用户名: 密码: 验证码:
武汉南湖营养盐动态及重金属污染的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水体富营养化问题是全球关注的环境问题之一。随着城市化的发展,承担着容纳城市生活污水任务的城区湖泊水质迅速恶化。
     南湖是湖北省武汉市中心城区第二大湖泊。近年来,随着武汉市城市化的推进,南湖周边地区居住人口数量猛增,大量经过一定程度处理或未经处理的生活污水排入南湖,导致南湖水体富营养化。本文以南湖为研究对象,对南湖水体、沉积物和间隙水中的氮磷营养盐动态,表层沉积物磷的释放,降雨和地表径流氮磷的输入状况,沉积物中有机质,沉积物中重金属的污染状况等进行研究。主要研究结果如下:
     1.水体中TN的平均浓度为12.66 mg/L,采样期间随着时间推移呈上升趋势。DIN中,NO3--N的平均浓度为1.076 mg/L,NH4+-N为0.832 mg/L,NO2--N为0.238 mg/L;DIN的季节变化上,NH4+-N的最高值、NO3--N和NO2--N的最低值均出现在8月。水体TP和PO43--P的平均浓度分别为0.240 mg/L和0.033 mg/L。TP和PO43--P均在11月浓度最高,但TP浓度的最低值出现在2月,PO43--P则是8月最低。
     2.沉积物中,TN的平均浓度为3.3922 mg/g(DW),季节变化趋势与湖水TN一致;垂直变化上,在0-25 cm深度范围内,TN浓度随深度增加逐渐降低。NH4+-N的平均浓度为0.0882 mg/g(DW),占总DIN的70%-96%;季节变化和垂直分布趋势与TN一致。NO3--N的浓度则很低。沉积物中TP的平均浓度为1.005mg/g(DW).季节变化上,4月~11月呈上升的趋势,11月~2月趋于稳定;垂直分布则随沉积深度增加逐渐降低。柱状沉积物中的不同形态磷以无机磷为主,占TP的61.4%-77.1%。沉积物中活性磷的浓度很高,但活性磷随沉积深度增加显著降低。此外,对沉积物不同形态磷和间隙水PO43--p的相关性分析结果表明,沉积物主要以活性磷和自生钙磷的释放来供给水体磷。
     3.间隙水中,NH4+-N的平均浓度为11.59 mg/L,占总DIN的90%以上;采样期间随着时间推移呈明显上升趋势;垂直分布上,最大值出现在5-15 cm。NO3--N和NO2--N的平均浓度分别为0.212 mg/L和0.025 mg/L;NO3--N的最大值出现在5-10 cm;NO2--N则随深度增加而降低。间隙水PO43--P的平均浓度为0.209 mg/L,11月时浓度最高,2月最低;垂直分布规律与沉积物TP一致。
     4.水体、沉积物和间隙水中氮磷水平分布的规律是,靠近南湖最大的点污染源的点Ⅳ,各测定指标的浓度最高且季节变化和垂直梯度最显著;周围没有较大点污染源的点Ⅲ和点Ⅴ,各指标的浓度相对较低且季节变化和垂直梯度较小。
     5.南湖表层沉积物中磷的释放量随pH变化呈“U”形曲线变化,即在中性(pH=7.1)磷释放量最小(0.017 mg/L),而pH=4.6时磷的释放量最大(0.073 mg/L)。在酸性条件下,pH的改变对磷的释放量的影响更显著。不同pH条件下磷的饱和度也有差异,在pH=4.6时磷的饱和度最大,为0.696 mg/L,中性条件下磷的饱和度最小,为0.412 mg/L。好氧和厌氧条件均能造成磷的释放,但是释放量和释放速率有显著差异。厌氧条件下的释放量和释放速率是好氧条件下的近10倍。
     6.南湖沉积物含水率的平均浓度为72.4%。季节变化不大,垂直分布呈显著的随沉积深度增加而降低的变化趋势。沉积物LOI的平均浓度为10.20%。季节变化上,LOI的最大值出现在11月,2月的浓度稍降,但2月的表层和次表层间浓度差异最小。垂直分布与含水率的分布一致,即随着沉积深度的增加,LOI显著下降。沉积物中TN、TP、LOI两两间均呈极显著相关,反映了南湖沉积物中氮、磷和有机质的同步积累趋势。在0-15 cm的沉积层,各测次间LOI的浓度差异较大;而在15~25cm的沉积层,各测次间的浓度差异不大,表明南湖沉积物中有机质的分解矿化主要发生在0-15 cm的沉积层,较深沉积层的分解矿化较弱,有机质处于相对稳定的状态。
     7.丘陵植被地表径流中TN、TP的浓度均高于降雨和城市地表径流。降雨、城市地表径流和丘陵植被地表径流中的DIN以NH4+-N为主,其次是N03--N;降雨中的NH4+-N浓度远大于径流中的浓度。溶解态PO43--p的浓度,城市地表和丘陵植被地表径流的浓度均低于降雨的浓度。2005年4月至2006年3月间,降雨和径流中的各形态氮、磷浓度,除NH4+-N呈逐渐递减的趋势,其余指标均呈波动性变化,且没有明显的季节性差异。
     8.南湖柱状沉积物中各种重金属的平均浓度(mg/kg, DW)分别为Cd:0.155, Cu:47.0, Cr:147.8, Mn:1026.5, Pb:55.7, Zn:132.1。水平分布上,重金属的最大值出现在点Ⅳ和点Ⅰ,且平均浓度也高于其他的点;垂直分布,最大值出现在表层或次表层,随沉积深度的增加而降低。而且,在各种重金属之间以及重金属与有机质之间存在显著的正相关,表明外源污染对沉积物中重金属的负荷具有重要影响。应用地质累积指数Igeo值对重金属污染状况进行评价,结果表明,重金属的污染主要是Cr和Cd,其中Cr的最高浓度为231.9(mg/kg,DW),Cd为0.348(mg/kg, DW)。但是重金属的污染程度较轻。
The lake eutrophication is one of the most serious environment problems with social-economic development and pollutants discharge increment. Urban, shallow lakes are generally exposed to anthropogenic activities and particularly vulnerable to human interference that cause enhanced primary productivity and can rapidly be transferred into a state of highly eutrophication.
     Lake Nanhu is a shallow, polymictic lake located in Wuhan city, the middle reach of the Yangtze River. Its open water area has a surface area of 4.0 km2 and the water depth ranges from 1.85 m to 2.50 m. Many universities, hospitals, and residential areas located around the lake. In recent decades, with the intensification of human activities and the rapid development of economy, there were drastic changes in the lake environment, in which the lake eutrophication is most serious. The nitrogen and phosphorus dynamics in water column, sediment, interstitial water, rainfall, runoff, the phosphorus release from sediment and heavy metal pollution in sediment in Lake Nanhu were investigated from April,2005 to February,2006. The main results were as follows:
