用户名: 密码: 验证码:
近平滑假丝酵母立体选择性还原酶表达、结构解析与改造
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氧化还原酶是一种具有高度立体选择性的生物催化剂,常用于生物转化光学活性的手性化合物。在众多的微生物氧化还原酶源中,来源于近平滑假丝酵母(Candida parapsilosis)CCTCC M203011的(R)-和(S)-羰基还原酶催化2-羟基苯乙酮产生不同立体化学性质的苯基乙二醇,其中(R)-羰基还原酶催化2-羟基苯乙酮到(R)-苯基乙二醇的可逆反应,而(S)-羰基还原酶催化2-羟基苯乙酮的还原反应,产生(S)-苯基乙二醇。为了更好地提高上述两种生物催化剂手性转化的适用性能,本研究通过改良(R)-羰基还原酶的编码基因,优化了目标蛋白的表达量;同时用X-衍射和分子置换的方法解析了(S)-羰基还原酶的蛋白空间结构,基于精细的三维结构及催化功能域的研究,利用蛋白质工程技术,理性设计了辅酶特异性和界面特性变化等一系列功能突变体,为酶催化功能的认识和改造提供了新的研究视点。
     依据大肠杆菌(Escherichia coli)对密码子的偏好性,用细胞偏爱的密码子同源置换出(R)-羰基还原酶编码基因中的9个稀有密码子,同时切除5’末端的无序结构序列4-27 bp。研究结果表明密码子的优化较好地提高了蛋白表达量,酶活力比优化前提高了35.7%。原子力显微镜观察结果表明高浓度的酶单体分子多聚为网状结构,但是当加入少量的辅酶(NAD+,NADH)或底物时,蛋白由网状结构转为椭圆形低聚态,与低浓度酶形成的聚合态相同。动力学研究表明酶催化2-羟基苯乙酮的KM和kcat分别是催化(R)-苯基乙二醇的0.5和1.8倍,即它们的kcat/KM比值约等于4.0。同时酶与辅酶NAD+的结合常数Kd是酶与NADH的近3倍。说明酶更易催化NADH链接的2-羟基苯乙酮的还原反应,较难催化NAD+链接的(R)-苯基乙二醇的氧化反应。
     采用SOE-PCR法克隆出增强型荧光蛋白标记的(R)-和(S)-羰基还原酶蛋白融合基因,构建到真核pYX212表达载体中,以荧光蛋白为筛选标志,发现两种羰基还原酶在酿酒酵母(Saccharomyces cerevisiae W303-1A)细胞中多定位于细胞膜(如高尔基体等内膜系等),少数成点状分布于胞内。根据荧光强度分析可知(S)-羰基还原酶的表达水平明显高于(R)-羰基还原酶。荧光蛋白融合型(R)-羰基还原酶催化2-羟基苯乙酮获得产物(R)-苯基乙二醇的光学纯度和产率分别为86.6%和70.4%。荧光蛋白融合型(S)-羰基还原酶催化2-羟基苯乙酮生成产物(S)-型对映体的光学纯度和产率分别92.3%和81.8%。说明两种羰基还原酶与荧光蛋白的融合不影响酶蛋白的正确折叠和生理催化功能。
     利用分子重组技术,将6×Histidine的标签分别与(R)-和(S)-羰基还原酶进行融合,克隆其融合基因,置于AOX1的甲醇诱导型启动子下游,构建重组毕赤氏酵母菌株GS115,实现了两种羰基还原酶的高效异源表达。经培养条件的优化,它们的最佳表达条件基本相同:pH7.0,OD600为2.0–2.5,甲醇的日诱导添加量为1%,甲醇诱导后菌体培养的时间为3.5–4天。在优化表达条件下,(R)-和(S)-羰基还原酶外泌蛋白的表达量分别为185 mg/L和270 mg/L,酶比活分别为1.35 U/mg和3.41U/mg。Western杂交结果显示6×Histidine标签已特异性地结合于两种酶蛋白上,经过Ni2+柱一步法亲和层析后的靶蛋白纯度均高于90%。生物转化实验表明纯化后的(R)-和(S)-羰基还原酶的最适反应的pH分别为8.0–9.0和7.0,其中(R)-羰基还原酶催化产生(R)-苯基乙二醇的光学纯度和产率分别为89.5%和78.4%。(S)-羰基还原酶催化合成产物(S)-苯基乙二醇的光学纯度和产率分别为96.9%和88.7%。低浓度(5 mmol/L)的Zn2+对(R)-羰基还原酶催化2-羟基苯乙酮的还原反应具有明显的促进作用,当反应体系中添加5 mM Zn2+时,产物(R)-苯基乙二醇的光学纯度和产率分别可以达到94.3%和86.5%。
     将近平滑假丝酵母(C. parapsilosis)的(R)-和(S)-羰基还原酶基因构建到含双克隆位点的表达载体pETDuetTM-1中,构建重组质粒pETDuet-RCR-SCR。同时将大肠杆菌(E. coli)的嘧啶核苷酸转氢酶A和B亚基基因克隆到表达载体pACYCDuet-1上,构建重组质粒pCACYD-PNTA-PNTB。将两种重组质粒分别转化或共转化表达宿主E. coli BL21 (DE3),构建同时带有两个或四个目的基因的重组菌株。生物转化实验表明共转化重组菌具有高效生物催化(R)-苯基乙二醇,一步法转化(S)-苯基乙二醇的功能,其产物光学纯度为96.3%e.e.,产率为91.9%,与只含有(R)-和(S)-羰基还原酶基因共表达体系相比较,产物(S)-苯基乙二醇的光学纯度和产率分别提高了32%和39.2%。
     采用悬滴法对纯化的重组(S)-羰基还原酶进行结晶条件筛选及条件优化,获知该蛋白晶体的最佳生长条件为:18% (w/v) polyethylene glycol 2000 monomethyl ether (PEG2K MME)和8% (v/v)异丙醇。X-衍射最好的晶体大约在5天后获得,其大小为0.4×0.3×0.3 mm。以Agaricus bisporus甘露醇脱氢酶(MtDH,1H5Q)为同源模型,采用分子置换法解析(S)-羰基还原酶的结构,其空间群属于P212121,晶胞参数为:a=104.7 ?,b=142.8 ?和c=151.8 ?。其最终结构模型的分辨率修正到2.69-?,Rfree和Rwork分别26.4%和20.5%,具有很好的立体化学特性。一个不对称单位中有八个单体分子,组成两个四聚体,或者说一个不对称单位有四个二聚体,每个二聚体关于所谓的Q轴对称。从已解析出来的结构发现该酶与典型短链脱氢酶不同,主要表现在三个方面:(1)N端有一个约含30个氨基酸的肽段尾巴,起着平衡Q轴的作用;(2)二元对称轴不规范,有大约15°的偏角。因而形成非标准的2-2-2对称的四聚体;(3)在四聚体中,四个之中的二个NADPH可能的结合区域被周围的肽段所占据。分子筛排阻实验结果表明辅酶NADPH与(S)-羰基还原酶的结合能够诱导一个无活性的四聚体向有活性四聚体的转化。
     采用定点突变的方法,构建了包括N末端的肽段,保守的催化三元区域以及位于界面与界面之间的关键氨基酸位点的突变。实验结果表明(S)-羰基还原酶的N-末端肽段在很大程度上起着平衡四聚体的Q轴作用,对酶活几乎没有贡献。与其它短链脱氢酶一样,(S)-羰基还原酶也使用相同的保守催化三元区域Ser-Tyr-Lys。定点突变的研究结果表明保守的Ser-Tyr-Lys催化三元区域对催化功能是必需的。在(S)-羰基还原酶二元对称轴的疏水界面上,βG折叠中的一个紧密折叠的缬氨酸被一个带负电的氨基酸天冬氨酸即V270D,打破了原始的四聚态。超速分析的结果证实突变体V270D在溶液中表现为同源二聚体,动力学研究表明二聚体酶仍旧保持原始的催化功能。圆二色谱温度扫描结果显示所有突变体蛋白的稳定性均低于野生型酶,它们的熔化温度比野生型酶低4-7℃。
     为迎合工业应用需求,使(S)-羰基还原酶的辅酶依赖性由昂贵的NADPH转变为较便宜的NADH将产生非常重要的意义。因而根据(S)-羰基还原酶蛋白结构,理性设计了位于辅酶结合口袋或其附近的βB和αC之间所谓磷酸结合区域中关键氨基酸的定点突变,包括Ser67Asp、His68Asp和Pro69Asp点突变的不同组合。生物转化实验研究表明所有的突变体均催化2-羟基苯乙酮产生(R)-苯基乙二醇,但产物的光学活性和产率各不相同。其中在辅酶NADH链接反应中,突变体酶S67D/H68D催化产生(R)-对映体,其光学活性和产率分别为95.4%和83.1%。与野生型酶相比较,当NADH和NADPH作辅酶时,突变体S67D/H68D的kcat/KM值分别增加10倍和降低20倍,而kcat值保持不变。NADPH链接反应中,突变体S67D/H68D和野生型酶的Kd值分别是NADH链接反应中的0.28和1.9倍,表明突变体S67D/H68D酶具有更强NADPH的亲和性和更低的NADH依赖性。圆二色谱分析结果表明突变体S67D/H68D与野生型表现出相似的蛋白二级结构和熔化温度。温度变性和尿素变性实验结果表明NAD(H)对突变体S67D/H68D具有很好的保护作用,而以此相对应的是NADP(H)对野生型酶具有很好的保护作用。由此可见双位点S67D/H68D的突变在没有改变酶的稳定性的基础上,不仅成功改变了辅酶的特异性,而且改变了产物的空间选择性。该研究为采用蛋白质工程技术改变短链脱氢酶的辅酶特异性和产物的空间选择性提供了一个崭新的例证,同时也为手性醇的工业制备提供了有价值的研究。
Oxidoreductase, a kind of biocatalyst with high stereoselectivity, is always used in bioconversion of optically active chiral compounds. Among various of stereospecific oxidoreductases from microorganisms, (R)- and (S)-specific carbonyl reductases from Candida parapsilosis CCTCC M203011 catalyze 2-hydroxyacetophenone to stereospecific 1-phenyl-1,2-ethanediol (PED). (R)-carbonyl reductase (RCR) catalyzes the reversible reaction between 2-hydroxyacetophenone and (R)-PED, and (S)-carbonyl reductase (SCR) catalyzes the reduction of 2-hydroxyacetophenone to (S)-PED. In order to further facilitate the two biocatalysts for stereoselective conversion and modify their biocatalytic functions, the coding sequences of RCR were optimized to improve its protein expression using genetic engineering methods. The crystal structure of SCR was also determined. Based on its refined three dimensional structure and catalytic functional domain, a series of mutants were rationally designed to change the cofactor specificity and interface characteristics using protein engineering technique. This work will supply the new research viewpoint for further understanding and modifying the catalytic functions of the enzyme.
