbon nanotubes by the vapor phase growth method[J].Chem.Phys.Lett.,2002,359:109-114
    [79]C Singh,MSP Shaffer,AH Windle.Production of controlled architectures of aligned carbon nanotubes by an injection chemical vapour deposition method[J].Carbon,2003,41:359-368
    [80]张先锋,曹安源,孙群慧,等.定向碳纳米管阵列在石英玻璃基底上的模板化生长研究[J].无机材料学报,2003,18(3):613-618
    [81]吴功伟,曹安源,魏秉庆,等.工艺参数对碳纳米管定向薄膜生长的影响[J].清华大学学报(自然科学版),2002,42(2):151-153
    [82]程国安,刘华平,彭宜斌,等.气体催化裂解法制备高纯碳纳米管的研究[J].北京师范大学学报(自然科学版),2003,39(4):467-470
    [83]M Mayne,N Grobert,M Terrones,et al.Pyrolytic production of aligned carbon nanotubes from homogenesously dispersed benzene-based aerosols[J].Chem.Phys.Lett.,2001,338:101-107
    [84]Z L Cao,JN Wang,DY Ding,et al.Fast growth of well-aligned carbon nanotubes by chemical vapor deposition on plain glass[J].新型炭材料,2003,18(1):48-52
    [85]R Sen,A Govindaraj,CNR Rao.Metal-filled and hollow carbon nanotubes obtained by the decomposition of metal-containing free precursor molecules[J].Chem.Mater.,1997,9:2078-2081
    [86]R Sen,A Govindaraj,CNR Rao.Carbon nanotubes by themetallocene route[J].Chem.Phys.Lett.,1997,267:276-280
    [87]R Andrews,D Jacques,D Qian,et al.Multiwall carbon nanotubes:synthesis and application[J].Ace.Chem.Res.,2002,35(12):1008-1017
    [88]XF Zhang,AY Cao,BQ Wei,et al.Rapid growth of well-aligned carbon nanotube arrays[J].Chem.Phys.Lett.,2002,362(324):285-290
    [89]BQ Wei,R Vajtai,Y Jung,et al.Organized assembly of carbon nanotubes cunning refinements help to customize the architecture of nanotube structures[J].Nature,2002,416(6880):495-496
    [90]C Miiller,S Hampel,D Elefant,et al.Iron filled carbon nanotubes grown on substrates with thin metal layers and their magnetic properties[J].Carbon,2006,44:1746-1753
    [91]EF Kukovitsky,SG Lovo,NA Sainov.VLS-growth of carbon nanotubes from the vapor[J].Chem.Phys.Lett.,2000,317(1-2):65-70
    [92]XX Zhang,ZQ Li,G H Wen,et al.Microstructureand growth of bamboo-shaped carbon nanotubes[J].Chem.Phys.Lett.,2001,333:509-514
    [93]KY Lee,T Ikuno,K Tsuji,et al.Synthesis of aligned bamboo-like carbon nanotubes using radio frequency magnetron sputtering[J].J.Vac.Sci.Technol.B,2003,21(4):1437-1441
    [94]CJ Lee,J Park.Growth model of bamboo-shaped carbon nanotubes by thermal chemical vapor deposition[J].Appl.Phys.Lett.,2000,77(21):3397-3399
    [95]T Katayama,H Araki,K Yoshino.Multiwalled carbon nanotubes with bamboo-like structure and effects of heat treatment[J].J.Appl.Phys.,2002,91(10):6675-6678
    [96]L Zhang,ZR L i,YQ Tan,et al.Influence of a top crust of entangled nanotubes on the structure of vertically aligned forests of single-walled carbon nanotubes[J].Chem.Mater.,2006,18:5624-5629
    [97]Q Zhang,WP Zhou,WZ Oian,et al.Synchronous growth of vertically aligned carbon nanotube forest with pristine internal stress in the floating catalyst process[J].J.Phys.Chem.C,2007,111(40):14638-14643
    [98]AC Dillon,KM Jones,TA Bekkedahl,et al.Storage of hydrogen in single-walled carbon nanotubes[J].Nature,1997,386:377-379
    [99]AC Dillon,T Gennett,JL Alleman,et al.Optimization of single-wall nanotube synthesis for hydrogen storage[R/OL].http://www.nrel.gov/docs/gen/fy02/31288.pdf,2006-04-15
    [100]YY Fan,B Liao,M Liu,et a.l Hydrogen uptake in vapor-grown carbon nanofibers[J].Carbon,1999,37:1649-1652
    [101]朱宏伟,徐才录,陈桉,等.碳纳米管表面处理对储氢性能的影响[J].碳素技术,2000,4:12-13
    [102]CM Niu,EK Sichel,R Hoch,et al.High power electrochemical capacitors based on carbon nanotube electrodes[J].Appl.Phys.Lett.,1997,70(11):1480-1482
