用户名: 密码: 验证码:
催化法电石合成新工艺及其特征催化剂的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电石—乙炔路线是重要的有机合成路线,但是工业上生产电石的电热法需要2200℃左右的高温,是一条高能耗、高污染的合成工艺路线。本论文主要是向现有的电石合成工艺中引入催化的概念,并开发出一种特征催化剂,利用催化反应降低电石合成的能耗、提高反应转化率。
     基于对电石热合成反应的理论分析,本论文通过电热法将石灰和焦炭的混合物在1700℃、氩气气氛下反应1.5h制得了电石样品,所得电石样品与水反应尾气中乙炔含量较高,体积分数可达97%。本论文考察了碳源和钙源的活性对于电石合成的影响,结果表明活性炭作为碳源合成电石样品的发气量较高;预处理钙源有利于电石合成,但预处理碳源却不利于电石合成。本论文考察了粘结剂、助熔剂等助剂对电石合成反应的影响,结果表明在反应过程中液相的形成对于电石合成有促进作用。
     在此基础上,本论文选取碳酸钾、氧化铁、磷酸三钙、硅酸钙等作为备选催化剂,通过X射线衍射技术(XRD)考察了备选催化剂的加入对合成的电石样品组成的影响,并将标准电石发气量测定装置测定的发气量结果作为评价备选催化剂催化效果的依据。实验结果表明,在所有备选催化剂中,磷酸三钙具有最好的催化效果,可将合成样品的发气量提高32%,故而本论文选取磷酸三钙作为电石催化合成工艺的特征催化剂。本论文同时考察了青海湖钾盐对于电石合成的影响,结果表明青海湖钾盐对于提高电石合成反应转化率的催化效果不明显。
     本论文对以磷酸三钙为特征催化剂的电石催化合成工艺的工艺条件进行了优化,考察了原料的粒径及配比、催化剂加入量、反应时间对合成电石样品发气量的影响,得到了最优化的工艺条件。在最优化的工艺条件下,电石样品的发气量达到257.7L/kg,基本满足国家标准(GB10665-2004)中对合格电石产品发气量的要求。本论文通过在线反应、反应尾气检测、EDS能谱分析等技术手段考察了磷酸三钙的催化机理,认为在反应条件下磷酸三钙的熔化促进了碳原子的转移、改善了原料接触,同时,在反应过程中,磷酸三钙起到了离子传递媒介的作用。
The production of acetylene from calcium carbide is an important organic synthesis route. However, reaction temperature of the commercial production of calcium carbide through electrothermal method is approximately 2200℃, that is, the process is a high energy cost and serious polluting route. This paper focuses on the concept of catalytic process for the production of calcium carbide and tends to develop an effective catalyst which might reduce energy consumption and improve conversion efficiency.
     Based on thermodynamics analysis of the synthesis reaction, calcium carbide is successfully synthesized from coke and lime at 1700℃for 1.5h under Ar atmosphere. The content of acetylene in gas emissions from reaction of calcium carbide and water is as high as 97 percent. Effects of different carbon sources and the activity of carbon sources and calcium source on synthesis of calcium carbide are also investigated. It is found that activated carbon as carbon source has a best performance in the process and the treated calcium source also has a positive performance, however, the treated carbon sources have a passive function. Investigations on effects of binder and fluxing agents on synthesis of calcium carbide are carried out and the results indicate that the formation of liquid phase is beneficial to the synthetic process.
     Based on the above mentioned, potassium carbonate, ferric oxide, calcium phosphate, calcium silicate are chosen as catalyst candidates and effects of their addition on synthesis are observed by using X-ray diffraction. The gas output original data are detected on a standard device. The results suggest that calcium phosphate has a better effective function than all the other candidates, and the gas output of its product is increased by 32 percent. Therefore, calcium phosphate is chosen as specific catalyst. It is noticed that salts from Qinghai Lake have a disadvantageous influence on calcium carbide synthesis.
     The reaction conditions of catalytic synthesis of calcium carbide, including particle size and mole ratio of raw materials, amount of catalyst, reaction time, are optimised by orthogonal experiments, and the optimum conditions are formulated. Output of sample synthesized under optimum conditions is 257.7L/kg, and by and large meets the demands of the national standard(GB10665-2004). Thermogravimetry(TG), Gas Chromatogram(GC), Energy Disperse Spectroscopy(EDS) are employed in the investigation of catalytic mechanism of calcium phosphate. It is believed that calcium carbide facilitates the transportation of coke, improves the interaction between raw materials, and above all, serves as a medium of ion transfer.