     According to the preferred codons in Escherichia coli, nine rare codons were synonymously replaced with those used at higher frequency and the disorder sequence of 4-27 bp at 5’-terminus was truncaed in the RCR coding gene. The results showed that the total enzyme activity of the codon variant was increased 35.7% than before optimization and its protein production was also considerably improved. Atomic force microscopy images showed that the apo-enzyme adopted a netlike aggregate morphology at a high concentration. When the protein was complexed with NAD+, NADH or the ligand of 2-hydroxyacetophenone, most molecules of the protein resembled flat elliptical cylinders, which is similar to that of the enzyme at the low concentrations. By kinetic analysis the ratios of KM and kcat between RCR catalyzing 2-hydroxyacetophenone and (R)-PED were 0.5 and 1.8, respectively, and their ratio value of kcat/KM was about 4.0. The results showed that RCR catalyzed the NADH-linked reduction of 2-hydroxyacetophenone more easily than the NAD+-linked oxidation of (R)-PED.
     The RCR or SCR genes fused with enhanced green fluorescence protein (EGFP) were cloned and constructed on the eukaryotic expression vector pYX212. Using EGFP as specific biomarkers, two carbonyl reductases were mostly found to locate on the cell membrane, i.e. golgi complex endomembrane system, few dotted in the cells. According to the intensity of EGFP the level of SCR expression was found higher than RCR in Saccharomyces cerevisiae W303-1A cells. The fusion enzyme RCR-EGFP catalyzed the reduction of 2-hydroxyacetophenone to (R)-PED with the optical purity of 86.6% and yield of 70.4%, while the enzyme SCR-EGFP transformed the (S)-isomer with the optical purity of 92.3% in a yield of 81.8%. The results showed that the fusion of RCR or SCR with EGFP showed no effect in correct protein folding and physical catalytic functions.
     The 6×Histidine tag was inserted N terminus of RCR or SCR, and their fused genes were cloned using molecular recombinant technique and located downstream of the AOX1 promoter. The recombinant Pichia pastoris were successfully constructed. The highly heterogenous expressions of two carbonyl reductases were obtained. By analysis of the pre-expression and optimized expression process, the optimal culturing conditions were achieved as follows: pH 7.0, the initial OD600 2.0–2.5, methanol daily addition concentration of 1.0% (v/v) and the optimal induction time points at about 3.5–4.0 d for the strain GS115. Under these conditions, the productions of recombinant RCR and SCR were 185 mg/L and 270 mg/L in P. pastoris, the specific activity of both enzymes were 1.35 U/mg and 3.41 U/mg. The western blotting result with only one band appeared on polyvinylidene fluoride (PVDF) membrane revealed that Ab1 bound specifically to the 6×Histidine tag of RCR and SCR. The purity of both proteins was over 90% after a single Ni2+ -cherating purification step. The experiments showed that the optimal pH values for biotransfomation were 8–9 and 7.0 for RCR and SCR respectively. The purified RCR catalyzed the product (R)-PED with the optical purity of 83.7% and yield of 67.2%, while the enzyme SCR transformed (S)-isomer with the optical purity of 96.9% in a yield of 88.7%. The results also revealed that the addition of the“functional elements”Zn2+ of 5 mM considerably enhanced the biotransformation efficiency of (R)-PED, and the optical purity and yield of the product reached 94.3% and 86.5%.
     The RCR and SCR genes from C. parapsilosis were constructed an expression vector pETDuetTM-1 contain double cloning sites simultaneously and the recombinant plasmid pETDuet-RCR-SCR was obtained. Pyrimidine nucleotide transhydrogenase A and B genes from E. coli were inserted into the expression vector pACYCDuet-1 and the recombinant plasmid pACYD-PNTA-PNTB was constructed. The plasmids pETDuet-RCR-SCR and/or pACYD-PNTA-PNTB were then transformed the competent cells of E. coli BL21 (DE3), and the recombinant strains containing two or four target genes. The biotransformation experiments showed that strains catalyzed (R)-PED to (S)-isomer in one-step efficiently. The product was afforded with high optical purity of 96.3%e.e. and yield of 91.9%. When compared to the co-expression system containing RCR and SCR, the optical purity and yield was increased with 32% and 39.2%.
     The recombinant SCR was purified and crystallized, the crystal form was obtained using the hanging-drop vapor-diffusion method and reservoir solution of 18% (w/v) polyethylene glycol 2000 monomethyl ether and 8% (v/v) isopropyl as the precipitant. The crystals obtained after 5 d of growth were good enough for data collection and were rhomboid in shape with average dimensions of 0.3×0.3×0.4 mm. The crystal structure of mannitol 2-dehydrogenase (MtDH, PDB file 1H5Q) from Agaricus bisporus was used as a search model for molecular replacement. The crystal belongs to the space groups P212121 with cell dimensions of a= 104.7 ?; b= 142.8 ?; and c= 151.8 ?. The crystal structure of the apo-form was solved to a 2.69-? resolution to final Rwork of 20.5% (Rfree of 26.4%), with good stereochemical properties. Eight SCR molecules were identified per asymmetric unit and were organized into two tetramers, or eight SCR molecules in an asu form four dimmers, each is related by the so-called Q-axis dyad symmetry. Three novel features were found between the crystal structure of SCR and the other short-chain dehydrogenase/reductase members: (1) an extended N-terminal peptide tail which stabilizes the Q-axis related dimerization; (2) an unusual tetramerization which is devoid of 2-2-2 point-group symmetry, particularly in the R-axis related dimer interface; and (3) two of the four potential NADPH binding sites in the tetramer are occupied by surrounding peptides in the apo-enzyme form. Gel filtration experiments further suggests that a conformational change in the SCR subunits induced by NADPH binding converts the tetramer into an active form.
     A number of mutagenesis-enzymatic analyses were carried out based on the new structural information. The mutations of N-terminal peptide, the putative catalytic Ser-Tyr-Lys triad and key amino acids between interfaces were carried out. The results showed that the functional role of N-terminal peptide stabilizes the Q-axis related dimerization and has no any contribution to enzyme activity. SCR uses the same conserved catalytic triad as other SDR proteins. To investigate a possible functional role of the A-B interface, a dimer-breaking mutation in the dyad symmetrical hydrophobic interface was introduced. In particular, a tightly packed Val residue at position 270 in theβG strand was replaced with a negatively charged residue, Asp, which was expected to disrupt the A-B type dimerization without affecting the A-C interface. Consistent with our prediction, analytic ultracentrifugation measurements confirmed that the V270D mutant of SCR exists as a homo-dimer in solution. Kinetic studies indicate that SCR may maintain its enzymatic activity in a dimer form. Thermal stability of all the variants were analyzed using a circular dichroism temperature scan, resulting in a 45–48℃melting temperature, 4–7℃lower than that of the wild type SCR.
