用户名: 密码: 验证码:
双核金属配合物的合成、表征及其仿生催化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生物催化剂——金属酶是在特定的生物环境中,进行其它催化剂无可比拟的高效性、选择性和极度温和反应条件的催化反应。研究金属酶的结构与功能,合成它们的模拟物,探索它们在有机合成和工业生产中的应用,一直是人们追求的目标。经验表明,主攻点应为研究金属酶的活性中心内金属离子的配位环境,有目的地设计相应的催化体系,使其能反映反应活性中心的结构和周围的配位环境。由于天然的酶分子结构复杂,稳定性差,而小分子配合物可塑性强、易于了解酶的结构、功能及反应机理。所以酶的低分子量简单模型配合物的研究己成为生命科学和化学研究中最为活跃的课题之一,同时它对丰富配位化学、酶化学、仿生化学及其相关领域具有重大的学术价值。
     双金属核广泛存在于自然界的一些生物酶的活性中心,如甲烷单加氧酶(MMO)、酪氨酸酶、血蓝蛋白和牛红血球超氧歧化酶等。因此,双核金属配合物作为金属酶的模型化合物正引起人们极大的兴趣。本文主要针对具有双铁核中心的甲烷单加氧酶及具有双铜核中心的血蓝蛋白、酪氨酸酶进行模拟。首先设计、合成了二个系列Fe_2、Cu_2四种新的具有不对称结构及具有手性特征的模型配合物,并运用元素分析、摩尔电导、红外、核磁共振、紫外可见、顺磁共振和循环伏安法等手段对其进行了较详细的表征。然后,通过模拟生物酶催化反应的条件,对上述配合物的仿生催化性能进行了评价。
     本文第一章主要是对含双铁核的甲烷单加氧酶,从其来源、存在形式、组成、结构和催化机理等五个方面进行了详细讨论。其次,对含双核铜的具有可逆键合氧的血蓝蛋白及活化氧的酪氨酸酶,从结构及其催化氧化作用机理方面作以简单介绍。最后从双铁核、双核铜配合物的结构模拟和功能模拟两方面综述了它们的研究进展。
     甲烷单加氧酶是甲烷利用菌中的重要酶系,它能够在温和条件下将甲烷为甲醇,其不仅有重大的理论意义而且具有广泛的应用价值。第二章主要是不对称的手性甲烷单加氧酶模型配合物的合成与表征。介绍了从基本原料对甲基苯酚出发通过Reimer-Tiemann(R-T)反应、氯甲基化、N-烷基化、水解等多步反应完成配体的合成,在配体相同的基础上通过改变桥联羧基链的长短合成了三种不同羧酸桥的配合物。通过名种图谱分析表明,所得配合物与
    
    设计分子一致。根据对甲烷单加氧酶的研究文献调查发现,这种分子中含k
    氧桥的双铁核配合物比以往的模型配合物更接近于天然的甲烷单加氧酶中
    心结构。其中两个铁原子具有不等同的配位环境,且配合物分于是有一个出
    L.氨基酸弓I入的手性碳,使该类配合物兼有手性。手性也是生物酶所具有的
    特征。目前这类配合物尚未见文献报道。
     由于大环配体为金属离子提供了一种规定的配位环境并对金属离子的
    物理化学性质,如偶合效应、电磁、氧化还原性等产生显著影响,所以被广
    泛作为模型物以模拟金属酶的结构与功能。在第三章我们设计、合成了一种
    新型不对称大环双核铜配合物。它是由双核化试剂 2,6-二甲酚基A甲基苯酚
    和二胺、手性氨基酸及金属盐缩合而成,通过一系列表征证明该配合物与设
    计目标分子相符,与文献报道的大环配合物不同的是该配合物中心铜原子具
    有不等同化学环境与几何环境,同时该分于也具有手性。都是极接近于血蓝
    蛋白和酪氨酸酶活性中心双铜核的配位环境,也是文献中尚未见的新型配合
    物。
     在第四章我们进一步采用单氧源给体PhIO作氧化剂,在温和条件下,评
    价了上述双金属配合物对苯乙烯环氧化反应的催化作用。结果表明双铁核模
    型配合物的催化性能颇似甲烷单加氧酶,双铜核配合物也具有较好的催化活
    性。该类反应无需共还原剂参与,对环境保护有很大的促进作用,同时这也
    对解释反应机理和发展新型环氧化催化剂具有重要的意义。
Biocatalysts -enzymes are well known for their ability to carry out chemical reactions with high selectivity and high efficiency under ambient conditions. Chemists have long been engaged in studying on the correlation between the structure and function of enzymes, and in prospecting their use in organic synthesis and industrial product Though a lot of research we found the most important thing is to study the coordinate environment of metal in the active site of enzyme, minimize the correspond catalytic systems purposely. In order to simulate the immediate coordination environment of the metallobiosite, the coordination chemists use synthetic analogues derived from small molecular compounds which have more plasticity and simple structure than that of metallobiosite so a lot of low-molecular-weight coordination compounds were prepared . it is of both academic and industrial important.