    [103]C Liu,HM Cheng.Carbon nanotubes for dean energy applications[J].J.Phys.D,2005,38:R231-R252
    [104]邓梅根,卢云,张治安,等.超级电容器碳纳米管及其复合电极材料最新研究进展[J].材料导报,2004,18(4):89-90
    [105]Green Car Congress.Nano-Wodd:Carbon nanotube capacitors[EB/OL],http://www.physorg.com/news10525.html,2006-02-08;2006-04-15
    [106]Green Car Congress.MIT Carbon Nanotube Ultracapacitor Could Approach Storage Density of Batteries[EB/OL].http://www.greencarcongress.com/2006/02/mit_carbon_nano.html,2006-02-08;2006-04-15
    [107]HybridCars.com.Lithium Ion Hybrid Batteries[EB/OL].http://www.hybridcars.com/lithium-ion-hybrid-batteries.html,2006-04-15
    [108]付丽君,杨黎春,刘浩,等.锂离子电池纳米负极材料的研究和开发[J].复旦学报(自然科学版),2004,43(4):571-579
    [109]张万红,方亮,岳敏,等.碳纳米管用于锂离子电池负极材料[J].电池,2006,36(1):50-51
    [110]翟秀静,张爱黎,符岩,等.碳纳米管用于锂离子电池负极材料的嵌锂机理研究[J].功能 材料,2004,35(5):621-623
    [111]MFA Goosen,MV Sefon.Properties of a heparin-poly(vinyl alcohol) hydrogel coating[J].Materials Research,1993,17:359-361
    [112]NA Peppas,R Langer.New challenges in biomatefials[J].Science,1994,263:1715-1720
    [113]R Langer,JP Vacanti.Tissue engineering[J].Science,1993,260:920-926
    [114]XH Wang,LJ Yu,CR Li,et al.Competitive adsorption behavior of human serum albumin and fibrinogen on titanium oxide films coated on LTI-carbonby IBED[J].Coll.Surf.B:Biointerfaces,2003,30:111-121
    [115]李伯刚,康云清,尹光福,等.类金刚石薄膜成分变化对蛋白吸附的影响[J].生物医学工程学杂志,2004,21(2):193-195
    [116]E Chignier,J Guidollet,Y Heynen,et al.Macromolecular,histological,ultrastructural and immunocytochemical characteristics of the neointima developed within PTFE vascular grafts.Experimental study in dogs[J].J.Biomed.Mater.Res.,1983,17:623-636
    [117]郝和平等.医疗器械生物学评价标准实施指南[M].北京:中国标准出版社,2000
    [118]ISO 10993-1992 International Standard:Biological evaluation of medical devices[S].
    [119]GB/T16886-1997,医疗器械生物学评价[S].
    [120]DA LaVan,RF Padera,TA Friedmann,et al.In vivo evaluation of tetrahedral amorphous carbon[J].Biomaterials,2005,26:465-473
    [121]A Kawamoto,HC Gwon,H Iwaguro,et al.Therapeutic potential of ex vivo expanded endothelial progenitor cells for myocardial Ischemia[J].Circulation,2001,103:634-637
    [122]GJ Wan,P Yang,XJ Shi,et al.In vitro investigation of hemocompatibility of hydrophilic SiN_x:H films fabricated by plasma-enhanced chemical vapor deposition[J].Surf.Coat.Technol.,2005,200:1945-1949
    [123]TIT Okpalugo,AA Ogwu,PD Maguire,et al.Platelet adhesion on silicon modified hydrogenated amorphous carbon films[J].Biomaterials,2004,25:239-245
    [124]SN Rodrigues,IC Goncalves,MCL Martins,et al.Fibrinogen adsorption,platelet adhesion and activation on mixed hydroxyl-/methyl-terminated self-assembled monolayers[J].Biomaterials,2006,27:5357-5367
    [125]W Tao,H Zhou,Y Zhang,et al.Novel silsesquioxane mixture-modified high elongation polyurethane with reduced platelet adhesion[J].Appl.Surf.Sci.,2008,254:2831-2836
    [126]S Sagnella,K Mai-Ngam.Chitosan based surfaetant polymers to improve blood compatibility on biomaterials[J].Coll.Surf.B:Biointerfaces,2005,42(2):147-155
    [127]蒋书文,尹光福,郑昌琼.图像分析方法研究DLC膜/Ti6Al4V梯度材料的血液相容性稳 定性[J].生物医学工程学杂志,2002,19(4):642-644
    [128]F Zhang,XH Liu,YJ Mao,et al.Artificial heart valves:improved hemocompatibility by titanium oxide coatings prepared by ion beam assisted deposition[J].Surf.Coat.Technol.,1998,103:146-150
    [129]杨化娟,杨柯,张炳春.含La医用316L不锈钢的体外抗凝血[J].金属学报,2006,43(9):959-964.