     For industrial applications, converting the cofactor specificity of an enzyme from NADPH to NADH would be of great significance as NADH is substantially cheaper than NADPH. Based on the determined quaternary structure of SCR, the mutations were rationally designed in order to explore the possibility of converting SCR from a NADPH-dependent enzyme into an NADH-dependent one. Using site-directed mutagenesis, the mutants were designed with different combinations of Ser67Asp, His68Asp and Pro69Asp substitutions inside or adjacent to the coenzyme binding pocket of so-called phosphate-binding loop betweenβB andαC. All mutations caused a significant shift of enantioselectivity toward the (R)-configuration during 2-hydroxyacetophenone reduction with different optical purity and yield. The mutant S67D/H68D produced (R)-PED with high opitical purity of 95.4% and yield of 83.1% in the NADH-linked reaction. By kinetic analysis, the mutant S67D/H68D resulted in a nearly 10-fold increase and a 20-fold decrease in the kcat/KM value when NADH and NADPH were used as the cofactors respectively, but maintaining kcat essentially the same with respect to wild-type SCR. The ratio of Kd values between NADH and NADPH for the S67D/H68D mutant and SCR were 0.28 and 1.9 respectively, which indicates the S67D/H68D mutant has a stronger preference for NADH and weaker binding for NADPH. Moreover, the S67D/H68D enzyme exhibited the similar secondary structure and melting temperature to the wild-type from circular dichroism analysis. It was also found that NADH provided maximal protection against thermal and urea denaturation for S67D/H68D, in contrast to the effective protection by NADP(H) for the wild-type enzyme. Thus, the double point mutation S67D/H68D converted the coenzyme specificity of SCR from NADP(H) to NAD(H) as well as the product enantioselectivity successfully without disturbing enzyme stability. The work provides a protein engineering approach to modify the co-enzyme specificity and enantioselectivity of ketone reduction for short-chain reductases and will likely have valuable industrial applications.
引文
1. Ghosh D, Wawrzak Z, Weeks C M, et al. The refined three-dimensional structure of 3 alpha, 20 beta-hydroxysteroid dehydrogenase and possible roles of the residues conserved in short-chain dehydrogenases. Structure, 1994, 2(7): 629-640.
    2. Cappaert L, Larroche C. Oxidation of a mixture of 2-(R) and 2-(S)-heptanol to 2-heptanone by Saccharomyces cerevisiae in a biphasic system. Biocatal Biotransform, 2004, (22): 291–296.
    3. Grima-Pettenati J, Feuillet C, Goffner D, et al. Molecular cloning and expression of an Eucalyptus gunnii cDNA clone encoding cinnamyl alcohol dehydrogenase. Plant Mol Biol, 1993, 21(6): 1085-1095.
    4 Itoh N, Mizuguchi N, Mabuchi M, et al. Production of chiral alcohols by enantioselective reduction with NADH-dependent phenylacetaldehyde reductase from Corynebacterium strain ST-10. J Mol Catal B Enzym, 1999, (6): 41-50.
    5. Filling C, Nordling E, Benach J, et al. Structural role of conserved Asn179 in the short-chain dehydrogenase/reductase scaffold, Biochem Biophys Res Commun 2001, 289(3): 712-717.
    6. Liese A, Karutz M, Kamphuis J, et al. Enzymatic resolution of 1-phenyl-1,2-ethanediol by enantioselective oxidation: overcoming product inhibition by continuous extraction, Biotechnol Bioeng, 1996, 51(5): 544-550.
    7. Lee K, Gibson D T, Stereopecific dihydroxylation of the styrene vinyl group by purified naphthalene dioxygenase from Pseudomonase sp. strain NCIB 9816-4, J Bacteriol, 1996, (178): 3353-3356.
    8. Suginaka K, Yahashi H, Yamamoto Y, et al. Highly selective resolution of secondary alcohols and acetoacetates with lipases and diketene in organic media, Tetrahedron: Asymmetry, 1996, (7): 1153-1158.
    9. Eckstein M, Dau?mann T, Kragl U, et al. Recent developments in NAD(P)H regeneration for enzymatic reductions in one- and two-phase systems, Biocatal Biotransform, 2004, (22): 89-96.
    10. Pociecha D, Glogarova M, Gorecka E, et al. Behavior of frustrated phase in ferroelectric and antiferroelectric liquid crystalline mixtures, Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics, 2000, 61(6): 6674-6677.
    11. Xue L Z D J, Tang L, et al. The asymmetric hydration of 1-octene to (S)-(+)-2-octanol with a biopolymer-metal complex, silica-supported chitosancobalt complex, React Funct Polym, 2004, (58): 117-121.
    12. Iwasaki F M T, Nakashima W, et al. Nonenzymatic kinetic resolution of 1,2-diols catalyzed by organotin compound, Org Lett, 1999, (1): 969-972.
    13. W. Kroutil H M, K. Edegger, K. Faber, Recent advances in the biocatalytic reduction of ketones and and oxidation of sec -alcohols, Curr Opin Cheml Biol, 2004, (8): 120-126.
    14. S. Panke M H, M. Wubbolts Trends and innovations in industrial biocatalysis for the production of fine chemicals. Curr Opin Biotech, 2004, 15(4), 272-279.
    15. Schmid A, Dordick J S, Hauer B, et al. Industrial biocatalysis today and tomorrow, Nature, 2001, 409(6817): 258-268.
    16. Schoemaker H E, Mink D, Wubbolts M G, et al. Dispelling the myths-biocatalysis in industrial synthesis, Science, 2003(29): 1694-1697.
    17. Itoh N, Mizuguchi N, Mabuchi M, Production of chiral alcohols by enantioselective reduction with NADH-dependent phenylacetaldehyde reductase from Corynebacterium strain ST-10, J Mol Catal B: Enzym, 1999(6): 41-50.
    18. De Melis L E, Whiteman P H, Stevenson T W, Isolation and characterisation of acDNA clone encoding cinnamyl alcohol dehydrogenase in Eucalyptus globulus Labill, Plant Science, 1999(143): 173-182.
    19. Wsól V, SkálováL, SzotákováB, et al. Sex differences in stereospecificity of oracin reductases in rat in vitro and in vivo, Chirality, 1999(11): 505-509.
    20. Hinshelwood A, McGarvie G, Ellis E M, Substrate specificity of mouse aldo-keto reductase AKR7A5, Chem Biol Interact, 2003(143-144): 263-269.
    21. Nie Y, Xu Y, Mu X Q, et al. Highly enantioselective conversion of racemic 1-phenyl-1,2-ethanediol by stereoinversion involving a novel cofactor-dependent oxidoreduction system of Candida parapsilosis CCTCC M203011, Org Process Res Dev, 2004(8): 246-251.
    22. Wei Z L, Lin G Q, Li Z Y, Microbial transformation of 2-hydroxy and 2-acetoxy ketones with Geotrichum sp, Bioorg Med Chem, 2000, 8(5): 1129-1137.
    23. Cao L, Lee J, Chen W, et al. Enantioconvergent production of (R)-1-phenyl-1,2-ethanediol from styrene oxide by combining the Solanum tuberosum and an evolved Agrobacterium radiobacter AD1 epoxide hydrolases, Biotechnol Bioeng, 2006, 94(3): 522-529.
    24. Manzocchi A, Fiecchi A, Santaniello E, et al. Stereochemical control of bakers’yeast mediated reduction of a protected 2-hydroxy ketone, J Org Chem, 1988(53): 4405-4407.
    25. Forrest G L, Gonzalez B, Carbonyl reductase, Chem Biol Interact, 2000, 129(1-2): 21-40.
    26. Shao Z, Arnold F H, Engineering new functions and altering existing functions, Curr Opin Struct Biol, 1996, 6(4): 513-518.
    27. Zelinski T, Peters J, Kula M R, Purification and characterization of a novel carbonyl reductase isolated from Rhodococcus erythropolis, J Biotech, 1994, 33(3): 283-292.
    28. González E, Rosario Fernández M, Larroy C, et al. Characterization of a (2R,3R)-2,3-butanediol dehydrogenase as the Saccharomyces cerevisiae YAL060W Gene Product, J Biol Chem, 2000, (275): 35876-35885.
    29. Xie S X, Ogawa J, Shimizu S, Production of (R)-3-pentyn-2-ol through stereoinversion of racemic 3-pentyn-2-ol by Nocardia fusca AUK 2123, Appl Microbiol Biotechnol, 1999(52): 327-331.
    30. Ernst M, Kaup B, Muller M, et al. Enantioselective reduction of carbonyl compounds by whole-cell biotransformation, combining a formate dehydrogenase and a (R)-specific alcohol dehydrogenase, Appl Microbiol Biotechnol, 2005, 66(6): 629-634.