    Continuing interest in the design and synthesis of various types of binuclear complexes is mainly due to their potential application as models for binuclear metallobiosites such as methane monooxygenase, tyrosinase, haemocyanin et al. In this paper we describle some of our work aimed at mimicking the methane monooxygenase, tyrosinase and haemocyanin. Three diiron complexes and one binuclear copper were synthesized and well characterized by element analysis, molecular conductivity, IR, Uv-vis, 1H NMR, Electron Paramagnetic Resonance and cyclic voltammetric. The results show that the complexes all have asymmetry chiral structure and their coordination environment are similar to the correspond enzymes. Their catalytic properties in olefin epoxidation were investigated with iodosylbenzene as a terminal oxidant under mild condition.
    The first chapter concerns the research progress of Methane monooxygenase (MMO) introducing the MMO's resource, existent form, component and catalytic mechanism then haemocyanin and tyrosinase were introduced in the aspects of their structure and functional mechanism. Lastly we reviewed the chemical mimic of the enzyme from structure mimic to functional mimic and its catalytic properties research.
    Methane monooxygenase which catalyzes the conversion of methane to methanol under mild conditions remains a very interesting theoretical problem and also has important particular implications. In the second part, preparations and characterizations of three different bridged complexes models of MMO are reported .The ligand is obtained by Reimer-Tiemann reaction, Chloromethylation, N-alkation, hydroxylation, reduction reactions. In the synthetic procedure of complexes, we gained three different bridged complexes by changing carboxylate bridges. The structure of the complexes
    
    
    closely resemble with other MMO-like systems. The compounds have not been reported in the literature.
    The chemistry of macrocyclic binuclear complexes has been stimulated by a desire to mimic the active sites of some metalloenzymes to search appropriate systems for binding and activating small molecular, and to investigate the mutual influence of two metal centres on the electric, magnetic and redox properties of such systems. So the search for marocycle ligands mimicking the environment of the metals in haemocyanin tyrosinase has resulted in a tremendous upsurge. In the third chapter, the new type of binuclear copper complex was synthesized from dinucleating ligand (2,6-difbrmyl-4-methyl phenol) by reaction with diamine and L-amino acid, Compared with the reported complexes, the complexes is asymmetrical and chiral, the structure is similar to the active sites of haemocyanin , tyrosinase .
    In the last chapter the complexes' catalytic activities of transferring oxygen atom from PhIO to olefins were tested. The results show that they all have good catalytic properties and are friendly to the environment.
引文
[1] 黄仲贤,含金属的生物催化剂——金属酶,《金属有机化学与催化》,钱延龙,陈新滋主编,化学工业出版社,1997,567-597
    [2] Fiabane A M, Williams D R, 1977, Principle of Bioinorganic Chemistry, The Chemical Society, London.
    [3] Williams R J P, The symbiosis of metal ion and protein chemistry, Pure and Appl. Chem., 1983, 55(1), 35-46
    [4] Lippard S J, Berg J M, Principle of Bioinorganic Chemistry, University Science Book, Mill Valley, California, (USA) 1994.
    [5] Gray H B, Malmstrom B G, Long-range transfer in multisite metallproteins, Biochemistry, 1989, 28, 7499-7513
    [6] Guengerich F P, Reactions and significance of cytochrome P-450 enzymes, J. Biol. Chem., 1991, 266, 10019-10022
    [7] Karlin K D, Metalloenzymes, structure motifs and inorganic models, Science, 1993, 261,701-711
    [8] Coleman J E, Zinc proteins: Enzymes, Storage proteins, transcription factors and replication proteins, Annu. Rev. Biochemistry., 1992, 61,897-946
    [9] 中原昭次,山内修著,吴炳辅,吴炳昌译,生物无机入门,天津,南开大学出版社,1988.