    [130]JY Chen,YX Leng,XB Tian,et al.Antithrombogenic investigation of surface energy and opticalbandgap and hemoeompatibility mechanism of Ti(Ta~(+5))O_2 thin films[J].Biomaterials,2002,23:2545-2552
    [131]高家诚,李龙川,王勇,等.表面改性纯镁的细胞毒性和溶血率[J].稀有金属材料与工程,2005,34(6):903-906
    [132]李晓燕,蒋容静,刘建平,等.316L不锈钢经丝素肽/壳聚糖聚合物涂层后的血液相容性[J].中国组织工程研究与临床康复,2008,12(23):4461-4464
    [133]JY Chen,LP Wang,KY Fu.Blood compatibility and sp~3/sp~2 contents of diamond-like carbon (DLC) synthesized by plasma immersion ion implantation deposition[J].Surf.Coat.Technol.,2002,156:289-294
    [134]MCL Martins,D Wang,J Ji,et al.Albumin and fibrinogen adsorption on PU-PHEMA surfaces[J].Biomaterials,2003,24:2067-2076
    [135]陈俊英,冷永祥,杨萍,等.利用掺杂及梯度复合技术对生物材料进行TiO_2(Ta~(5+))/TiN薄膜表面改性的研究[J].材料科学与工艺,2004,12(1):64-66
    [136]T Saito,T Hasebel,S Yohen,et al.Antithrombogenicity of fluorinated diamond-like carbon films[J].Diam.Relat.Mater.,2005,14:1116-1119
    [137]SCH Kwok,J Wang,PK Chu.Surface energy,wettability,and blood compatibilityphosphoms doped diamond-like carbon films[J].Diam.Relat.Mater.,2005,14:78-85
    [138]刘艳文,王露,杨文茂,等.微图形氧化钛薄膜表面内皮细胞生长行为研究[J].功能材料,2006,37(7):1102-1104
    [139]黄莹莹,齐民,杨大智,等.冠脉支架表面PLGA涂层制备及其血液相容性研究[J].功能材料,2006,3(37):411-414
    [140]费黄霞,刘强,程晓农,等.医用金属材料表面含磁粉的TiD_2薄膜的制备及其血液相容性[J].功能材料与器件学报,2007,13(3):202-206
    [141]S Zhang,H Du,SE Ong,et al.Bonding structure and haemocompatibility of silicon-incorporated amorphous carbon[J].Thin Solid Films,2006,515:66-72
    [142]宋杰,吴熹,黄楠,等.纤维蛋白原与吸附白蛋白、肝素的新型血管支架材料氧化钛的血液 相容[J].生物医学工程学杂志,2007,24(5):1097-1101
    [143]P Yang,N Huang,YX Leng,et al.Wettability and biocompatibility of nitrogen-doped hydrogenated amorphous carbon films:Effect of nitrogen[J].Nucl.Instr.and Meth.B,2006,242:22-25
    [144]T Hasebe,T Ishimaru,A Kamijo,et al.Effects of surface roughness on anti-thrombogenicity of diamond-like carbon films[J].Diam.Relat.Mater.,2007,16:1343-1348
    [145]SE Ong,S Zhang,H Du et al.Influence of silicon concentration on the haemocompatibility of amorphous carbon[J].Biomatedals,2007,28:4033-4038
    [146]俞耀庭,张兴栋.生物医用材料[M].天津:天津大学出版社,2000
    [147]YH Kim,DK Han,KD,Park et al.Enhanced blood compatibility of polymers grafted by sulfonated PEO via a negative cilia concept[J].Biomaterials,2003,24:2213-2223
    [148]F Xu,JC Nacker,WC Crone,et al.The haemocompatibility of polyurethane-hyaluronic acid copolymers[J].Biomatedals,2008,291:150-160
    [149]DR Lu,K Park.Effect of surface hydrophobicity on the conformational changes of adsorbed fibrinogen[J].J.Coll.Interf.Sci.,1991,144(1):271-281
    [150]周明,郑傲然,杨加宏.复制模塑法制备超疏水表面及其应用[J].物理化学学报,2007,23(8):1296-1300
    [151]周长忍.生物材料学[M].北京:中国医药科技出版社,2004
    [152]Y Takami,S Yamane,K Makinouchi,et al.Protein adsorption onto ceramic surfaces[J].J.Biomed Mater.Res.,1998,40:24-30