    31. Yamamoto H, Kawada N, Matsuyama A, et al. Cloning and expression in Escherichia coli of a gene coding for a secondary alcohol dehydrogenase from Candida parapsilosis, Biosci, Biotechnol, Biochem, 1999, 63(6): 1051-1055.
    32. Yasohara Y, Kizaki N, Hasegawa J, et al. Molecular cloning and overexpression of the gene encoding an NADPH-dependent carbonyl reductase from Candida magnoliae, involved in stereoselective reduction of ethyl 4-chloro-3-oxobutanoate, Biosci Biotechnol Biochem, 2000, 64(7): 1430-1436.
    33. Yamamoto H, Matsuyama A, Kobayashi Y. Synthesis of ethyl (R)-4-chloro-3-hydroxybutanoate with recombinant Escherichia coli cells expressing (S)-specific secondary alcohol dehydrogenase, Biosci Biotechnol Biochem, 2002, 66(2): 481-483.
    34. Cheng H, Jiang N, Shen A, Molecular cloning and functional expression of D-arabitol dehydrogenase gene from Gluconobacter oxydans in Escherichia coli, FEMS Microbiol Lett, 2005(252): 35-42.
    35. De Smit M H, van Duin J, Control oftranslation by mRNA secondary structure in Escherichia coil:A quantitive analysis ofliterature data, Mol Bio, 1994 (244):144.
    36. Wikstrom P M,Lind L K, Importance of mRNA foldig and start codon accessibility in the expresslon of gcnein a ribosomeproteinoperon of Escherchia coli, Mol Bio, 1992(224): 949.
    37. Nakamura Y, Gojobori T, Ikemura T. Codon usage tabulated from international DNA sequence databases: Status for the year 2000, Nucleic Acids Res, 2000(28): 292.
    38. Sorensen M A, Kurkland C G, Pedersen S, Codon usage determines translation rate in Escherichia coli, J Mol Biol, 1989(207): 365-377.
    39. Kane J F, Effect of rare codon clusters on high-level expression of heterologous proteins in Escherichia coli, Curr Opin Biotechnol, 1995(6): 494-500.
    40. Fu W Q, Lin J P, Cen P L, 5-Aminolevulinate production with recombinant Escherichia coli using a rare codon optimizer host strain, Appl Microbiol Biotechnol, 2007(75): 777-782.
    41. Yu H M, Shi Y, Luo H, et al. An over expression and high efficient mutation system of a cobalt-containing nitrile hydratase, J Mol Catal B: Enzym, 2006(43): 80-85.
    42. Costello C A, Payson R A, Menke M A, et al. Purification, characterization, cDNA cloning and expression of a novel ketoreductase from Zygosaccharomyces rouxii, Eur J Biochem, 2000(267): 5493-5501.
    43. Charles R A, Keith Dunker A, Eugene S, Disorder in protein structure and function, Pacific Symposium on Biocomputing, 1999(4): 517-519.
    44. Grantham R, Gautier C, Gouy M, Codon frequencies in 119 individual genes comfirm consistent choices of degenerate bases according to genome type, Nucleic Acids Res, 1980(8): 1893-1912.
    45.刘礼兵,刘云,何华庆等,qa一3稀有密码子和mRNA结构改造及其在大肠杆菌中的高效表达,生物工程学报,2006,22(2):198-203。
    46. Heiss C, Laivenieks M, Zeikus J G, et al. The stereospecificity of secondary alcohol dehydrogenase from Thermoanaerobacter ethanolicus is partially determined by active site water, J Am Chem Soc, 2001, 123(2): 345-346.
    47.张国华,丛爱日,徐国宾等,3α-羟类固醇脱氢酶的表达、纯化和酶学性质研究,微生物学报,2004,44(4):496-499。
    48. McMahon M, Mulcahy P, Bioaffinity purification of NADP(+)-dependent dehydrogenases: studies with alcohol dehydrogenase from Thermoanaerobacter brockii, Biotechnol Bioeng, 2002, 77(5): 517-527.
    49. Shi J, Zhang S T, Zhang X J, et al. Expression, purification, and activity identification of alfimeprase in Pichia pastoris, Protein Expr Purif, 2007, 54(2): 240-246.
    50. Walker E A, Clark A M, Hewison M, et al. Functional expression, characterization, and purification of the catalytic domain of human 11-beta -hydroxysteroid dehydrogenase type 1, J Bio Chem, 2001, 276(24): 21343-21350.
    51. Raschke H, Thomas F, Joe Roelof V D M, et al. Cis-chlorobenzene dihydrodiol dehydrogenase (TcbB) from Pseudomonas sp. strain P51, expressed in Escherichia coli DH5a (pTCB149), catalyzes enantioselective dehydrogenase reactions, Appl Environ Microbiol, 1999(65): 5242-5246.
    52. Yasohara Y, Kizaki N, Hasegawa J, et al. Synthesis of optically active ethyl 4-chloro-3-hydroxybutanoate by microbial reduction, Appl Microbiol Biotechnol, 1999(51): 847-851.
    53. Wada M, Kawabata H, Yoshizumi A, et al. Occurrence of multiple ethyl 4-chloro-3-oxobutanoate-reducing enzymes in Candida magnoliae, J Biosci Bioeng, 1999(87): 144-148.
    54. Kita K, Matsuzaki K, Hashimoto T, et al. Cloning of the aldehyde reductase gene from a red yeast, Sporobolomyces salmonicolor, and characterization of the gene and its product, Appl Environ Microbiol, 1996(62): 2303-2310.
    55. Peter J, Minuth T, Kula M R, A novel NADH-dependent carbonyl reductase with an extremely broad substrate range from Candida parapsilosis: purification and characterization, Enzyme Microb Technol, 1993(15): 950-958.
    56. Kitchell B B, Henkens R W, Effect of temperature on fluorescence and circular dichroism of Escherichia coli dihydrofolate reductase and its complexes, Biochim Biophy Acta, 1978, 534(1): 89-98.
    57. Morise H, Shimomura O, Johnson F H, Intermolecular energy transfer in the bioluminescent system of Aequorea, Biochemistry, 1974(13): 2656-2662.
    58. Heim R, Cubitt A B, Tsien R, Improved green fluorescence, Nature, 1995(373): 663-664.
    59. Valdivia R H, Hromockyj A E, Monack D, Applications for green fluorescent protein (GFP) in the study of host-pathogen interactions, Gene, 1996(173): 47-52.
    60. Meduri G, Vu Hai M T, Jolivet A, et al. Comparison of cellular distribution of LH receptors and steroidogenic enzymes in the porcine ovary, J Endocrinol, 1996, 148(3): 435-446.
    61. Casey W M, Nguyen N A, Use of green fluorescent protein to rapidly assess viability of E. coli in preserved solutions, PDA J Pharm Sci Techol, 1996, 50(6): 352-355.
    62.孙莹,张荣珍,徐岩,(R)-专一性羰基还原酶与甲酸脱氢酶基因在大肠杆菌中的共表达,微生物学报,2008,48(12):1629-1633。
    63.黄志华,张延平,曹竹安等,酸脱氢酶在Klebsiella pneumoniae中的表达和功能分析,微生物学报,2007,47(1):64-68。
    64. Wichmann R, Vasic-Racki D. Cofactor regeneration at the lab scale, Adv Biochem Engin/Biotechnol, 2005(92): 225-260.
    65. Andreas L, Murillo V F, Production of fine chemicals using biocatalysis, Curr Opin Biotech, 1999, 10(6): 595-603.
    66. Manzocchi A, Fiecchi A, Stereochemically controlled bakers’-yeast-mediated reductions: synthesis of (S)-(+)-1,2-propanediol and (S)-(-)-1,3-butanediol, 1-benzyl ethers, Synthesis, 1987, 1007-1009.
    67. Weekbeeker A, Hummel W, Improved synthesis of chiral alcohols with Escherichia coli cells co-expressing pyridine nucleotide transhydrogenase, NADP+-dependent alcohol dehydrogenase and NAD+-dependent formate dehydrogenase, Biotech Lett, 2004(26): 1739-1744.
    68. Yun H, Yang Y H, Cho B K, et al. Simultaneous synthesis of enantiomerically pure (R)-1-phenylethanol and (R)-α-methylbenzylamine from racemicα-methylbenzylamine usingω-transaminase/ alcohol dehydrogenase/ glucose dehydrognease coupling reaction, Biontech Lett, 2003(25): 809-814.
    69. Branden C I, Jornvall H, Eklund H, et al. The Enzymes (3rd edition), 1975(11): 104-190.
    70. Joernvall H, Persson B, Jeffery J, Characteristics of alcohol/ polyol dehydrogenases. The zinc-containing long-chain alcohol dehydrogenases Eur J Biochem, 1987(167): 195-201.