    [10] Moore G R, Huang Z X, Williams R J P. et al., Electron transfer in biology the function of cytochrome, Faraday. Discuss. Chem. Soc., 1982, 74, 311-329
    [11] Fontecave M, Menage S, Functional models of non-heme diiron enzymes cooridination, Chemistry Reviews, 1998, 178-180, 1555-1572
    [12] Darydov R, Valentine A M, Lippard S J, et al, An EPR study of the dinuclear iron site in the soluble methane monooxygenase from Methylococcus capsulatus (Bath) reduced by one electron at 77K: The effects of component interactions and the binding of small molecules to the diiron(Ⅲ) center, Biochemistry., 1999, 38, 4188-4197
    [13] Vincent J B, Olivier-Lilley G L, Averil B A, Proteins containing oxo-bridged dinuclear iron centers, a bioinorganic perspective, Chem. Rev., 1990, 90, 1447
    
    
    [14] Que L Jr, Oxygen antivation at non-heme diiron active sites in biology: Lessons from model complexes, J. Chem. Soc. Dalton Trans., 1997, 3933-40
    [15] Que L Jr, Dong Y H, Modeling the oxygen activation chemistry of Methane Monooxygenase and Ribonucleotide reductase, Acc. Chem. Res., 1996, 29, 190
    [16] 沈润南,李树本,甲烷单加氧酶的催化性能和活性中心结构,生物化学与生物物理进展,1995,22(5),397-402
    [17] 尉迟力,夏仕文,沈润南,李树本,甲烷生物催化制甲醇——甲基球菌3021中甲烷单加氧酶催化性能的研究,分子催化,1997,5,275-277
    [18] 李树本,尉迟力,马清泉,甲烷单加氧酶的催化性能,催化学报,3,239-242
    [19] 李树本,尉迟力,马清泉,沈润南,甲烷单加氧酶的催化机理,催化学报,1997,4,311-3
    [20] 何翔,唐宗薰,氧桥多核铁配合物的研究进展,化学研究与应用,2000,1,20-21
    [21] 魏俊发,俞贤达,金道森,甲烷单加氧酶的手性模型配合物及其催化反应研究,中国科学(B)1997,6,549-555
    [22] [美]美国催化科学技术新方向专家组著,《催化展望》熊国兴等译。北京:北京大学出版社,1993
    [23] 沈润南,尉迟力,马清泉,李树本,华绍峰,甲基单胞菌中甲烷单加氧酶羟基组分的纯化和性质,生物化学杂志,1997,3,337-343
    [24] Cardy D L N, Laidle V, Salmond G P C, Murrell J C, Molecular analysis of the methane monooxygenase(MMO) gene cluster of Methylosinus trichosporium OB3b, Mol.Microbiol., 1991, 5, 335-342
    [25] Wallar B J, Lipscomb J D, Dioxygen activation by enzymes containing binuclear non-heme iron clusters, Chem. Rev., 1996, 96(7), 2625-2657
    [26] 阎世平,刘斌,程鹏,双铁核中心金属蛋白和金属配合物的研究进展,化学通报,1998,6,6-8
    [27] Whittington D A and Lippard S J, Crystal Structures of the soluble methane monooxygenase Hydroxylase from Methylococcus capsulatus (Bath) Demons-trating Geometrical Variability at the Dinuclear Iron Active Site, J. Am. Chem. Soc., 2001, 123,827-838
    [28] 阎世平,程鹏,李春辉,姜宗慧,王耕霖,双铁核(Ⅱ)配合物的合成、晶体结构及与分子氧反应性能,中国科学(B),2000,6,511-516
    [29] Cardy D L N, Laidler V, Salmond G P C, Murrell J C, The methane monooxygenase(MMO) gene luster of Methylosinus trichosporium OB3b:
    
    Cloning and sequencing of MMOC gene, Arch. Microbiol., 1991, 156, 77-483
    [30] Basch H, Mogi K, Lippard S J, et al, Mechanism of methane-methanol conversion reaction catalyzed by methane monooxygenase: A density functional study. J. Am. Chem. Soc., 1999, 127, 7249
    [31] Wallar B J, Lipscomb J D, Dioxygen activation by enzymes containing binuclear non-heme iron clusters, Chem. Rev., 1996, 96(7), 2625-2657
    [32] Jeremy L, Nesheim C, Kauffmann K, Miuinck E, Lipscomb J D, An Fe_2~ⅣO_2 diamond core structure for the key intermediate of methane monooxygenase, Science, 1997, 275, 515
    [33] Gherman B F, Punietz B D, Whittington D A, Lippard S J, Friesner R A, Activation of the C-H bond of methane by intermediate Q of methane monooxygenase: A theoretical study, J. Am. Chem. Soc., 2001, 123, 3836-7
    [34] Liu K E, Valentine A M, Wang D, et al, Kinetic and spectroscopic characterization of intermediates and component interactions in reactions of methane monooxygenase from Methylococcus capsulatus (Bath), J. Am. Chem. Soc., 1995, 17, 10174-85