    [153]霍丹群,张文彬,侯长军,等.改性PEU/LCP复合膜的设计、合成及其血液相容性研究[J].化学通报,2005,6:464-468
    [154]DH Kaelble,J Moacanin.A surface energy analysis of bioadhesion[J].Polymer,1977,18(5):475-482
    [155]P Bauschmidt,M Schaldach.The electrochemical aspects of the thrombogenicity of a material[J].J.Biomeg.,1997,1:261-278
    [156]N Huang,P Yang,Y X Leng,et al.Hemocompatibility of titanium oxide films[J].Biomaterials,2003,24:2177-2187
    [157]周成飞.医用高分子表面及其血液相容性[J].高分子通报,1989,(3):44-47
    [158]潘仕荣,周群.共聚物表面亲疏水微相分离结构与抗凝血性[J].生物医学工程学杂志,1989,(3):201-207
    [159]计剑,邱永兴,俞小洁,等.抗凝血聚氨醋材料的研究进展[J].功能高分子学报,1995,8(2):225-235
    [160]K Ishihara,H Hanyuda,N Nakadayashi.Synthesis of phospholipid polymers having a urethane bond in the side chain as coating material on segmented polyurethane and their platelet adhesion-resistant properties[J].Biomaterials,1995,16(11):873-879
    [161]林思聪.高分子生物材料分子工程研究进展(上)[J].高分子通报,1997,1:1-14
    [162]张安兄,吕德龙,钟伟,等.生物材料的血液相容性[J].上海生物医学工程,2004,25(3):53-58
    [163]王向晖,柳襄怀,张峰,等.人工心脏瓣膜材料的抗凝血性能和使用安全性研究[J].中国科学(E),2005,35(3):225-241
    [164]P Yang,N Huang,YX Leng,et al.Activation of platelets adhered on amorphous hydrogenated carbon(a-C:H) films synthesized by plasma immersion ion implantation-deposition(PⅢ-D)[J].Biomaterials,2003,24:2821-2829
    [165]李伯刚,薛明,尹光福,等.碳相成分对DLC薄膜血液相容性影响的能量机制[J].生物医学工程学杂志,2005,22(2):235-237
    [166]EG Wang,ZG Guo,J Ma,et al.Optical emission spectroscopy study of the influence of nitrogen on carbon nanotube growth[J].Carbon,2003,41:1827-1831
    [167]JH Choi,TY Lee,SH Choi,et al.Density control of carbon nanotubes using NH_3 plasma treatment of Ni catalyst layer[J].Thin Solid Films,2003,435:318-323
    [168]JH Choi,TY Lee,SH Choi,et al.Control of carbon nanotubes density through Ni nanoparticle formation using thermal and NH_3 plasma treatment[J].Diam.Relat.Mater.,2003,12:794-798
    [169]JI Sohn,CLI Choi,TY Seong,et al.Effects of Fe film thickness and ammonia on the growth behavior of carbon nanotubes grown by thermal chemical vapor deposition[J].Mat.Res.Soc.Symp.Proc.,2002,706:Z3.8.1-Z3.8.6
    [170]CL Haynes,RP Van Duyne.Nanosphere lithography:A versatile nanofabrication tool for studies of size-dependent nanoparticle optics[J].J.Phys.Chem.B,2001,105:5599-5611
    [171]ZP Huang,DL Carnahan,J Rybezynski,et al.Growth of large periodic arrays of carbon nanotubes[J].Appl.Phys.Lett.,2003,82:460-462
    [172]K Kempa,B Kimball,J Rybezynski,et al.Photonic crystals based on periodic arrays of aligned carbon nanotubes[J].Nano.Lett.,2003,3:13-18
    [173]JS Gao,K Umeda,K Uchino,et al.Plasma breaking of thin films into nano-sized catalysts for carbon nanotube synthesis[J].Mater.Sci.Eng.A,2003,352:308-313