    71. Sun H W, Plapp B V, Progressive sequence alignment and molecular evolution of the Zn-containing alcohol dehydrogenase family, J Mol Evol, 1992(34): 522-535.
    72. Persson B, Hallborn J, Walfridsson M, et al. Dual relationships of xylitol and alcohol dehydrogenases in families of two protein types, FEBS Lett, 1993(324): 9-14.
    73. Joernvall H, Persson B, Du Bois G., et al. Zeta Crystallin versus other members of the alcohol dehydrogenase super family variability as a functional characteristic, FEBS Lett, 1993(322): 240-244.
    74. Lu Y, Lu X, Chen X, et al. A survey of biogenic amines in Chinese rice wines, Food Chem, 2007, 100(4): 1424-1428.
    75. Jornvall H, Persson B, Krook M, et al. Short-chain dehydrogenases/reductases (SDR), Biochemistry, 1995(34): 6003-6013.
    76. Villarroya A, Juan E, Egestad B, et al. The primary structure of alcohol dehydrogenase from Drosophila lebanonensis. Extensive variation within insect 'short-chain' alcohol dehydrogenase lacking zinc, Eur J Biochem, 1989(180): 191-197.
    77. Persson B, Krook M, J?rnvall H, Characteristics of short-chain alcohol dehydrogenases and related enzymes, Eur J Biochem, 1991(200): 537-543.
    78. Neidle E, Hartnett C, Ornston L N, et al. cis-Diol dehydrogenases encoded by the TOL pWW0 plasmid xylL gene and the Acinetobacter calcoaceticus chromosomal benD gene are members of the short-chain alcohol dehydrogenase superfamily, Eur J Biochem, 1992(204): 113-120.
    79. Benach J, Atrian S, Gonzalez-duarte R, et al. The refined crystal structure of Drosophila lebanonensis alcohol dehydrogenase at 1.9 ? resolution, J Mol Biol, 1998(282): 383-399.
    80. Conway T, Sewell G W, Osman Y A, et al. Cloning and sequencing of the alcohol dehydrogenase II gene from Zymomonas mobilis, J Bacteriol, 1987(169): 2591-2597.
    81. Williamson V M, Paquin C E, Homology of Saccharomyces cerevisiae ADH4 to an iron-activated alcohol dehydrogenase from Zymomonas mobilis, Mol Gen Genet, 1987(209): 374-381.
    82. Conway T, Inqram L O, Similarity of Escherichia coli propanediol oxidoreductase (fucO product) and an unusual alcohol dehydrogenase from Zymomonas mobilis and Saccharomyces cerevisiae, J Bacteriol, 1989(171): 3754-3759.
    83. Walter K A, Bennett G N, Papoutsakis E T, Molecular characterization of two Clostridium acetobutylicum ATCC 824 butanol dehydrogenase isozyme genes, J Bacteriol, 1992 (174): 7149-7158.
    84. McPherson A. Crystallization of biological macromolecules, Cold spring harbor laboratory press, 1999, 216.
    85. Oppermann U C, Persson B, Filling C, et al. Adv Exp Med Biol, 1997(414): 403-415.
    86. Wolfgang H, H?ffken M D, Thomas F, et al. Crystal structure and enzyme kinetics of the (S)-specific 1-phenylethanol dehydrogenase of the denitrifying bacterium strain EbN1, Biochemistry, 2006(45): 82-93.
    87. H?rer S, Stoop J, Mooibroek H, et al. The crystallographic structure of the mannitol 2-dehydrogenase NADP1 binary complex from Agaricus bisporus, J Biol Chem, 2001, 276(29): 27555–27561.
    88. Lesk A M, NAD-binding domains of dehydrogenases, Curr Opin Struct Biol, 1995, 5(6): 775-783.
    89. Benach J, Atrian S, Gonzalez-Duarte R, et al. The catalytic reaction and inhibition mechanism of Drosophila alcohol dehydrogenase: observation of an enzyme-bound NAD-ketone adduct at 1.4 ? resolution by X-ray crystallography, J Mol Biol, 1999, 289(2): 335-355.
    90. Smilda T, Kamminga A H, Reinders P, et al. Enzymic and structural studies on Drosophila alcohol dehydrogenase and other short-chain dehydrogenases/reductases, J Mol Evol, 2001, 52(5): 457-466.
    91. Oppermann U, Filling C, Hult M, et al. Short-chain dehydrogenases/reductases (SDR): the 2002 update, Chem Biol Interact, 2003(143-144): 247-253.
    92. Jornvall H, Persson B, Krook M, et al. Short-chain dehydrogenases/reductases (SDR), Biochemistry, 1995, 34(18): 6003-6013.
    93. Ghosh D, Sawicki M, Pletnev V, et al. Porcine carbonyl reductase. Structural basis for a functional monomer in short chain dehydrogenases/reductases, J Biol Chem, 2001(276): 18457-18463.
    94. Tanaka M, Bateman R, Rauh D,et al. An unbiased cell morphology-based screen for new, biologically active small molecules, PLoS Biol, 2005(3): 764-776.
    95. Tanaka N, Nonaka T; Nakamura K T, et al. SDR: Structure, mechanism of action, and substrate recognition, Curr Org Chem, 2001(5): 89-111.
    96. Grimm C, Maser E, Mobus E, et al. The crystal structure of 3-alpha -hydroxysteroid dehydrogenase/carbonyl reductase from Comamonas testosteroni shows a novel oligomerization pattern within the short chain dehydrogenase/reductase family, J Biol Chem, 2000, 275(52): 41333-41339.
    97. Kristan K, Deluca D, Adamski J, et al. Dimerization and enzymatic activity of fungal 17-beta-hydroxysteroid dehydrogenase from the short-chain dehydrogenase/reductase superfamily, BMC Biochem, 2005, 6(1): 28.
    98. Joornvall H, Persson B, Krook M,et al. Short-chain dehydrogenases/reductases (SDR), Biochemistry, 1995(34): 6003-6013.
    99. Oppermann U C, Filling C, Berndt K D, et al. Active site directed mutagenesis of 3 beta/17 beta-hydroxysteroid dehydrogenase establishes differential effects on short-chain dehydrogenase/reductase reactions. Biochemistry, 1997, 36(1): 34-40.
    100. H?rer S, Stoop J, Mooibroek H, et al. The crystallographic structure of the mannitol 2-dehydrogenase NADP+ binary complex from Agaricus bisporus, J Biol Chem, 2001, 276(29): 27555-27561.
    101. Filling C, Berndt KD, Benach J, et al. Critical residues for structure and catalysis in short-chain dehydrogenases/reductases (SDR), J Biol Chem, 2002, 277(28): 25677-25684.
    102. Howell E E, Villafranca J E, Warren M S, et al. Functional role of aspartic acid-27 in dihydrofolate reductase revealed by mutagenesis, Science, 1986, 231(4742): 1123-1128.
    103. Villafranca J E, Howell E E, Voet D H, et al. Directed mutagenesis of dihydrofolate reductase, Science, 1983, 222(4625): 782-788.
    104. Sugimura Y, Murase T, Ishizaki S, et al. Centrally administered tuberoinfundibular peptide of 39 tesidues inhibits arginine vasopressin release in conscious rats, Endocrinology, 2003, 144(7): 2791-2796.
    105. Luyuan Li, Christopher J, Falzone P E, et al. Functional role of a mobile loop of Escherichia coli dihydrofolate reductase in transition-State stabilization, Biochemistry, 1992(31): 7826-7833.
    106. Murphy D J, Benkovic S J, Hydrophobic interactions via mutants of Escherichia coli dihydrofolate reductase: separation of binding and catalysis, Biochemistry,1989(28): 3025-3031.
    107. Baik S H, Michel F, Nushin A, et al. Cooperative effect of two surface amino acid mutations (Q252L and E170K) in glucose dehydrogenase from Bacillus megaterium IWG3 on stabilization of its oligomeric state, Appl Environ Microbiol, 2005(71): 3285–3293.
    108. Grimm C, Maser E, M?bus E, et al. The crystal structure of 3α-hydroxysteroid dehydrogenase/carbonyl reductase from Comamonas testosteroni shows a novel oligomerization pattern within the short chain dehydrogenase/reductase family, J Biol Chem, 2000(275): 41333-41339.
    109. Maser E, Xiong G, Grimm C, et al. 3α-Hydroxysteroid dehydrogenase/carbonyl reductase from Comamonas testosteroni: biological significance, three-dimensional structure and gene regulation, Chem Biol Interact, 2001(130-132): 707-722.
    110. Chenevert, S W; Fossett, N G; Chang, S H; et al. Characterization of structural and functional properties of human 17β-hydroxysteroid dehydrogenase type 1 using recombinant enzymes and site-directed mutagenesis, Biochem J Biol Chem, 1995(308): 419-423.