    [35] Valentime A M, Lee D, Lippard S J, et al. Generation of a mixed-valent Fe~(Ⅲ)Fe~(Ⅳ) form of intermediate Q in the reaction cycle of soluble methane monooxygenase: An analog of intermediate Ⅹ in ribonucleotide redutase R2 assembly, J. Am. Chem. Soc., 1998, 120, 2190-1
    [36] Lee D, Lippard S J, Structural and functional models of the dioxyen-activating centers of non-heme diiron enzymes ribonucleotide reduclase and soluble methane monooxygenase, J. Am. Chem. Soc., 1998, 120, 12153-4
    [37] Feig A L, Lippard S J, Reactions of Non-beme iron(Ⅱ) centers with dioxygen in biology and chemistry, Chem. Rev., 1994, 94, 759-805
    [38] Suzuki M, Reactivity of diiron(Ⅱ) complexes with molecular oxygen. Pure Appl. Chem., 1998, 70, 955-60
    [39] Rosenzweig A C, Frederick C A, Lippard S J, Nordlund P, Crystal structure of a bacterial non-heme iron hydroxylase that catalyses the biological oxidation of methane, Nature, 1993, 66, 537-543
    [40] Lee S K, Fox B G, Froland W A, Lipscomb J D, Munck E, A transient intermediate of the methane monooxygenase catalytic cycle containing a FeⅣFeⅣ cluster, J. Am. Chem. Soc., 1993,115, 6450-6451
    
    
    [41] Shu L, Nesheim J C, Kauffmann K, Munck E, Lipscomb J D, Que L Jr, An FeⅣ_2O_2 diamond core structure for the key intermediate Q of the methane mono-oxygenase, Science, 1996, 275, 515-518
    [42] Valentime A M, Lee D, Lippard S J, et al, Generation of a mixed-valent Fe(Ⅲ)Fe(Ⅳ) form of intermediate Q in the reaction cycle of soluble methane monooxygenase: An analog of intermediate Ⅹ in ribonucleotide redutase R2 assembly, J. Am. Chem. Soc., 1998, 120, 2190-1
    [43] Liu K E, Wang D, Huynh B H, Edmondson D E, Salifoglou A, Lippard S J, Spectroscopic detection of intermediates in the reaction of dioxygen with the reduced methane monooxygenase hydroxylase from Methylococcus capsulatus (Bath), J. Am. Chem. Soc., 1994, 116, 7465-7466
    [44] Que L Jr, Oxygen activation at non-heme iron centers. New Yok: Marcel Dekker Inc, 1999, 269-321
    [45] Stenkamp R E, Dioxygen and hemerythrin, Chem Rev., 1994, 94(3), 715-726
    [46] 阎世平,程鹏,李春辉等,双铁核(Ⅱ)配合物的合成、晶体结构及分子氧化反应性能,中国科学(B)辑,2000,30(6),511-516
    [47] Dong Y, Yan S, Young V G Jr, et al., Crystal structure analysis of a synthetic non-heme diiron-O_2 adduct: insight into the mechanism of oxygen activation, Angew Chem Int Ed Engl, 1996, 35(6), 618-620
    [48] Okubo T, Sugimoto H, Nagayama T, et al., Cis-μ-1,2-peroxo diiron compl-ex:structure and reversible oxygenation, J Am Chem Soc., 1996, 118 (3), 701-702
    [49] Feig A L, Becker M, Schindler S, etal, Mechanistic studies of the formation and decay of diiron (Ⅲ) peroxo complexes in the reaction of diiron(Ⅲ) precursors with dioxygen, Inorg Chem, 1996, 35(9), 2590-2601
    [50] Fontecave M, Menage S, Duboc-Toia C, Functional models of non-heme diiron enzymes, Coordination Chemistry Reviews, 1998, 178-180, 1555-1572
    [51] Kopp D A, Sazinsky M H, Blazyk J L, Dioxygen Activation and Methane Hydroxylation by Soluble methane monooxygenase: A Tale of Two Iron and Three Proteins, Angew. Chem. Int. Ed., 2001, 40, 2728-2807
    [52] Macfaul P, Ingold K U, and Que L Jr, A Putative monooxygenase Mimic Which Founctions via Well-Disguised Free Radical Chemistry, J. Am. Chem. Soc., 1997, 119, 10594-10598
    
    
    [53] Roob D A, Tyrosinase in copper proteins and copper enzymes, Boca Raton: CRC Press, 1884, 207-241