     1. The average of TN in water column was 12.66 mg/L. TN concentrations were increaseing during the sampling time. The dominant form of DIN in waters was NO3--N. The average concentrations of NO3--N, NH4+-N and N02--N were 1.076 mg/L,0.832 mg/L and 0.238 mg/L, respectively. The maximum of NH4+-N, and the minimum of NO3--N and NO2--N appeared all in August. And the averages of total phosphorus (TP) and orthophosphate were 0.240 mg/L and 0.033 mg/L, respectively. The maximum of TP and orthophosphate in water column occurred in November, and the lowest concentrations of TP and orthophosphate in February and August, respectively.
     2. The mean of TN in sediments was 3.3922 mg/g (DW). The seasonal variation of TN in sediments was the same as the TN in waters; and it decreased with the sediment depth in 0-25 cm layer. The average of NH4+-N in sediments was 0.0882 mg/g (DW) and the proportion to DIN ranged from 70% to 96%. The concentration of NH4+-N had the same trend as the TN in sediments in seasonal variation and vertical distribution. The concentration of NO3--N in sediments was very low. The average of NH4+-N in interstitial water was 11.59 mg/L and with a percentage of higher than 90% in DIN. The concentration of NH4+-N in interstitial water increased with sampling time; and vertically the maximum was in 5~15 cm layers. The averages of NO3--N and NO2--N in interstitial water were 0.212 mg/L and 0.025 mg/L, respectively; vertically, the maximum of NO3--N was in 5~10 cm layers and NO2--N decreases with the sediment depth. The nitrogen concentration was the highest and had the most significantly gradient at the siteⅣ. But it was the reverse at the site III. The results of correlation analysis showed that TN in sediments was an important source for the lake and the nitrogen diffuses mainly by NH4+-N. The average of TP in sediment was 1.005 mg/g (DW), and that of orthophosphate in interstitial water 0.209 mg/L. Seasonally, the concentration of TP in sediment increased from April to November, and then became stable; the concentration of orthophosphate in interstitial water reached the maximum in November and the minimum in February. Vertically, the concentration of TP in sediment decreased with sediment depth, and orthophosphate in interstitial water had the same pattern. Horizontally, the maximum concentration of phosphorus in sediment and interstitial water occurred at the siteⅣ. The dominant form of phosphorus fractionation in sediment was inorganic phosphorus (IP) and the proportions to the total extracted phosphorus ranged from 61.4% to 77.1%. The concentration of bio-available phosphorus (BA-P) in sediment was very high, but it decreased significantly with sediment depth. The high BA-P concentration in surface sediment suggested that there was a strong potential phosphorus release from sediments to the overlying water. According to the significant correlation between phosphorus fractionation in sediment and orthophosphate in interstitial water, the main source of TP released from sediments should be BA-P and ACa-P.