    111. Puranen T, Poutanen M, Ghosh D, et al. Amino acids important in enzyme activity and dimer stability for Drosophila alcohol dehydrogenase, Mol Endocrinol, 1996(11): 77-86.
    112. Serge A, Alexander L Hans S, et al. Sequence-specific 1H, 13C and 15N assignment of the TMP-resistant dihydrofolate reductase mutant DHFR(F98Y) in the ternary complex with TMP and NADPH, J Biomol NMR, 1997(9): 445-446.
    113. Dale G E, Broger C, D' Arcy A. et al. A single amino acid substitution in Staphylococcus aureus dihydrofolate reductase determines trimethoprim resistance, J Mol Bio, 1997(266): 23-30.
    114. Widboom P F, Fielding E N, Liu Y, et al. Structural basis for cofactor-independent dioxygenation in vancomycin biosynthesis, Nature, 2007(447): 342-345.
    115. Wierenga R K, De Maeyer M C H, Hol W G J, Interaction of pyrophosphate moieties with alpha-Helixes in dinucleotide binding proteins, Biochemistry, 1985(24): 1346-1357.
    116. Mittl P R, Berry A, Scrutton N S, et al. Anatomy of an engineered NAD-binding site, Protein Sci, 1994, 3(9): 1504-1514.
    117. Loeber G, Infante A A, Maurer-Fogy I, et al. Human NAD(+)-dependent mitochondrial malic enzyme. cDNA cloning, primary structure, and expression in Escherichia coli. J Biol. Chem, 1991(266): 3016-3021.
    118. Bocanegra J A, Scrutton, N S, Perham R N, Creation of an NADP-dependent pyruvate dehydrogenase multienzyme complex by protein engineering, Biochemistry, 1993(32): 2737-2740.
    119. Kumar A, Shen, P S, Descoteaux S, et al. Cloning and expression of an NADP(+)-dependent alcohol dehydrogenase gene of Entamoeba histolytica, Proc Natl Acad Sci, 1992(89): 10188-10192.
    120. Nakanishi M, Matsuura K, Kaibe H, et al. Switch of coenzyme specificity of mouse lung carbonyl reductase by substitution of threonine 38 with aspartic acid, J Biol Chem, 1997, 272(4): 2218-2222.
    121.夏佑林,吴季辉,刘琴,生物大分子多维核磁共振[M],中国科学技术大学出版社,1999,1-4。
    122. Wimberly B T, Brodersen D E, Clemons W M, et al. Structure of the 30Sribosomal subunit, Nature, 2000, 407(6802): 327-339.
    123. Yusupov M M, Yusupova G Z, Baucom A, et al. Crystal structure of the ribosome at 5.5 ? resolution, Science, 2001, 292(5518): 883-896.
    124.路光莹,华子千,生物大分子晶体学基础[M],北京大学出版社,1995,2-7。
    125. Chayen N E, Shaw Stewart P D, Baldock P, New developments of the IMPAX small volume automated crystallization system, Acta Crystallogr D Biol Crystallogr, 1994(D50): 456-458.
    126. Jakoby W B, A technique for the crystallization of proteins, Anal Biochem, 1968, 26(2), 295-298.
    127. Zeelen J P, Hiltunen J K, Ceska T A, et al. Crystallization experiments with 2-enoyl-CoA hydratase, using an automated "fast screening" crystallization protocol, Acta Crystallogr D Biol Crystallogr, 1994(D50): 443.
    128. Weber P C, Overview of protein crystallization methods: Macromolecular crystallography, Methods Enzymol, 1997(276): 13-22.
    129. Jan D, Principles of protein X-ray crystallography, Springer-Verlag, 1994, 207-212.
    130.梁栋材,X射线晶体学基础,科学出版社,1991。
    131.阎隆飞,孙之荣,蛋白质分子结构,华大学出版社,1999。
    132.周公度,晶体结构测定,科学出版社,1982(83-91):131-142。
    133. Watenpaugh K D. Overview of phasing by isomorphous replacement, Methods Enzymol, 1985(115): 3-15.
    134. Rould M A, Perona J J, Steitz T A, Improving multiple isomorphous replacement phasing by heavy-atom refinement using solvent-flattened phases, Acta Crystallogr A, 1992, 48 (Pt 5): 751-756.
    135. Hendrickson W A, Determination of macromolecular structures from anomalous diffraction of synchrotron radiation, Science, 1991, 254(5028): 51-58.
    136. Hendrickson W A, Horton J R, LeMaster D M, Selenomethionyl proteins produced for analysis by multiwavelength anomalous diffraction (MAD): a vehicle for direct determination of three-dimensional structure, Embo J, 1990, 9(5): 1665-1672.
    137. Hendrickson W A, OgataPhase C M, Determination from multiwavelength anomalous diffraction measurements, Methods Enzymol, 1997(27): 494-523.
    138. Rossmann M G, Arnold E, Patterson and molecular replacement techniques, International table of crystallography Kluwer Academic Publisher, 1993(B): 243-261.
    139. Crowther R A, The fast rotation function I the molecular replacement methods, Gorden and Broach, New York, 1972, 173-178.
    140. Crowther R A, Blow D W, Method of positioning a know molecular in an unknow crystal structure, Acta Crystallogr, 1967(23): 544-548.
    141. Navaza J, AmoRe: An automated package for molecular replacement, Acta Crystallogr, 1994(A50): 157-163.
    142. Brunger A T, Adams P D, Clore G M, et al. Crystallography & NMR system: A new software suite for macromolecular structure determination, Acta Crystallogr D Biol Crystallogr, 1998, 54(Pt 5): 905-921.
    143. Rossmann M G., The molecular replacement method, Acta Crystallogr A, 1990, 46(Pt 2): 73-82.
    144. Jones T A, Zou J Y, Cowan S W, et al. Improved methods for building protein models in electron density maps and the location of errors in these models, Acta Crystallogr A, 1991, 47( Pt 2): 110-119.
    145. Laskowski R A, MacArthur M W, Moss M D, et al. PROCHECK: a program tocheck the stereochemical quality of protein structures, J Appl Crystallogr, 1993(26): 283-291.
    146. Mu X Q, Xu Y, Nie Y, et al. Candida parapsilosis CCTCC M203011 and the optimization of fermentation medium for stereoinversion of (S)-1-phenyl-1,2-ethanediol, Process Biochem, 2005(40): 2345-2350.
    147.羊明,徐岩,穆晓清等,一种新的高立体选择性羰基还原酶的性质及分离,化工进展,2006(25):1082-1088。
    148. Zhang S P, Zubay G, Goldman E, Low-usage codons in Escherichia coli, yeast, fruit fly and primates, Gene, 1991, 105(1): 61-72.
    149. Sharp P M, Li W H, The codon adaptation index--a measure of directional synonymous codon usage bias, and its potential applications, Nucleic Acids Res, 1987, 15(3): 1281-1295.
    150. Carton J M, Sauerwald T, Hawley-Nelson P, et al. Codon engineering for improved antibody expression in mammalian cells, Pro Expre Puri, 2007, 55(2): 279-286.
    151. Chen H Z, Wang H X, Yang H N, et al. Increasing expression level of phytase gene (phyA) in Pichia pastoris by changing rare codons, Chinese J Biochem Mole Bio, 2005, 21(2): 171-175.
    152. Ikemura T, Correlation between the abundance of Escherichia coli transfer RNAs and the occurrence of the respective codons in its protein genes, J Mol Bio, 1981(146): 1-21.
    153. Sorensen M A, Kurkland C G, Pedersen S, Codon usage determines translation rate in Escherichia coli, J Mol Bio, 1989(207): 365-377.
    154. Liu L B, Liu Y, He H Q, et al. The changes of rare codon and mRNA structure accelerate expression of qa-3 in Escherichia coli, Sheng Wu Gong Cheng Xue Bao, 2006, 22(2): 198-203.
    155. Charles R, Dunker A K, Sharkhnovich E, Disorder in protein structure and function, Pacific Symposium on Biocomputing, 1999(4): 517-519.
    156. Nakamura S, Oda M, Kataoka S, et al. Apo- and holo-structures of 3alpha-hydroxysteroid dehydrogenase from Pseudomonas sp. B-0831. Loop-helix transition induced by coenzyme binding, J Bio Chem, 2006, 281(42): 31876-31884.
    157. Mirkovitch J, Gasser S M, Laemmli U K, Relation of chromosome structure and gene expression, Philos Trans R Soc Lond B Biol Sci, 1987, 317(1187): 563-574.
    158. Bradford M M, A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding, Ana Biochem, 1976(72): 248-254.
    159. Pekar A, Sukumar M, Quantitation of aggregates in therapeutic proteins using sedimentation velocity analytical ultracentrifugation: practical considerations that affect precision and accuracy, Ana Biochem, 2007, 367(2): 225-237.