    [54] 鄢家明,谢如刚,赵华明,双核铜的化学模拟,化学研究与应用,1992,4,3-9
    [55] Karlin K D, Gultneh Y, Binding and Activation of Molecular Oxygen by Copper Complexes, Prog Inorg Chem.,1987, 35, 219-327
    [56] Wilkinson S G, Comprehensive Coordination Chemistry. Vol.5, Oxford:Press, 1987, 775-860
    [57] Betal L, The Structure of arthropod hemocyamin, Science.,1985, 229, 519-524
    [58] Torell S, Belle C, Pierre J L, Substrate Binding in catechol oxidase Activity: Biomimetic Approach, Inorganic Chemistry, 2002, 41,983-3989
    [59] 刘劲刚,谢复新,赵亮,倪诗圣,双核大环配合物及其仿生特性,化学研究与应用,1997,435-441
    [60] 杨鲁勤,阎世平,廖代正等,新型过渡金属配合物的合成、磁性和生物活性,应用化学,1994,37-40
    [61] 谢如刚,仿酶催化与绿色化学,化学研究与应用,1999,11,344-349
    [62] Karlin K D, Zubietal J, Cooper Coord Chem. New York: Guilderland, 1982,129
    [63] Spiro T G, Copper coordination chemistry biochemical and inorganic pespectives, Chem Rev., 1986, 143-160
    [64] 游效曾,我国的配位化学进展,化学通报,1999,(10),7-9
    [65] Zhang Shaowen, Zhu Jing, Synthesis of Binuclear copper (Ⅱ) Complex—Oxidition Addition Reaction, Chinese Jounal of Chemistry, 2003, 169-173
    [66] Solomon E I, Baldw M J, Lowery M D, Electronic structures of active sites in copper proteins: contributions to reactivity, Chem Rev., 1992, 92, 521-523
    [67] Halfen J A, Mahapatra S, Wilkinson E C, et al., Reversible cleavage and formation of the dioxygen O-O bond within a dicopper complex, Science, 1996, 271, 1397-1400
    [68] Mahapatra S, Halfen J A, Wilknson E C, et al, Modeling copper-dioxygen reactivity in proteins: Aliphatic C-H bond activation by a new dicopper(Ⅱ) peroxo complex, J Am Chem Soc., 1994, 116(2), 9785-9786
    [69] Mahapatra S, Halfen J A, Wilkinson E C ,et al .A new bond intermediate in cop per dioxygen chemistry :break the O-O bond to form a {Cu_2(μ-O_2)_2}~(2+)core , J. Am. Chem Soc.,1995, 117(34), 8865-8839
    [70] Kitajima N, Koda T, et al, Reaction aspects of μ-peroxo binuclear copper(Ⅱ)
    
    complex, J. Am. Chem. Soc., 1990, 112(24), 8833-8839
    [71] Metallobiosites and their synthetic analogues a belief in synergism 1997—1998, Tilden Lecture, Chem. Soc. Rev., 1999, 28, 159-168
    [72] Roussel P, Cary D R, Barlow S, Green J C, Ligand-Centered Oxidation in Diiron Indacene, Complex Organometallics, 2000, 19(6), 1071- 1076.
    [73] Harry A, David E F, Shabana R, et al, Diversity in reactions of unsymmetric dinucleating Schiff base lingands with Cu(Ⅱ) and Ni(Ⅱ), J. Am. Chem. Soc., Dalton Trans., 2000, 1849-1856
    [74] Sorrell T N, Synthetic model for binuclear copper protein, Tetrahedron, 1989 45, 3
    [75] Martin J L, Yuan J, Lunte C E, et al., An octacopper (Ⅱ) complex with μ_5-oxo and tripodlike perchlorate ligands: formation and Ⅹ-ray structure of the [Cu_4(L)O (ClO_4)]_2 dimer, Inorg Chem., 1989, 28, 2901-2903
    [76] Charles P, Mark S, Robert E, Palermo E, Condensation of aldehydes with mualkylidyne diiron complexes: a new synthesis of multvinylcarbyne complexes, J. Am. Chem. Soc.,1985, 107(18), 5296-5297
    [77] 魏俊发,俞贤达,金道森,双核金属单加氧酶及其化学模拟研究,化学进展,1994,6,178-94
    [78] Bernhard C, Kurt H., Stezowski J, Baldur F, A stable enolate complex from tetramethyl-3-thietanone and diiron non acarbonyl: mu-O-mu-S- (2,4-dimethy 1-4-thiolato-2-penten-3-olato)diiron hexacarbonyl, J. Am. Chem. Soc.,1976, 98 (21), 6696-6697
    [79] Okubo T, Sugimoto H, Nagayama T, Masuda H, cis-μ-1,2-Peroxo Diiron Complex: Structure and Reversible Oxygenation, J. Am. Chem. Soc., (Communication), 1996, 118(3), 701-702.