     3. As to the horizontal distributions of different forms of nitrogen and phosphorus in water, sediment and interstitial water, the maximum was at the site IV and the minimum was at the site III and V.
     4. The pH value and dissolved oxygen (DO) were the important factor affecting the release of phosphorus from these sediments. A simulated study was made for the influence of different pH value and DO on the concentration of orthophosphate in overlaying water. Under acid and alkaline conditions it favored the phosphorus release. The P release concentration was higher under acid than under alkaline condition; the maximal and the minimum release concentrations were in the pH values of 4.6 and 7.1, respectively in the experiment pH range. Both anaerobic and aeration condition could make P release from the sediments. But the release concentration and the release rate in anaerobic condition were about 10 times higher than the aeration condition.
     5. The average of the moisture concentration was 72.4% in sediment. There was a slight variation among months. The concentration decreased significantly with the sediment depth. The average of LOI was 10.20%. The maximum of LOI was in November. There were significant correlations among TN, TP and LOI. This meant that there were same sediment trend about N, P and organic matters. According to the present results, the dissolved nutrients in sediment and in interstitial water decreased with the sediment depth in the sediment cores in the sampling period. And the concentrations of the dissolved nutrients had a sharp gradient in 0-15 cm layer, then decreased slightly in 15~25 cm layer. This indicated that the regeneration depth was almost the same in these two cores, i.e., deeper to 25 cm. In the top 0-15 cm layer, the regeneration was actively, and then decreased with the sediment depth.
     6. The concentration of TN and TP in foothill vegetation runoff was higher than in rainfall and urban runoff. The main form of DIN was NH4+-N, then NO3--N. The NH4+-N concentration in rainfall was significant higher than in runoff. The concentration of soluble PO43--P was higher in rainfall than in either foothill vegetation runoff or urban runoff. During sampling period, the different forms of nitrogen and phosphorus in rainfall and runoff had a fluctuant variation (except NH4+-N in rainfall, which decreased in annual variation).
     7. The averages (mg/kg, DW) of Cd, Cu, Cr, Mn, Pb and Zn were 0.155,47.0,147.8, 1 026.5,55.7, and 132.1, respectively. Horizontally, the heavy metal concentrations at the siteⅣandⅠwere relatively higher. The heavy metal concentrations decreased with the sediment depth from surface to bottom and the concentrations in surface sediments were significantly higher than the deeper ones. The results suggested that there was a higher concentration of the heavy metals at the siteⅣandⅠ. According to Igeo values, the major heavy metal pollutions in Lake Nanhu were Cr and Cd and the highest concentrations (mg/kg, DW) of Cr and Cd were 231.9 and 0.348, respectively. But the pollution status of heavy metals in Lake Nanhu was generally light. The present results revealed that municipal sewage discharge and rainfall runoff had significant cause of heavy metal pollution in Lake Nanhu and it is necessary to control the pollutions from these "point-sources" input.