    160. Sakoda M, Hiromi K, Determination of the best-fit values of kinetic parameters of the Michaelis-Menten equation by the method of least squares with the Taylor expansion, J Biochem (Tokyo), 1976, 80(3): 547-555.
    161. Nakamura S, Oda M, Kataoka S, et al. Apo- and holo-structures of 3alpha-hydroxysteroid dehydrogenase from Pseudomonas sp. B-0831. Loop-helix transition induced by coenzyme binding, J Biol Chem, 2006, 281(42): 31876-31884.
    162. Bell J E, Dalziel K, Conformational changes of glyceraldehyde-3-phosphate dehydrogenase induced by the binding of NAD. A unified model for positiveand negative cooperativity, Biochim Biophys Acta, 1975, 410(2): 243-251.
    163. Ho S N, Hunt H D, Horton R M, et al. Site-directed mutagenesis by overlap extension using the polymerase chain reaction, Gene, 1989, 77(1): 51-59.
    164. Nie Y, Xu Y, Wang H Y, et al. Complementary selectivity to (S)-1-phenyl-1,2-ethanediol-forming Candida parapsilosis by expressing its Carbonyl reductase in Escherichia coli for (R)-specific reduction of 2-hydroxyacetophenone, Biocatal Biotransform, 2008, 26(3): 210-219.
    165. Tanaka N, Kusakabe Y, Ito K, et al. Crystal structure of glutathione-independent formaldehyde dehydrogenase, Chem Biol Interact, 2003(143-144): 211-218.
    166. Oubrie A, Rozeboom H J, Kalk K H, et al. Crystal structure of quinohemoprotein alcohol dehydrogenase from Comamonas testosteroni: structural basis for substrate oxidation and electron transfer, J Bio Chem, 2002, 277(5): 3727-3732.
    167. Filling C, Berndt K D, Benach J, et al. Critical residues for structure and catalysis in short-chain dehydrogenases/reductases, J Biol Chem, 2002, 277(28): 25677-25684.
    168. Jornvall H, Eklund H, Branden C I, Subunit conformation of yeast alcohol dehydrogenase, J Biol Chem, 1978, 253(23): 8414-8419.
    169. Eklund H, Samma J P, Wallen L, et al. Structure of a triclinic ternary complex of horse liver alcohol dehydrogenase at 2.9 ? resolution, J Mol Biol, 1981, 146(4): 561-587.
    170. Yoneya T, Sato Y, Alcohol dehydrogenase from Rhizopus javanicus, Appl Envir Microbiol, 1979, 37(6):1073-1078.
    171. Green P J, Pines O, Inouye M. The role of antisense RNA in gene regulation, Annu Rev Biochem, 1986(55): 569-597.
    172. Williams B A, Sillaots S, Tsang A, et al. Isolation by genetic complementation of two differentially expressed genes for beta-isopropylmalate dehydrogenase from Aspergillus niger, Curr Genet, 1996, 30(4): 305-311.
    173. Sakoda M, Hiromi K, Determination of the best-fit values of kinetic parameters of the Michaelis-Menten equation by the method of least squares with the Taylor expansion, J. Biochem. (Tokyo), 1976, 80(3): 547-555.
    174. Mu X Q, Xu Y, Yang M, et al. Steady-state kinetics of the oxidation of (S)-1-phenyl-1,2-ethanediol catalyzed by alcohol dehydrogenase from Candida parapsilosis CCTCC M203011, J Mol Catal B-Enzym, 2006(43): 23–28.
    175. Andreesen J R, Ljungdahl L G, Nicotinamide adenine dinucleotide phosphate-dependent formate dehydrogenase from Clostridium thermoaceticum: purification and properties, J Bacteriol, 1974, 120(1): 6-14.
    176. Morise H, Shimomura O, Johnson F H, et al. Intermolecular energy transfer in the bioluminescent system of Acequorea, Biochemistry, 1974(13): 2656-2662.
    177. Chalfie M, Green fluorescent protein, Photochem Photobiol, 1995, 62(4): 651-656.
    178. Gerdes H H, Kaether C, Green fluorescent protein: applications in cell biology, FEBS Lett, 1996(389): 44-47.
    179. Chris W C, Douglas C P, William M, et al. Chemical structufre of the hexapeptide chromophore of Acequoria green-flurescent protein, Biochemistry, 1993(32): 1212-1218.
    180.亚当斯A,戈特施林D E,凯泽C A等,酵母遗传学方法实验指南[M],北京科学出版社,2000,105。
    181. Persson B, Zigler J S, J?rnvall J H, A super-family of medium-chain dehydrogenases:reductases (MDR). Sub-lines includingζ-crystallin, alcohol and polyol dehydrogenases, quinone oxidoreductases, enoyl reductases, VAT-1 andother proteins, Eur J Biochem, 1994(226): 15–22.
    182. Yang M, Xu Y, Mu X Q, et al. Purification and characterization of a novel carbonyl reductase with high stereo-selectivity, Chinese Chemical Industry and Engineering Progress, 2006(25): 1082-1088.
    183. X-L Liu N J, P He, D-J Lu, A Shen. Fermentation of xylose to produce ethanol by recombinant Saccharomyces cerevisiae strain containing XYLA and XKS1, Chinese Sci Bull, 2005(50): 652-657.
    184. Jur?eka O, Wimmerováa M, Wimmer Z, Selected chiral alcohols: Enzymic resolution and reduction of convenient substrates, Coord Chem Rev, 2008, 252(5-7): 767-781.
    185. Cregg J M, Veddvick T S, Raschke W C, Recent advances in the expression of foreign genes in Pichia pastoris, Bio/Technology, 1993(11): 905–910.
    186. Zhang R Z, Zhu G Y, Zhang W C, et al. Crystal structure of a carbonyl reductase from Candida parapsilosis with anti-Prelog stereo-specificity, Protein Sci, 2008(17): 1412-1423.
    187. Nie Y, Xu Y, Wang H Y, et al. Complementary selectivity to (S)-1-phenyl-1,2-ethanediol-forming Candida parapsilosis by expressing its carbonyl reductase in Escherichia coli for (R)-specific reduction of 2-hydroxyacetophenone, Biocatal Biotransform, 2008, 26(3): 210-219.
    188. Cregg J M, Cereghino J L, J. S, et al. Recombinant protein expression in Pichia pastoris, Mol Biotechnol, 2000, 16, 23-52.
    189. Stapleton P C, O’Brien M M, O’Callaghan J, et al. Molecular cloning of the cellobiose dehydrogenase gene from Trametes versicolor and expression in Pichia pastoris, Enzyme Microb Tech, 2004, 34, 55-63.
    190. Yamaguchi M, Tahara Y, Nakano A, et al. Secretory and continuous expression of Aspergillus niger glucose oxidase gene in Pichia pastoris, Pro Expre Puri, 2007(55): 273–278.
    191. Ausubel F, Brent R, Kingston R, et al. Short protocols in molecular biology [M], John Wiley & Sons, Inc, New York, USA, 1995.
    192. Sambrook J, Fritsch E F, Maniatis T, Molecular cloning [M], Cold spring harbor laboratory press, 1989, 345-348.
    193. Fujisawa H, Nagata S, Misono H. Characterization of short-chain dehydrogenase/reductase homologues of Escherichia coli (YdfG) and Saccharomyces cerevisiae (YMR226C), Biochim Biophys Acta, 2003, 1645, 89–94.
    194. Nie Y, Xu Y, Mu X Q, Highly enantioselective conversion of racemic oxidoreduction system of Candida parapsilosis CCTCC M203011, Org Process Res Dev, 2004(8): 246-251.
    195. Secundo F, Phillips R S, Effects of pH on enantiospecificity of alcohol dehydrogenases from Thermoanaerobacter ethanolicus and horse liver, Enzyme Microb Technol, 1996(19): 487-492.
    196. J?rnvall H, Shafqat J, Persson B, Variations and constant patterns in eukaryotic MDR enzymes conclusions from novel structures and characterized genomes, Chem Biol Interact, 2001(130–132): 491–498.
    197. Nie Y, Xu Y, Mu X Q, et al. Purification, characterization, gene cloning, and expression of a novel alcohol dehydrogenase with anti-prelog stereospecificity from Candida parapsilosis, Appl Envir Microbiol, 2007, 73(11): 3759-3764.
    198. Hummel W, Large-scale applications of NAD(P)H dependent oxidoreductases: recent developments, Trends Biotechnol,1999,17(12): 487~492.
    199. Schmid A, Dordick J S, Hauer B, et al. Industrial biocatalysis today andtomorrow: Biocatalysis: Synthesis methods that exploit enzymatic activities, Nature, 2001(409): 258-268.