    [80] Yong Yu, Jiabi Chen, Jian Chen, Peiju Zheng, Novel reaction of (cyclohe ptatriene) diiron hexacarbonyl with aryllithium reagents. A new route to diiron carbonyl complexes with a bridging carbyne ligand, Organometallics, 1993, 12, 4731-4733
    [81] Okawa H, Ando I, Kida S, Substituent effect upon magnetism of binuclear oxovanadium (Ⅳ) and copper complexes of the schiffbase, Bull Chem Soc Jpn., 1974, 47, 3041-304
    [82] Weinstein G N, Holm R H, Preparation, Properties and Racemization Kinetics of
    
    Copper-schiffle base Amino-acid Complexes Related to vitamin B_6 Catalysis, Inorganic Chemistry, 1970, 9, 214
    [83] Pan Z Q, Luo Q H ,Long D L, et al, Synthsis of a new macrocyclis compound and its self-assembly, Chin J Chem, 2000, 18(1), 124-127
    [84] 罗勤慧,沈孟长,高伟等,光照法研究超氧化物歧化酶及其模型化合物与超氧离子的反应动力学,高等学校化学学报,1990,11(9),928
    [85] Rockcliffe D A, Martell A E, Oxidation reactions of a macrocyclic dinuclear copper (Ⅱ) dioxygen complex and a dinuclear copper(Ⅰ) complex, Inorg Chem, 1993, 32 (14), 3143-3252
    [86] Casella L, Gullotti M, Pallanza G, et al., Synthsis and reactivety of a family of copper monooxygenase model systems, J. Am. Soc., 1988, 110(13), 4221-4227
    [87] Nasir M S, Karlin K D, Megowty D, et al, Unsymmetrical dicopper complexes: Direct observation of reversible oxygen binding in a cooper monooxygenase model systems, J Am Chem Soc.,1991, 113(2), 698-700
    [88] 陆勤,罗勤慧,梅光泉等,24元大环双核铜配合物的合成及对超氧化物歧化酶的模拟,化学学报,1993,51(51),1082
    [89] Tshuva E Y, Lee D, Lippard S J, Catalytic Oxidation by a Carboxylate-Bridged Non-Heme Diiron Complex, J. Am. Chem. Soc.,(Communication), 2002, 124(11), 2416-2417.
    [90] Gilbertson S R, Lopez O D, Synthesis of and Asymmetric Cycloaddition with Chiral Diiron Acyl Complexes, J. Am. Chem. Soc.,(Communication),1997, 119 (14), 3399-3400
    [91] Huynh E, Bollinger J M, Vicol A, Edmondson D, Engineering the Diiron Site of Escherichia coil Ribonucleotide Reductase Protein R2 to Accumulate an Intermediate Similar to Hperoxo, the Putative Peroxodiiron(Ⅲ) Complex from the Methane Monooxygenase Catalytic Cycle, J. Am. Chem. Soc., (Communication), 1998, 120(5), 1094-1095
    [92] Basch H, Musaev D G, Mogi K, Morokuma K, Theoretical Studies on the Mechanism of the Methane →Methanol Conversion Reaction Catalyzed by Methane Monooxygenase (MMO): The O-Side vs N-Side Mechanisms, J. Phys. Chem. B.(Addition/Correction)., 2001, 105(20), 4770-4770
    [93] Tshuva E Y, Lee D, Lippard S J, Catalytic Oxidation by a Carboxylate-Bridged Non-Heme Diiron Complex, J. Am. Chem. Soc.,(Communication), 2002,
    
    124(11), 2416-2417
    [94] Austin R N, Chang H K, Zylstra G J, Groves J T, The Non-Heme Diiron Alkane Monooxygenase of Pseudomonas oleovorans (AlkB) Hydroxylates via a Substrate Radical Intermediate, J. Am. Chem. Soc.,(Communication), 2000, 122(47), 11747 - 11748
    [95] Basch H, Mogi K, Musaev D G, Morokuma K, Mechanism of the Methane Methanol Conversion Reaction Catalyzed by Methane Monooxygenase: A Density Functional Study, J. Am. Chem. Soc., 1999, 121(31), 7249-725
    [96] US 4389528
    [97] 姜恒,宫红,对甲酚衍生物催化氧化合成对羟基苯甲醛衍生物,化学试剂,2000,22(3),157-159
    [98] 易佑华,马文伟,用相转移催化剂由苯酚制备水杨醛,化学世界,1988,347-349