    [174]SJ Henley,CHP Poa,A A DT Adikaari,et al.Excimer laser nanostructuring of nickel thin films for the catalytic growth of carbon nanotubes[J].Appl.Phys.Lett.,2004,84:4035-4037
    [175]MJ Kim,JH Choi,JB Park,et al.Growth characteristics of carbon nanotubes via aluminum nanopore template on Si substrate using PECVD[J].Thin Solid Films,2003,435:312-317
    [176]HJ Jeong,KH An,SC Lim,et al.Narrow diameter distribution of singlewalled carbon nanotubes grown on Ni-MgO by thermal chemical vapor deposition[J].Chem.Phys.Lett.,2003,380:263-268
    [177]KAKM Fazle,YH Mo,KS Nahm,et al.Synthesis of narrow-diameter carbon nanotubes from acetylene decomposition over an iron-nickel catalyst supported on alumina[J].Carbon,2002,40:1241-1247
    [178]BC Liu,SH Tang,ZL Yu,et al.Catalytic growth of single-walled carbon nanotubes with a narrow distribution of diameters over Fe nanoparticles prepared in situ by the reduction of LaFeO_3[J].Chem.Phys.Lett.,2002,357:297-300
    [179]K Hernadi,Z Konya,A Siska,et al.On the role of catalyst,catalyst support and their interaction in synthesis of carbon nanotubes by CCVD[J].Mater.Chem.Phys.,2002,77:536-541
    [180]SU Hyung,WK Sung,DL Jong.Growth and field emission properties of carbon nanotubes on rapid thermal annealed Ni catalyst using PECVD[J].Diam.Relat.Mater.,2005,14:850-854
    [181]YM Shin,SY Jeong,H J Jeong,et al.Influence of morphology of catalyst thin film on vertically aligned carbon nanotube growth[J].J.Crys.Growth,2004,271:81-89
    [182]程国安,刘华平,赵勇,等.MEVVA磁过滤等离子技术制备的Fe纳米颗粒薄膜结构[J].中国有色金属学报,2005,15(11):1816-1821
    [183]孔纪兰,周上祺,罗光,等.氨气氛中镍催化剂和碳纳米管的制备[J].材料导报,2006,25:126-127
    [184]HP Liu,GA Cheng,Y Zhao,et al.Controlled growth of Fe catalyst film for synthesis of vertically aligned carbon nanotubes by glancing angle deposition[J].Surf.Coat.Technol.,2006,201:938-942
    [185]MH Kuang,ZL Wang,XD Bai,et al.Catalytically active nickel {110} surfaces in growth of carbon tubular structures[J].Appl.Phys.Lett.,2000,76:1255-1257
    [186]M Chhowalla,K B K Teo,C Ducati,et al.Growth process conditions of aligned carbon nanotubes using plasma enhanced chemical vapor deposition[J].J.Appl.Phys.,2001,90:5308-5317
    [187]C Bower,O Zhou,W Zhu,et al.Nucleation and growth of carbon nanotubes by microwave plasma chemical vapor deposition[J].Appl.Phys.Lett.,2000,77:2767-2769
    [188]VN Popov.Carbon nanotubes:properties and application[J].Mater.Sci.Engin.R,2004,43(3):61-102
    [189]Yan Chen,David T.Shaw,X.D.Bai,et al.Hydrogen storage in aligned carbon nanotubes[J].App.Phys.Lett.,2001,78:2128-2130
    [190]G Che,BB Lakshmi,CR Martin,et al.Chemical vapor deposition based synthesis of carbon nanotubes and nanofibers using a template method[J].Chem.Mater.,1998,10:2602-267.