引文
[1]贺永德.现代煤化工技术手册[M].北京:化学工业出版社,2004:10-1100
    [2]熊谟远.电石生产及其深加工产品[M].北京:化学工业版社,1989:1-179
    [3]汪涛峰.电石乙炔化工的深度加工[J].杭州化工,1993,(4):9-12
    [4] GB/T 10665-2004,碳化钙(电石)[S].北京:中国标准出版社,2004
    [5] Kameyama N.. Electrochemistry [J]. Theory and Application, 1956, 3(2):134-141
    [6] Tagawa H., Sugawara H.. The Kinetics of the Formation of Calcium Carbide in Solid-Solid Reaction [J]. Bull. Chem. Soc. Jpn., 1962, 35: 1276-1279
    [7] Mukaibo T., Yamanka Y.. J. Chem. Soc. Jpn., Ind. Chem. Sec. 58, 1955. [Cited in Tagawa and Sugawara, 1962]
    [8] Mu J. J., Hard R. A.. A Rotary Kiln Process for Making Calcium Carbide[J]. Ind. Eng. Chem. Res., 1987, 26: 2063-2069
    [9]吴魏民.还原剂对电石生产与节能的影响[J].中国能源,1996,(10):32
    [10]陈蠡,王丽华.降低电石生产中电能消耗的措施[J].化学工程师,2006,12:44-46
    [11]庞新水,朱卫星.电石生产原理在实践中的运用[J].维纶通讯,2003,23(1):21
    [12]天津化工研究院编,无机盐工业手册(上下册)[M],第2版.北京:化学工业出版社,2003:546-700
    [13]姚润生.电石反应动力学及模型[J].维纶通讯,1990,(3):17-18
    [14]刘瑞明,赵继红,李彩霞.电石密闭炉生产探讨[J].内蒙古石油化工,2007,(5):105
    [15]陈信生,李泰,冯家芳,等.密闭电石炉炉气净化系统[P].中国专利:03258869.0,2004-1-28
    [16]苏鹏.电石炉烟气净化技术探讨[J].科技情报开发与经济,2006,16(17):267-268
    [17]孔祥武,汤明伟,李树华,等.一种净化电石炉气的方法[P].中国专利:200610130705.0,2007-8-15
    [18] Berger L. M., Langholf K., Jaenicke-RōBler, et al. Mass Spectrometric Investigations on the Carbothermal Reduction of Titanium Dioxide[J]. Journal of Materials Science, 1999, 18: 1409-1412
    [19] Kersting Hans-Joachim, Wolfrum Erhard Dipl, Portz Willi Dipl Chem, et al. Process forthe Manufacture of Calcium Carbide [P]. Germany: DE3124672, 1983-01-13
    [20]杨金连,尹立志,谢秀兰.用长焰煤生产电石新工艺[P].中国专利:90109983.X,1991-7-24
    [21]王炳盛,刘亚奎.电石生产的发展方向[J].中国氯碱,2007,5:43-44
    [22]刘岭梅,张建国.加强电石生产乙炔环保化促进PVC行业可持续发展[J].中国氯碱,2007,2:1-23
    [23]徐彦龙.浅析降低电石生产能耗的影响因素[J].煤化工,2000,3:41
    [24] Kim C. S., Baddour R. F., Howard J. B. et al.. CaC, Production from CaO and Coal or Hydrocarbons in a Rotating-arc Reactor[J]. Ind. Eng. Chem. Process Des. Dev., 1979, 18(2): 323-328
    [25]徐铁生,陈群硕.电石生产新工艺-氧热法生产电石[J].武汉化工,1991,4:1-2
    [26] Hellmold P., Gordziel W.. Investigation of the Particular Reactions of CaC2. 2: Investigation of the Formation of CaC2 from Calcium Oxide and Carbon[J]. Chem. Technol., 1983, 35: 297-300
    [27] Muller M. B.. Structure, Properties and Reactions of CaO in Burnt Lime, Part I: Design of a New Model of Burnt Lime[J]. Scand. J. Metall., 1990, 19: 64-70
    [28] Muller M.B.. Structure, Properties and Reactions of CaO in Burnt Lime, Part III: Composite Reactions of CaO and C in Solid and Liquid State[J]. Scand. J. Metall., 1990, 19: 210-217
    [29]辛彩芬,钱新荣.电石乙炔制化工产品路线评述[J].化学进展,1994,(61):80-81
    [30] Zhu C.W., Zhao G.Y., Hlavacek V.. A D.C. Plasma-Fluidized Bed Reactor for the Production of Calcium Carbide[J]. Journal of Materials Science, 1995, 30: 2412-2419
    [31] El-Naas M. H., Munz R. J., Ajersch F.. Solid-Phase Synthesis of Calcium Carbide in a Plasma Reactor[J]. Plasma Chemistry and Plasma Processing, 1998, 18(3): 409-427
    [32]邱介山,何孝军,马腾才.煤的水蒸气等离子体气化研究现状和前景[J].煤炭转化,2002,25(2): 32-35
    [33]刘景林.利用大型太阳炉合成碳化钙[J].国外耐火材料, 2006, 31(4): 55-56