引文
1.陈春华,王焰新,张远方等.武汉东湖沉积物磷负荷研究.武汉理工大学学报,2003,25(5):16-19
    2.陈芳,夏卓英,宋春雷等.湖北省若干浅水湖泊沉积物有机质与富营养化的关系.水生生物学报,2007,31(4):467-472
    3.陈国元,李建秋,李清曼等.武汉月湖沉积物不同形态氮含量与转换途径的垂直变化.湖泊科学,2008,20(4):463-469
    4.陈静生,王飞越,宋吉杰等.中国东部河流沉积物中重金属含量与沉积物主要性质的关系.环境化学,1996,15:8-14
    5.陈天乙,刘孜.摇蚊幼虫对底泥中氮、磷释放作用的研究.昆虫学报,1995,38(4):448-451
    6.陈文新.土壤和环境微生物学.北京:北京农业大学出版社,1990
    7.程红光,郝芳华,任希岩等.不同降雨条件下非点源污染氮负荷入河系数研究.环境科学学报,2006,26(3):392-397
    8.董德明,李海龙,李鱼等.伊通河(长春市区段)沉积物重金属元素化学形态的分布特征.水土保持研究,2004,11(1):95-97
    9.范成新.滆湖沉积物理化特征及磷释放模拟.湖泊科学,1995,7(4):341-350
    10.范成新,秦伯强,孙越.梅梁湖和五里湖水-沉积物界面的物质交换.湖泊科学,1998,10(1):73-78
    11.范成新,相崎守弘.好氧和厌氧条件对霞浦湖沉积物—水界面氮磷交换的影响.湖泊科学,1997,9(4):337-342
    12.范成新,杨龙元,张路.太湖底泥及其间隙水中氮磷垂直分布及相互关系分析.湖泊科学,2000,12(4):359-366
    13.范成新,张路,秦伯强等.太湖沉积物—水界面生源要素迁移机制及定量化——1.铵态氮释放速率的空间差异及源-汇通量.湖泊科学,2004,16(1):10-20
    14.范成新,张路,杨龙元等.湖泊沉积物氮磷内源负荷模拟.海洋与湖沼,2002,33(4):370-378
    15.范文宏,唐戈,段勇等.运用主成分分析法评价北京市代表性河流的水质与毒性状况.生态毒理学报,2007,2(1):69-77
    16.冯新斌,洪冰,倪建宇等.煤中部分潜在毒害微量元素在表生条件下的化学活动性.环境科学学报,1999,19(4):433-437
    17.付春平,钟成华,邓春光.pH与三峡库区底泥氮磷释放关系的试验.重庆大学学报,2004,27(10):125-127
    18.傅庆红.湖泊沉积物中磷的形态分析及其释放研究.四川环境,1994,13(4):21-24
    19.付永清,周易勇.沉积物磷形态的分级分离及其生态学意义.湖泊科学,1999,11(4):376-381
    20.高丽,杨浩,周建民等.滇池沉积物磷内负荷及其对水体贡献的研究.环境科学学报,2004,24(5):776-781
    21.龚春生,姚琪,范成新等.城市浅水型湖泊底泥释磷的通量估算——以南京玄武湖为例.湖泊科学,2006,18(2):179-183
    22.国家环境保护局科技标准司主编.湖泊污染控制技术指南.北京:中国环境科学出版社,1997
    23.国家环境保护总局《水和废水监测分析方法》编委会.水和废水监测分析方法(第四版).北京:中国环境科学出版社,2002
    24.国家环境监测总站.中国土壤元素背景值.北京:中国环境科学出版社,1990
    25.郭瑞霞,杨建丽,刘东燕等.煤热解过程中无机有害元素的变迁规律.环境化学,2002,23(5):100-104
    26.郝芳华.非点源污染负荷分布式模拟研究——以黄河下游洛河流域为例.北京:北京师范大学环境学院,2003,57-101
    27.侯立军,刘敏,许世远.环境因素对苏州河市区段底泥内源磷释放的影响.上海环境科学,2003,22(4):258-250
    28.胡俊,刘永定,刘剑彤.滇池沉积物间隙水中氮、磷形态及相关性的研究.环境科学学报,2005,25(10):1391-1396
    29.胡凯,柯鹏振,吴永红等.高原浅水湖泊沉积物中磷、氮形态化学研究.长江流域资源与环境,2005,14(4):507-511
    30.胡雪涛,陈吉宁,张天柱.非点源污染模型研究.环境科学,2002,23(3):124-128
    31.黄清辉,王子健,王东红等.夏季梅梁湾水体中生物有效性磷的分布及来源.中国科学,D辑,2005,35(增刊Ⅱ):131-137
    32.黄文钰,舒金华,吴延根.滆湖氮、磷平衡研究.湖泊科学,1996,8(4):330-336
    33.黄漪平.太湖水环境及其污染控制.北京:科学出版社,2001
    34.金相灿.沉积物污染化学.北京:中国环境科学出版杜,1992
    35.金相灿.中国湖泊富营养化.北京:中国环境科学出版杜,1990
    36.金相灿.中国湖泊环境.北京:海洋出版社,1995
    37.金相灿,姜霞,徐玉慧等.太湖东北部沉积物可溶性氮、磷的季节性变化.中国环境科学,2006,26(4):409-413
    38.金相灿,王圣瑞,庞燕.太湖沉积物磷形态及pH值对磷释放的影响.中国环境科学,2004,24(6):707-711
    39.蒋海燕,刘敏,顾琦等.上海城市降水径流营养盐氮负荷及空间分布.城市环境与城市生态,2002,15(1):15-17
    40.李怀恩,沈晋.非点源污染数学模型.西安:西北工业大学出版社,1996
    41.李怀恩,沈晋,刘玉生.流域非点源污染模型的建立与应用实例.环境科学学报,1997,17(2):142-147
    42.李金,董巧香,杜虹等.柘林湾表层沉积物中氮和磷的时空分布.热带海洋学报,2004,23(4):63-71