    [191]徐东升,郭国霖,桂琳琳,等.以多孔硅为模板制备取向碳纳米管[J].中国科学(B),2000,30(4):289-293
    [192]居艳,李凤仪,魏任重,等.多孔氧化铝模板法制备取向碳纳米管阵列的研究进展[J].现代化工,2004,24(4):272
    [193]JM Xu,XB Zhang,F Chen.Preparation and modification of well-aligned CNTs grown on AAO template[J].Appl.Surf.Sci.,2005,239:320-326
    [194]WL Mi,JYS Lin,YD Li,et al.Synthesis of vertically aligned carbon nanotube films on macroporous alumina substrates[J].Micro.Meso.Mater.,2005,81:185-189
    [195]Schmidt,A Boisen,E Gustavsson,et al.Carbon nanotube templated growth of mesoporous zeolite single crystals[J].Chem.Mater.,2001,13:4416-4418
    [196]曹洁明,常欣,房宝青,等.以分子筛为金属催化剂载体制备碳纳米管[J].催化学报,2005,26:847-850
    [197]CJ Lee,SC Lyn,HW Kim,et al.Large-scale production of aligned carbon nanotubes by the vapor phase growth method[J].Chem.Phys.Lett.,2002,359:109-114
    [198]E Terrado,M Redrado,E Munoz,et al.Carbon nanotube growth on cobalt-sprayed substrates by thermal CVD[J].Mater.Sci.Eng.C,2006,26:1185-1188
    [199]MS Dresselhaus,G Dresselhaus,A Jorio,et al.Raman spectroscopy on isolated single wall carbon nanotubes[J].Carbon,2002,40:2043-2061
    [200]H Kanzow,A Schmalz,A Ding.Laser-assisted production of mufti-walled carbon nanotubes from acetylene[J].Chem.Phys.Lett.,1998,295:525-530
    [201]曹继,陆荣荣,李玉兰,等.电场诱导碳纳米管阵列准直生长的研究[J].光谱学与光谱分析,2003,23:1079-1081
    [202]B Kitiyanan,WE Alvarez,JH Harwell,et al.Controlled production of single-wall carbon nanotubes by catalytic decomposition of CO on bimetallic Co-Mo catalysts[J].Chem.Phys.Lett.,2000,317(3-5):497-503
    [203]RTK Baker,PS Harris,RB Thomas,et al.Formation of filamentous carbon from iron,cobalt and chromium catalyzed de-composition of acetylene[J].J.Catal.,1973,30:86-95
    [204]胡平安,王保贤,刘云圻,等.碳纳米管的最新制备技术及生长机理[J].化学通报,2002,12:794-799
    [205]P Buffat,J P Borel.Size effect on the melting temperature of gold particle[J].Phys.Rev.,1976,A13:2287-2298
    [206]K Zheng,BB Wang,Hou BH,et al.Study on formation mechanism of bamboo-structured carbon nanotubes[J].J.Syn.Crystals,2004,33(4):638-643
    [207]M Chhowalla,KBK Teo,C Ducati,et al.Growth process conditions of vertically aligned carbon nanotubes using plasma enhanced chemical vapor deposition[J].J.Appl.Phys.,2001,90:5308-5317
    [208]王必本,王万录,赵作峰,等.催化剂厚度对碳纳米管直径的影响[J].重庆大学学报,2003,26(7):59-62
    [209]WZ Li,JG Wen,Y Tu,et al.Effect of gas pressure on the growth and structure of carbon nanotubes by chemical vapor deposition[J].Appl.Phys.A,2001,73:259-264
    [210]JM Howe.Interface in materials[M].New York:John Wiley & Sons Inc,1997
    [211]R Kofman,P Cheyssac,A Aouaj,et al.Surface melting enhanced by curvature effects[J].Surface Science,1994,303:231-246
    [212]ZL Wang,JM Petroski,TC Green,et al.Shape transformation and surface melting of cubic and tetrahedral Platinum[J].J.Phys.Chem.,1998,B102:6145-6151
    [213]M Terrone,N Grobert,JP Zhang,et al.Preparation of aligned carbon nanotubes catalysed by laser etched cobalt thin films[J].Chem.Phys.Lett.,1998,285:299-305
    [214]CJ Lee,JH Park.Growth model for bamboolike structured carbon nanotubes synthesized using thermal chemical deposition[J].J.Phys.Chem.B,2001,105:2365-2368
    [215]石峰军,程春,丁晓夏,等.用二茂铁催化生长竹节状碳纳米管[J].华中师范大学学报(自然科学版),2004,38:40-43
    [216]包建春,王克宇,张宁,等.竹节状碳纳米管有序阵列的合成和表征[J].无机化学学,2002,11:1097-1100