    [99] 宋宏锐,对甲氧基水杨醛标准试剂的制备,化学试剂,1994,13-15
    [100] 申东升,芳香烃氯甲基化反应的综述,化学研究与应用,1999,3,45
    [101] 沈重,张焱,谢静薇,杨一青,SEBS的氯甲基化及羟甲基化,高等化学报,1999,5,56-59
    [102] 樊能廷,有机合成事典,北京理工大学出版社,1992年1
    [103] 贾朝霞,梁发书,N,N-二乙酸乙酯苄胺的合成及表征,化学试剂,2000,22(3),143-144
    [104] Wang J, Mashuta M S, Sun Z, Richardson J F, Hendrickson D N, Buchanan R M, Syntheses, Crystal Structures, and Properties of Unsymmetrical diiron(Ⅲ) Complexes Containing Polyimidazole Ligands, Inorg. Chem .,(Communication), 1996, 35(23), 6642-6643
    [105] Gregory A B, Geoffrey B, Coordination Modes of Water-Derived Bridging Ligands in Diiron(Ⅲ) Complexes: Stabilization of an Oxo-Hydroxo Bridge by Hydrogen Bonding, J. Am. Chem. Soc., 1995, 117(51), 12865-12866
    [106] Lecloux D D, Barrios A M, Mizoguchi T J, Lippard S J, Modeling the Diiron Centers of Non-Heme Iron Enzymes. Preparation of Sterically Hindered Diiron(Ⅱ) Tetracarboxylate Complexes and Their Reactions with Dioxygen, J. Am. Chem. Soc., 1998, 120(35), 9001-9014
    [107] Saroja J, Manivannan V, Chakraborty P, A Diiron(Ⅲ) Complex Containing N-N Bridges Synthesis,Structure and Properties, Inorg. Chem., 1995, 34, 3099-
    
    3101
    [108] 柳翠英,赵全芹,郭秀英,5-氯-N-(2—羟基乙基)水杨醛亚胺Schiff碱的合成与表征,化学试剂,1998,20(1),42-43
    [109] 孙梅贞,金一尊,黄磊,邹孝芳,陈爱芬,何巧娟,取代苯酚的Mannich反应,化学学报,1985,43,306-309
    [110] Habata Y, Akabori S, Bradshaw J S, Izatt R M, Synthesis of Armed and Double-Armed Macrocyclic Ligands by the Mannich Reaction: A Short Review, Ind. Eng. Chem. Res., 2000, 39(10), 3465-3470
    [111] Kobayashi S, Matsubara R, Kitagawa H, Catalytic, Asymmetric Mannich-Type Reactions of N-Acylimino Esters for Direct Formation of N-Acylated Amino Acid Derivatives. Efficient Synthesis of a Novel Inhibitor of Ceramide Trafficking, Org. Lett., (Communication), 2002, 4(1), 143-149
    [112] 冯若,李化著,声化学及其应用,安徽科学技术出版社,合肥,1992,201
    [113] Wei junfa, He diping, Dioxygen oxidation of hydrocarbons by a methane monooxygenase-like system: diiron complex-O_2-Zn/HOAc-MV~(2+), Science in China (Series B), 1999, 42, 131-137
    [114] Geary W T, The use of conductivity Measurements in Organic Solvents for the characterization of coordinated compounds, Coord. Chem. Rev., 1971, 81-122
    [115] Nakamoto K, Infrared and Raman Spectra of Inorganic and Coordination Compounds, John Wiley and Sons: New York, 1970, 230
    [116] Lambert E, Chabut B, Deronzier A, et al., Synthesis structrual, magnetic and properties of asymmetric diiron complexes with a single terminally bound phenolate ligand relevance to the purple acid phosphatase, J. Am. Chem. Soc., 1997, 119, 9424-9437
    [117] 中本一雄,无机和配合物的红外和拉曼光谱(第四版),北京,化学工业出版社,1991,209
    [118] 赵树兰,张经坤,对苯二甲酸根桥联的双铁(Ⅲ)配合物的表征,华南师范大学学报,1999,567-569
    [119] Mandal S K, Nag K, Dinuclear metal complexes Part 3 preparation and properties of hydroxo-bridged dicopper(Ⅱ) complexes, J. Chem. Soc. Dalton. Trans, 1984, 2141-2149
    [120] Piero Z, Synthesis, structures and electrochemical characterization of homo-and heterodinuclear copper complexes with compartmental ligands, Coord Chem
    
    Rev, 1987, 77, 165
    [121] Lubben M, Hage R, Meetsma A, Modeling dinuclear copper sites of biological relvance: Synthesis, molecular, of a nonsymmetric dinuclear copper complex, Inorg. Chem., 1995, 34, 2217-2224