    43.李立青,尹澄清,何庆慈等.武汉市城区降雨径流污染负荷对受纳水体的贡献.中国环境科学,2007,27(3):312-316
    44.李任伟,李禾,李原等.黄河三角洲沉积物重金属、氮和磷污染研究.沉积学报,2001,19(4):622-629
    45.李文红,陈英旭,孙建平.不同溶解氧水平对控制底泥向上覆水体释放污染物的影响研究.农业环境科学学报,2003,22(2):170-173
    46.李学刚,宋金明,李宁等.胶州湾沉积物中氮与磷的来源及其生物地球化学特征.海洋与湖沼,2005,36(6):562-571
    47.李养龙,金林.城市降雨径流水质污染分析.城市环境与城市生态,1996,9(1): 55-583
    48.廖文根.太湖水体的磷负荷分析.水利学报,1994,11:77-81
    49.林悦涓,吴峰,邓南圣等.武汉东湖上覆水和沉积物中磷形态的垂直分布特征.农业环境科学学报,2005,24(6):1152-1156
    50.刘兵钦,王万贤,宋春雷等.菹草对湖泊沉积物磷状态的影响.武汉植物学研究,2004,22(5):394-399
    51.刘冬梅,姜霞,金相灿等.太湖藻对水—沉积物界面磷交换过程的影响.环境科学研究,2006,19(4):8-13
    52.刘恩峰,沈吉,刘兴起等.太湖沉积物重金属和营养盐变化特征及污染历史.中国科学,D辑,2005,35(增刊Ⅱ):73-80
    53.刘恩峰,沈吉,朱育新等.太湖沉积物重金属及营养盐污染研究.沉积学报,2004,22(3):507512
    54.刘红磊,尹澄清.城市湖泊表层沉积物中的重金属污染现状及其稳定度分析——以武汉墨水湖为例.生态毒理学报,2007,2(2):214-219
    55.刘建康.高级水生生物学.北京:科技出版社,1999
    56.刘建康,谢平.揭开武汉东湖蓝藻水华消失之谜.长江流域资源与环境,1999,8:312-319
    57.刘曼蓉,曹万金.南京市城北地区暴雨径流污染研究.水文,1990(6):15~19,23
    58.卢博,张福生,黄韶健等.大亚湾表层沉积物性质及其对海水养殖的影响.台湾海峡,2002,21(4):489-496
    59.卢璟莉.南湖周边排污口调查及排污口附近水域水质模型研究.武汉理工大学硕士学位论文,2005
    60.陆文龙,王敬国,曹一平等.低分子量有机酸对土壤磷释放动力学的影响.土壤学报,1998,35(4):493-500
    61.罗敛葱,秦伯强.太湖波浪与湖流对沉积物再悬浮不同影响的研究.水文,2003,23(4):1-4
    62.吕晓霞,宋金明.海洋沉积物中氮的形态及其生态学意义.海洋科学集刊,2003,45:101-11
    63.马经安,李红清.浅谈国内外江河湖库水体富营养化状况.长江流域资源与环境,2002,11(6):575-578
    64.钱秀红,徐建民,施加春等.杭嘉湖水网平原农业非点源污染的综合调查和评价.浙江大学学报,2002,28(2):147-150
    65.秦伯强.长江中下游浅水湖泊富营养化发生机制与控制途径初探.湖泊科学,2002,14(3):193-202
    66.秦伯强.太湖水环境面临的主要问题、研究动态与初步进展.湖泊科学,1998,10(4):1-9
    67.秦伯强,范成新.大型浅水湖泊内源营养盐释放的概念性模式探讨.中国环境科学,2002,22(2):150-153
    68.秦伯强,胡维平,陈伟民等.太湖水环境演化过程与机理.科学出版社,2004
    69.秦伯强,胡维平,高光等.太湖沉积物悬浮的动力机制及内源释放的概念性模式.科学通报,2003,48(17):1822-1831
    70.秦伯强,王小冬,汤祥明等.太湖富营养化与蓝藻水华引起的饮用水危机——原因与对策.地球科学进展,2007,22(9):896-906
    71.秦伯强,朱广伟.长江中下游地区湖泊水和沉积物中营养盐的赋存、循环及其交换特征.中国科学D辑,地球科学,2005,35(增刊Ⅱ):1-10
    72.秦伯强,朱广伟,张路等.大型浅水湖泊沉积物内源营养盐释放模式及其估算方法——以太湖为例.中国科学,D辑,2005,35(增刊Ⅱ):33-44
    73.乔胜英,蒋敬业,向武等.武汉地区湖泊沉积物重金属的分布及潜在生态效应评价.长江流域资源与环境,2005,14(3):353-357
    74.邱炳文,周勇,周敏等.武汉市南湖富营养化现状、趋势及其综合整治对策.华中农业大学学报,2000,19:350-352
    75.饶钦止,章宗涉.武汉东湖浮游植物的演变(1956-1975年)和富营养化问题.水生生物学集刊,1980,7(1):1-16
    76.宋金明.中国近海生物地球化学.济南:山东科技出版社,2004
    77.宋金明,马红波,李学刚等.渤海南部海域沉积物中吸附态无机氮的地球化学特征.海洋与湖沼,2004,35(4):315-322
    78.宋玉芝,秦伯强,杨龙元等.大气湿沉降向太湖水生生态系统输送氮的初步估 算.湖泊科学,2005,17(3):226-230
    79.孙顺才,黄漪平.太湖.北京:海洋出版社,1993
    80.唐孟成,贾之慎,朱荫湄.西湖沉积物磷释放影响因子的研究.浙江农业大学学报,1997,23(3):289-292
    81.唐孟成,俞秋红,王寿祥.雨后入湖溪流磷污染对西湖的影响及其对策.环境污染与防治,2003,25(1):12-15
    82.万国江.环境质量的地球化学原理.北京:中国环境科学出版社,1988
    83.万晓红,周怀东,刘玲花等.白洋淀湖泊湿地中氮素分布的初步研究.水土保持学报,2008,22(2):166-169,186
    84.汪家权,孙亚敏,钱家忠等.巢湖底泥磷的释放模拟实验研究.环境科学学报,2002,22(6):738-742