    200. Schoemaker H E, Mink D, Wubbolts M G, Dispelling the myths-biocatalysis in industrial synthesis, Science, 2003(299):1694–1697.
    201. Harald G W H, Claudia R, Francoise C, et al. Preparative asymmetric reduction of ketones in a biphasic medium with an (S)-alcohol dehydrogenase under in situ-cofactor-recycling with a formate dehydrogenase, Tetrahedron, 2004(60): 633-640.
    202. Schlieben N H, Niefind K, Muller J, et al. Atomic resolution structures of R-specific alcohol dehydrogenase from Lactobacillus brevis provide the structural bases of its substrate and cosubstrate specificity, J Mol Biol, 2005, 349(4): 801-813.
    203. Price A C, Zhang Y M, Rock C O, et al. Structure of beta-ketoacyl-[acyl carrier protein] reductase from Escherichia coli: negative cooperativity and its structural basis, Biochemistry, 2001, 40(43): 12772-12781.
    204. Smilda T, Kamminga A H, Reinders P, et al. Enzymic and structural studies on Drosophila alcohol dehydrogenase and other short-chain dehydrogenases/reductases, J Mol Evol, 2001, 52(5): 457-466.
    205. Otwinowski Z, Minor W, Processing of X-ray Diffraction Data Collected in Oscillation Mode, Methods Enzymol, 1997(276): 307-326.
    206. Kleywegt G J, CCP4/ESF-EACBM Newslett, Protein Crystallogr, 1996(32): 32–36.
    207. Murshudov G N, Vagin A A, Dodson E J, Refinement of macromolecular structures by the maximum-likelihood method, Acta Crystallogr D Biol Crystallogr, 1997, 53(Pt 3): 240-55.
    208. Emsley P, Cowtan K. Coot: model-building tools for molecular graphics, Acta Crystallogr D Biol Crystallogr, 2004, 60(Pt 12 Pt 1): 2126-2132.
    209. Thompson J D, Higgins D G, Gibson T J, CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice, Nucleic Acids Res, 1994, 22(22): 4673-4680.
    210. Zhang X J, Matthews B W, EDPDB: a multifunctional tool for protein structure ananlysis, J Appl Crystallogr, 1995(28): 624-630.
    211. Matthews B W, Solvent Content of Protein Crystals, J Mol Biol, 1968(33): 491-497.
    212. Ghosh D, Weeks C M, Grochulski P, et al. Three-dimensional structure of holo 3 alpha, 20 beta-hydroxysteroid dehydrogenase: a member of a short-chain dehydrogenase family, Proc Natl Acad Sci, 1991, 88(22): 10064-10068.
    213. Mazza C, Breton R, Housset D, et al. Unusual charge stabilization of NADP+ in 17 beta-hydroxysteroid dehydrogenase, J Biol Chem, 1998, 273(14): 8145-8152.
    214. Tanaka N, Nonaka T, Nakanishi M, et al. Crystal structure of the ternary complex of mouse lung carbonyl reductase at 1.8 A resolution: the structural origin of coenzyme specificity in the short-chain dehydrogenase/reductase family, Structure, 1996, 4(1): 33-45.
    215. Yamashita A, Kato H, Wakatsuki S, et al. Structure of tropinone reductase-II complexed with NADP+ and pseudotropine at 1.9 ? resolution: implication for stereospecific substrate binding and catalysis, Biochemistry, 1999, 38(24): 7630-7637.
    216. Hoffken H W, Duong M, Friedrich T, et al. Crystal structure and enzyme kinetics of the (S)-specific 1-phenylethanol dehydrogenase of the denitrifying bacteriumstrain EbN1, Biochemistry, 2006, 45(1): 82-93.
    217. Oppermann U C, Filling C, Berndt K D, et al. Active site directed mutagenesis of 3 beta/17 beta-hydroxysteroid dehydrogenase establishes differential effects on short-chain dehydrogenase/reductase reactions, Biochemistry, 1997, 36(1): 34-40.
    218. Baik S H, Michel F, Aghajari N, et al. Cooperative effect of two surface amino acid mutations (Q252L and E170K) in glucose dehydrogenase from Bacillus megaterium IWG3 on stabilization of its oligomeric state, Appl Environ Microbiol, 2005, 71(6): 3285-3293.
    219. Nie Y, Xu Y, Mu X Q, et al. Purification, characterization, gene cloning, and expression of a novel alcohol dehydrogenase with anti-prelog stereospecificity from Candida parapsilosis, Appl Environ Microbiol, 2007, 73(11): 3759-3764.
    220. Winberg J O, Brendskag M K, Sylte I, et al. The catalytic triad in Drosophila alcohol dehydrogenase: pH, temperature and molecular modelling studies, J Mol Biol, 1999, 294(2): 601-616.
    221. Tanaka N, Nonaka T, Nakanishi M, et al. Crystal structure of the ternary complex of mouse lung carbonyl reductase at 1.8 ? resolution: the structural origin of coenzyme specificity in the short-chain dehydrogenase/reductase family, Structure, 1996, 4(1): 33-45.
    222. Kamitori S, Iguchi A, Ohtaki A, et al. X-ray structures of NADPH-dependent carbonyl reductase from Sporobolomyces salmonicolor provide insights into stereoselective reductions of carbonyl compounds, J Mol Biol, 2005, 352(3): 551-558.
    223. Fisher M, Kroon J T, Martindale W, et al. The X-ray structure of Brassica napus beta-keto acyl carrier protein reductase and its implications for substrate binding and catalysis, Structure, 2000, 8(4): 339-347.
    224. Jornvall H, Persson B, Krook M, et al. Short-chain dehydrogenases/reductases (SDR), Biochemistry, 1995, 34(18): 6003-6013.
    225. Nakanishi M, Matsuura K, Kaibe H, et al. Switch of coenzyme specificity of mouse lung carbonyl reductase by substitution of threonine 38 with aspartic acid, J Biol Chem, 1997, 272(4): 2218-2222.
    226. Oppermann U, Filling C, Hult M, et al. Short-chain dehydrogenases/reductases (SDR): the 2002 update, Chem Biol Interact, 2003(143-144): 247-253.
    227. Bocanegra J A, Scrutton N S, Perham R N, Creation of an NADP-dependent pyruvate dehydrogenase multienzyme complex by protein engineering, Biochemistry, 1993, 32(11): 2737-2740.
    228. Wierenga R K, Terpstra P, Hol W G, Prediction of the occurrence of the ADP-binding beta alpha beta-fold in proteins, using an amino acid sequence fingerprint, J Mol Biol, 1986, 187(1): 101-107.
    229. Ghosh D, Sawicki M, Pletnev V, et al. Porcine carbonyl reductase. Structural basis for a functional monomer in short chain dehydrogenases/reductases, J Biol Chem, 2001, 276(21): 18457-18463.
    230. Varughese K I, Xuong N H, Kiefer P M, et al. Structural and mechanistic characteristics of dihydropteridine reductase: a member of the Tyr-(Xaa)3-Lys-containing family of reductases and dehydrogenases, Proc Natl Acad Sci, 1994, 91(12): 5582-5586.
    231. McKeevera B M, Hawkins B K, Geissler W M, et al. Amino acid substitution of arginine 80 in 17β-hydroxysteroid dehydrogenase type 3 and its effect on NADPH cofactor binding and oxidation/reduction kinetics, Biochim Biophys Acta, 2002(1601): 29–37.
    232. Arnold P, Tam S, Yan L, et al. Glutamate-115 renders specificity of human 11β-hydroxysteroid dehydrogenase type 2 for the cofactor NAD+, Mol Cell Biochem, 2003(201): 177-187.
    233. Nie Y, Xu Y, Mu X H, et al. Purification, characterization, gene cloning and expression of a novel alcohol dehydrogenase with anti-Prelog stereospecificity from Candida parapsilosis, Appl Environ Microbiol, 2007, 73(11): 3759-3764.
    234. H?rer S, Stoop J, Mooibroek H, et al. The crystallographic structure of the mannitol 2-dehydrogenase NADP+ binary complex from Agaricus bisporus, J Biol Chem, 2001, 276(29): 27555-27561.
    235. Ho S N, Hunt H D, Horton R M, et al. Site-directed mutagenesis by overlap extension using the polymerase chain reaction, Gene, 1989, 77(1): 51-59.
    236. Ghosh D, Pletnev V Z, Zhu D W, et al. Structure of human estrogenic 17 beta-hydroxysteroid dehydrogenase at 2.20 ? resolution, Structure, 1995, 3(5): 503-513.
    237. Masuda K, Tamagake K, Okuda Y, et al. Change in enantioselectivity in bufuralol 1''-hydroxylation by the substitution of phenylalanine-120 by alanine in cytochrome P450 2D6, Chirality, 2005(17): 37-43.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700