    [217]杨建军.聚氨酯医用材料[M].北京:化学工业出版社,2008
    [218]SMM Ramos,E Chadaix,A Benyagoub.Contact angle hysteresis on nano-structured surfaces[J].Surface Science,2003,540:355-362
    [219]AW Adamson,AP Gast.Physical chemistry of surfaces[M].New York:John Wiley & Sons,1997
    [220]A Lafuma,D Qu(?)r(?).Superhydrophobic states[J].Nature Materials,2003,2:457-460
    [221]郑黎俊,乌学东,楼增,等.表面微细结构制备超疏水表面[J].科学通报,2004,49(17):1691-1699
    [222]BJ Li,M Zhou,R Yuan,et al.Fabrication of titanium-based microstructured surfaces and study on their superhydrophobic stability[J].J.Mater.Res.,2008,23(9):2491-2499
    [223]李保家.仿生周期微结构表面设计制备及其润湿性能研究[D].江苏大学硕士学位论文,2007
    [224]T Nishino,M Meguro,K Nakamae,et al.The lowest surface free energy based on-CF_3alignment[J].Langmuir,1999,15:4321-432
    [225]RN Wenzel.Resistance of solid surface to wetting by water[J].Ind.Eng.Chem.,1936,28:988-994
    [226]ABD Cassie,S Baxter.Wettability of porous surface[J].Trans.Faraday.Soc.1944,40:546-561
    [227]ABD Cassie.Contact angles[J].Discuss.Faraday Soe.,1948,3:11-16
    [228]B He,NA Patankar,J Lee.Multiple equilibrium droplet shapes and design criterion for rough hydrophobic surfaces[J].Langmuir,2003,19:4999-5003
    [229]NA Patankar.Transition between superhydrophobic states on rough surfaces[J].Langmuir,2004,20:7097-7102
    [230]B He,J Lee,NA Patankar.Contact angle hysteresis on rough hydrophobic surfaces[J].Coll.Surf.A,2004,248:101-104
    [231]D Qu(?)r(?),A Lafiuna,J Hico.Slippy and sticky microtextured solids[J].Nanotechnology,2003,14:1109-1112
    [232]J Bico,U Thiele,D Qu(?)r(?).Wetting of textured surfaces[J].Coll.Surf.A,2002,206:41-46
    [233]D Richard,D Qu(?)r(?).Viscous drops rolling on a titled non-wettable solid[J].Europhys.Lett.,1999,48(3):286-291
    [234]C Ishino,K Okumura,D Qu(?)r(?).Wetting transitions on rough surfaces[J].Europhys.Lett.,2004,68(3):419-425
    [235]DK Owens,RC Wendt.Estimation of the surface free energy of polymers[J].J.Appl.Polymer.Sci.,1969,13(8):1741-1747
    [236]王孟钟,黄应昌.胶粘剂应用手册[M].北京:化学工业出版社,1987
    [237]顾汉卿,徐国凤.生物医学材料学[M].天津:天津科技翻译出版公司,1993
    [238]TM Ko,JC Lin and SL Cooper.Surface characterization and platelet adhesion studies of plasma-sulphonated polyethylene[J].Biomaterials,1993,14(9):657-664
    [239]杨明京,周成飞,乐以伦.生物材料血液相容性的表面能量观[J].生物医学工程学杂志,1990,7(1):59-69
    [240]许海燕,孔桦,杨子彬.抗凝血高分子材料的研究进展及其在心血管外科中的应用[J].高分子材料科学与工程,2001,17(5):167-171
    [241]FK Denizli,O Guven.Competitive adsorption of blood proteins on gamma-irradited-polycarbonate films[J].J.Biomater.Sci.Polymer.Edn.,2002,13(2):127-139
    [242]M Shen,L Martinson,MS Wagner,et al.PEO-like plasma polymerized tetraglyme surface interactions with leukocytes and proteins:in vitro and in vivo studies[J].J.Biomater.Sci.Polymer.Edn.,2002,13(4):367-390
    [243]E Nyilas,WA Morton,RD Cumming,et al.Effects of polymer surface molecular structure and force-field characteristics on blood interfacial phenomena[J].J.Biomed.Mater.Res.,1977,8:51-68
    [244]M Amiji,K Park.Surface modification of polymeric biomaterials with poly(ethylene oxide),album in and heparin for reduced thrombogenicity[J].J.Biomater.Sci.Polymer.Edn.,1993,4(3):217-234
    [245]林思聪.蛋白质的天然构象与高分子材料的生物相容性[J].高分子通报,1998,1:1-10

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700