    [122] Tsubomura T, Tanihata T, Yamakawa T, Ohmi R, Synthesis and Structure of New Binuclear Organopalladium Macrocyclic Complexes Organometallics, (Communication)., 2001, 20(18), 3833-3835
    [123] Karunakaran S, Kandaswarmy M, Synthesis Electrochemical and Magnetic properties of a series of new unsymmetrical macrocyclic binuclear copper(Ⅱ) complexes, J. Am. Chem. Soc, Dalton Trans., 1994, 1595-1598
    [124] Richard C H, Julie M B, Feben T G, Dinuclear copper(Ⅱ) complexes with carboxy-rich coordination environments models for substituted copper(Ⅱ) amino peptidases, Inorg .Chem., 1994, 33, 6086-6092
    [125] Okawa H, Kida S, Structure and metal interactions in copper(Ⅱ) Trihaloacetate derivatives, Bull. Chem. Soc. Jpn., 1972, 45(6), 1759-1764
    [126] Shaohua Gou, David E F, A novel sodium template approach for preparing tetraimine macrocyles of 2,6-diformyl-4-methylphenol and diamino derivatives, Inorganica Chimica Acta., 1994, 223, 169-172
    [127] Gagne R R, Spiro C L, Smith T J, Hamann C A, et al., The synthesis, redox properties, and ligand binding of heterobinuclear transition-metal macrocyclic lingand complexes measurement of an apparent delocalization energy in a mixed-valent Cu(Ⅰ)Cu(Ⅱ) complex, J. Am. Chem. Soc., 1981, 103, 4073-4081
    [128] Liesheng Cai, Wenge Xie, Hussein Mahmound, Synthesis and characterization of a constricted and rigid ligand system for five-coordinate binuclear complexes, Inorganica Chimica Acta., 1997, 231-245
    [129] Taniguchi S, Oxidation of 2,6-bis(hydroxymethyl)phenols to 2-hydroxy iso-phthalaldehydes by MnO_2, Bull. Chem. Soc. Jpn., 1984, 57, 2683-2684
    [130] Patterson G S, Holm R H, Structure and electronic effects on the polarographic half wave potentials of copper chelate complexes, Bioinorg Chem, 1975, 4, 257-275
    [131] Jonathan D C, David E F, Jean M L, Unsymmetric dicopper complexes of dinucleating Chemically distinct coordination environments, J. Am. Chem. Soc, Dalton Trans., 1991, 2979-2987
    
    
    [132] Journaux Y, Sletten J, Olivier K, Tunable interaction in Oxamido copper binuclear complexes, Inorg Chem., 1985, 24, 4063-4069
    [133] Srinivas B, Zacharias P S, Dinuclear copper, Nickel and mixed valence Cu(Ⅰ)-Cu(Ⅱ) complexes : influence of donor groups on redox behaviour of dicopper complexes, Polyhron, 1949-1958
    [134] 魏俊发,俞贤达,新型双核铜配合物的合成、表征及其对苯乙烯环氧化的催化作用,分子催化,1998,271-278
    [135] Tolman C A, Herron N, Catalysis Today., 1988, 235-243
    [136] 王胜国,于国清,Shiffle碱类镍络合物对苯乙烯的催化环氧化,石油化工,2002,83-89
    [137] Nemeth L T, Lewis G J, Rosin R R, Titanovanadosilcalites as epoxidation catalysts for olefins [P].US .5744619, 1998, 28
    [138] Mclain J, Lee J, Groves J T, in Biomimetic Oxidations Catalyzed by Transition Metal Complexes, Inperial College Press,, 2000, 91-196
    [139] 李臻,夏春谷,金属卟啉催化烯烃环氧化及反应机理研究,化学进展,2002,5,65-71
    [140] Costas M, Rohde J.-U, Stubna A, Quaroni L, Munck E, Que L Jr, A Synthetic Model for the Putative FeIV_2O_2 Diamond Core of Methane Monooxygenase Intermediate Q, J. Am. Chem. Soc,(Communication)., 2001, 123(51), 12931-12932.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700