    [34] Yeh L., Liu E. W.. Combustion Synthesis of Tantalum Carbides TaC and Ta2C[J]. Journal of Alloys and Compounds, 2006(415): 66–72
    [35] Jiang G., Zhuang H., Li W.. Mechanistic Investigation of the Field - ActivatedCombustion Synthesis of Tungsten Carbide with or without Cobalt Added[J]. Combustion and Flame, 2003, (135): 113–121
    [36] Satapathy L. N., Ramesh P. D., Agrawal D., et al. Microwave Synthesis of Phase-Pure, Fine Silicon Carbide Powder[J]. Materials Research Bulletin, 2005, (40): 1871–1882
    [37] Luo P., Strutt P. R.. Thermal Chemical Synthesis of Nanostructured Chromium Carbide Cermets[J]. Materials Science and Engineering A, 1995, (204): 181-185
    [38] Tsuchida T., Suzuki K., Naganuma H., et al. Low-Temperature Formation of Ternary Carbide Fe3M3C(M=Mo, W) Assisted by Mechanical Activation[J]. Solid State Ionics, 2001, (141–142): 623–631
    [39] Cintho O. M., Favilla E. A. P., Capocchi J. D. T.. Mechanical–Thermal Synthesis of Chromium Carbides[J]. Journal of Alloys and Compounds, 2007, (439): 189–195
    [40] Liu D. F., Xie S. S., Yan X. Q., et al. A Simple Large-Scale Synthesis of Coaxial Nanocables: Silicon Carbide Sheathed with Silicon Oxide[J]. Chemical Physics Letters, 2003, (375): 269-272
    [41] Rees E. J., Brady C. D. A., Burstein G. T.. Solid-State Synthesis of Tungsten Carbide from Tungsten Oxide and Carbon, and its Catalysis by Nickel[J]. Materials Letters, 2008, (62): 1–3
    [42] Zhao Z, Zuo H, Liu Y, et al. Effects of Additives on Synthesis of Vanadium Carbide(V8C7) Nanopowders by Thermal Processing of the Precursor[J]. International Journal of Refractory Metals & Hard Materials, 2009, 06: 2-10
    [43] GB/T 8574-2002,复混肥料中钾含量的测定—四苯硼酸钾重量法[S].北京:中国标准出版社,2002
    [44] Rai J. H., Gregory N. W.. The Time Dependence of Effusion Cell Steady-State Pressures of Carbon Monoxide and Calcium Vapors Generated by the Interaction of Calcium Oxide and Graphite[J]. The Journal of Physical Chemistry, 1970, 74(3): 529-534
    [45] Wang J., Morishita K., Takarada T.. High-Temperature Interactions between Coal Char and Mixtures of Calcium Oxide, Quartz, and Kaolinite[J]. Energy & Fuels, 2001, 15: 1145-1152
    [46]李淑芬,陈彦伶.五台型煤焦CO2催化气化的补偿效应[J].天津大学学报,1996,29(2):259-264
    [47]朱珍平,顾永达,吴东,等.煤裂解过程中负载铁化学形态的变化[J].燃料化学学报,1996,24(1):48-53
    [48]梁鸿飞.灰成分对焦炭热性质影响的研究及应用[J].煤化工,2009,(1):34-36
    [49]李劲风,张昭,郑子樵,等.燃烧合成(Ti,W)C的形成过程[J].稀有金属与硬质合金,2001,147:1-6
    [50] Stolle S., Gruner W., Pitschke W., et al. Comparative Microscale Investigations of the Carbothermal Synthesis of (Ti, Zr, Si) Carbides with Oxide Intermediates of Different Volatilities[J]. International Journal of Refractory Metals & Hard Materials, 2000, (18): 61-72
    [51]侯祥麟.中国炼油技术[M].第二版.北京:中国石化出版社,2001:616-619
    [52]范延臻,王宝贞.活性炭表面化学[J].煤炭转化,2000,23(4):26-30
    [53]杨俊和,冯安祖,杜鹤桂.冶金焦在高炉内微观结构的变化[J].钢铁,2000,35(11):4-7
    [54] GB/T 212-2001,煤的工业分析方法[S].北京:中国标准出版社,2002
    [55]王晓刚,何恩广,陈寿田.弱粘结煤的高温结构变化及其对合成SiC的影响[J].燃料化学学报,2000.28(4):310-313
    [56]姜瑶瑶,周仕学,谭琦,等.酸碱法对无烟煤深度脱灰的研究[J].有色矿冶,2006,22:151-152
    [57]单晓梅,朱书全,张文辉,等.氧化法改性煤基活性炭和椰壳活性炭的研究[J].中国矿业大学学报,2003,32(6):729-733.