    85.王琦,姜霞,金相灿等.太湖不同营养水平湖区沉积物磷形态与生物可利用磷的分布及相互关系.湖泊科学,2006,18(2):120-126
    86.王圣瑞,金相灿,赵海超等.沉水植物黑藻对上覆水中各形态磷浓度的影响.环境化学,2006,35(2):179-186
    87.王苏民,窦鸿声.中国湖泊志.北京:科学出版社,1998
    88.王庭健,苏睿,金相灿等.城市富营养湖泊沉积物中磷负荷及其释放对水质的影响.环境科学研究,1994,7(4):12-19
    89.王晓蓉,华兆哲,徐菱等.环境条件变化对太湖沉积物磷释放的影响.环境化学,1996,15(1):15-19
    90.王小庆.淀山湖沉积物中重金属元素分布特征及其季节变化.环境科学与技术,2005,28(6):106-108
    91.王晓燕.密云水库水质特征及吸附、释放磷的实验研究.首都师范大学学报(自然科学版),1997,18(3):85-90
    92.王雪梅,杨龙元,秦伯强等.春季太湖水域无机氮湿沉降来源初探.中山大学学报(自然科学版),2006,45(4):93-97
    93.王银东,熊邦喜,杨学芬.武汉市南湖大型底栖动物的群落结构.湖泊科学,2005,17(4):327-333
    94.王雨春.湖泊现代化沉积物中磷的地球化学作用及环境效应.重庆环境科学, 2000,22(4):39-41,59
    95.王雨春,万国江,黄荣贵等.湖泊现代化沉积物中磷的地球化学作用及环境效应.重庆环境科学,2000,22(4):39-41,59
    96.翁焕新,刘云峰,Armstrong D.滨海沉积物和间隙水中的磷研究-以美国墨西哥湾为例.环境科学学报,1997,17(2):148-153
    97.吴丰昌,万国江,黄荣贵.湖泊沉积物—水界面营养元素的生物地球化学作用和环境效应Ⅰ.界面氮循环及其环境效应.矿物学报,1996,16(4):403-409
    98.吴世凯,谢平,王松波等.长江中下游地区浅水湖泊群中无机氮和TN/TP变化的模式及生物调控机制.中国科学D辑,地球科学,2005,35(增刊Ⅱ):111-120
    99.谢丽强,谢平,唐汇娟.武汉东湖不同湖区底泥总磷含量及变化的研究.水生生物学报,2001,25(4):305-310
    100.谢平.浅水湖泊内源磷负荷季节变化的生物驱动机制.中国科学,D辑,2005,35(增刊Ⅱ):11-23
    101.严平川,黄荣华,彭小思等.湖北省湖泊环境现状及污染控制措施.中国水利,2004(3):33-34
    102.杨爱玲,朱颜明.地表水环境非点源污染研究.环境科学进展,1998,7(5):60-67
    103.杨德敏,曹文志,陈能汪等.厦门城市降雨径流氮、磷污染特征.生态学杂志,2006,25(6):625-628
    104.杨汉东,农生文,蔡述明.武汉东湖沉积物的环境地球化学.水生生物学报,1994,3:208-213
    105.杨龙元,蔡启铭,秦伯强等.太湖梅梁湾沉积物—水界面氮迁移特征初步研究.湖泊科学,1998,10(4):41-47
    106.杨明生.武汉市南湖大型底栖动物群落结构及其生态功能的研究.华中农业大学博士学位论文,2009
    107.杨明生,熊邦喜,杨学芬.武汉市南湖大型底栖动物的时空分布和氮磷评价.湖泊科学,2007,19(6):658-663
    108.姚扬,金相灿,姜霞等.光照对湖泊沉积物磷释放及磷形态变化的影响研究.环境科学研究,2004,17(增刊):30-33
    109.姚志刚,鲍征宇,高璞.洞庭湖沉积物重金属环境地球化学.地球化学,2006,35(6):629-638
    110.尹大强,覃秋荣,阎航.环境因子对五里湖沉积物磷释放的影响.湖泊科学,1994,6(3):240-244
    111.余博识,吴忠兴,朱梦灵等.水果湖湾蓝藻水华的形成及其对东湖影响的评价.水生生物学报,2008,32(2):286-289
    112.余红,沈珍瑶.非点源污染不确定性研究进展.水资源保护,2008,24(1):1-5
    113.于世繁.白洋淀底质磷的释放及与水体中磷的关系.环境科学,1995,16(增刊):30-31,34
    114.袁旭音,陈骏,季峻峰等.太湖沉积物和湖岸土壤的污染元素特征及环境变化效应.沉积学报,2002,20(3):427-434
    115.袁旭音,王爱华,许乃政.太湖沉积物中重金属的地球化学形态及特征分析.地球化学,2004,33(6):611-618
    116.张路,范成新,秦伯强等.模拟扰动条件下太湖表层沉积物磷行为的研究.湖泊科学,2001,13(1):35-42
    117.张路,范成新,朱广伟等.长江中下游湖泊沉积物生物可利用磷分布特征.湖泊科学,2006,18(1):36-42
    118.张路,朱广伟,罗敛葱.风浪作用下太湖梅梁湾水体磷负荷变化及其与水体氧化还原特征关系.中国科学,D辑,2005,35(增刊Ⅱ):138-144
    119.张水元,刘瑞秋,黎道丰.保安湖沉积物和间隙水中氮和磷的浓度及其分布.水生生物学报,2000,24(5):434-438
    120.张兴昌,刘国彬,付会芳.不同植被覆盖度对流域氮素径流流失的影响.环境科学,2000,21(6):16-19
    121.赵颖,王国秀,章北平.典型城内过富营养湖泊沉积物和间隙水中各形态磷的相关性研究.长江流域资源与环境,2006,15(4):491-494
    122.中国科学院南京土壤研究所.土壤理化分析.上海:上海科学技术出版社,1978
    123.朱广伟,陈英旭,周根娣等.运河(杭州段)沉积物磷释放的模拟试验.湖泊科学,2002,14(4):343-349