    [58]张守玉,吕俊复,王文选,等.热处理对煤焦反应性及微观结构的影响[J].燃料化学学报,2004,32(6):673-678
    [59]蒋文举,金燕,朱晓帆,等.活性炭材料的活化与改性[J].环境污染治理技术与设备,2002,3(12):25-27
    [60]武增华,寇鹏,杨海波,等.烧结程度对CaO固硫反应转化率及动力学参数的影响[J].燃料化学学报,2001,29(3):273-276
    [61]伍丹,施永聪.固体氧化钙催化制备可再生绿色能源生物柴油[J].安徽农业科学,2008,36(13):5689-5690
    [62]吴年强,林硕,叶仲屏,等.机械合金化中的固态反应[J].材料导报,1999,13(6):12-14
    [63]孙群,薛永强.添加助熔剂降低淮南煤灰熔融性机理初探[J].煤质技术,2006,(1):19-20
    [64]李慧,焦发存,李寒旭.助熔剂对煤灰熔融性影响的研究[J].煤炭科学技术,2007,35(1):81-84
    [65]蒋武锋,李运刚,赵利国,等.粘结剂对含碳球团还原的影响[J].钢铁研究学报,2000,12(4):1-4
    [66]唐贤容,朱任志.石灰在团矿中的作用机理研究[J].烧结球团,1997,22(3):11-16
    [67]学瑛,李洁,边绍菊,等.高温熔剂法制备氧化镁晶须的研究[J].无机材料学报,2007,22(5):853-858
    [68]姜中涛,叶金文,刘颖,等.碳热还原法制备V8C7粉末的研究[J].功能材料:2009,40(5):820-822
    [69] Wen W. Y.. Mechanism of Alkali metal catalysis in the gasification of coal Catal [J]. Rev Sci Eng, 1980, 22(1): 1-28
    [70]陶著.煤化学[M].北京:冶金工业出版社,1984,131-136
    [71]刘化章.合成氨催化剂研究的新进展[J].催化学报,2001,22(3):304-316
    [72]蔡湄夏,郭豪,张建良,等.铁氧化物对焦炭溶损反应的影响[J].钢铁研究学报,2009,21(7):8-12
    [73]詹瑛瑛,蔡国辉,郑勇,等.高比表面SiC的合成及其在CO氧化反应中的应用[J].物理化学学报,2008,24(1):171-175
    [74] Pierre H. C., Stl G.R.. Diffusion through CaSO4 formed during the reaction of CaO with SO2 and O2[J]. AIChE J, 1993, 39(4): 698-700
    [75]肖海平,周俊虎,曹欣玉,等.CaSO4在不同气氛下分解特性的实验研究[J].动力工程,2004,24(6):889-892
    [76]边炳鑫,张鸿波,赵由才.固体废物预处理与分选技术[M].北京:化学工业出版社,2005:3-5
    [77] Atul S., Yaw D.Y., Anuradha G.. Catalytis Gasification of Coal Using Eutectic Salts: Reaction Kinetics with Binary and Ternary Entectic Catalysts[J]. Fuel, 2003, 82: 305-317
    [78]刘家祥,吴华夏.氟石膏分解特性的实验研究[J].北京化工大学学报,2003,30(6):36-40
    [79]化学工业出版社组织编写,中国化工产品大全[M],第三版,北京:化学工业出版社,2005:347-570
    [80]杨海波,武增华,邱新平,等.CaO固硫过程中Ca2+在CaSO4产物层内扩散的研究[J].化学学报,2003,61(9):1410-1415
    [81]杨宏孝主编.无机化学[M].第3版.北京:高等教育出版社,2002:288-323

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700