    124.朱广伟,陈英旭,周根娣.运河(杭州段)沉积物中重金属分布特征及变化.中国环境科学,2001,21(1):65-69
    125.朱广伟,陈英旭.沉积物中有机质的环境行为研究进展.湖泊科学,2001,13(3):272-279
    126.朱广伟,高光,秦伯强等.浅水湖泊沉积物中磷的地球化学特征.水科学进展,2003,14(6):714-719
    127.朱广伟,秦伯强,高光等.长江中下游浅水湖泊沉积物中磷的形态及其与水相磷的关系.环境科学学报,2004,24(3):381-388
    128.朱广伟,秦伯强,张路.长江中下游湖泊沉积物中磷的形态及藻类可利用量.中国科学,D辑,2005,35(增刊Ⅱ):24-32
    129.朱广伟,秦伯强,张路等.太湖底泥悬浮中营养盐释放的波浪水槽试验.湖泊科学,2005,17(1):61-68
    130.卓慕宁,吴志峰,王继增等.珠海城区降雨径流污染特征初步研究.土壤学报,2003,40(5):775-778
    131. Adersen J M. Effect of nitrate concentration in lake water on phosphate release from the sediment. Wat Res,1982,16:1119-1126
    132. Alloway B J, Jackson A P. The behavior of heavy metals in sewage sludge-amended soil. Sci Total Environ,1991,100:151-176
    133. Altindag A, Yigit S. Assessment of heavy metal concentrations in the food web of lake Beysehir, Turkey. Chemosphere,2005,60:552-556
    134. Andersen F, Ring P. Comparison of phosphorus release from littoral and profundal sediments in a shallow, eutrophic lake. Hydrobiologia,1999,408/409,175-183
    135. Angeler D G, Sanchez-Carrillo S, Garcia G, et al. The influence of Procambarus clarkii (Cambaridae, Decapoda) on water quality and sediment characteristics in a Spanish floodplain wetland. Hydrobiologia,2001,464(3):89-98
    136. Arnason J G, Fletcher B A. A 40+year record of Cd, Hg, Pb, and U deposition in sediments of Patroon Reservoir, Albany County, New York, USA. Environ Pollut, 2003,123:383-391
    137. Arocena R, Pratonnmving W. Nitrogen exchange between sediments and water in three backwaters of the Danube. Archivfuer Hydrobiologie (Supplement),1995,101 (2):111-120
    138. Barbanti A, Bergamini M C, Frascari F, et al. Diagenetic processes and nutrient fluxes at the sediment-water interface, Northern Adriatic Sea, Italy. Australian J of Mar Fresh Res,1995,46:55-67
    139. Bengtsson L, Hellstrom T, Rakoczi L. Redistribution of sediments in three Swedish lakes. Hydrobiologia,1990,192:167-181
    140. Blackburn T H, Henriksen K. Nitrogen cycling in different types of sediments from Danish waters. Limnol Oceanorg,1983,28(3):477-493
    141. Blomqvist P, Petterson A, Hyenstrand P. Ammonium-nitrogen:A key regulatory factor causing dominance of non-nitrogen fixing cyanobacteria in aquatic systems. Arch Hydrobiol,1994,132:141-164
    142. Bolalek J, Graca B. Ammonia nitrogen at the water-sediment interface in Puck Bay (Baltic Sea). Estuar Coast Shelf Sci,1996,43:767-779
    143. Bostrom B. Relations between chemistry, microbial biomass and activity in sediments of a polluted vs. a nonpolluted eutrophic lake. Verh Int Ver Limnol,1988, 23:451-459
    144. Bostrom B, Andersen J M, Fleischer S, et al. Exchange of phosphorus across the sediment-water interface. Hydrobiologia,1988a,170:229-244
    145. Bostrom B, Persson G, Broberg B. Bioavailibility of different phosphorus forms in freshwater systems. Hydrobiologia,1988b,170:155-155
    146. Braune M J, Wood A. Best management practices applied to urban runoff quantity and quality control. Water Sci Technol,1999,39 (12):117-121
    147. Breukelaar A W, Lammens E H H R, Klein J G B, et al. Effects of benthivorous bream (Abramis brama) and carp(Cyprius carpio) on sediment resuspension and concentration of nutrients and chlorophyll-a. Freshwat Biol,1994,32:113-121
    148. Burgess R M, Schweitzer K A, McKinney R A, et al. Contaminated marine sediments:water column and interstitial toxic effects. Environ Toxicol Chem,1993, 12:127-138
    149. Carignan R, Lean D R S. Regeneration of dissolved substances in a seasonally anoxic lake:the relative importance of processes occurring in the water column and in the sediments. Limnol Oceanogr,1991,36:683-707
    150. Chang M, McBroom M W, Beasley R S. Roofing as a source of nonpoint water pollution. J Environ Manag,2004,73:307-315
    151. Charlessworth S M, Lees J A. Particulate-associated heavy metals in the urban environment:their transport from source to deposit, Coventry, UK. Chemosphere, 1999,39(5):833-848
    152. Chen C Y, Stemberger R S, Klaue B, et al. Accumulation of heavy metals in food web components across a gradient of lakes. Limnol Oceanogr,2000,45:1525-1536
    153. Cheng S. Heavy metals and phyto-remediation. Environ Sci and Pollut Res,2003,10: 335-340
    154. Czyk T G, Casper P, Koschel R. Variations of phosphorus release from sediments in stratified lakes. Water Air Soil Pollut,1997,99 (1/4):427-434
    155. David L C. The role of phosphorus in the eutrophication of receiving water:a review. J Environ Qual,1998,27,261-266
    156. d'Angelo E M, Reddy K R. Diagenesis of organic matter in a wetland receiving hypereutrophic lake water:I. Distribution of dissolved nutrients in the soil and water column. J Environ Qual,1994,23 (5):928-936
    157. Das S K, Routh J, Roychoudhury A N, et al. Elemental (C, N, H and P) and stable isotope (δ15N and δ13C) signatures in sediments from Zeekoevlei, South Africa:a record of human intervention in the lake. J Paleolimnol,2008,39:349-360
    158. de Marsac N T, Houmard J. Adaptation of Cyanobacteria to environmental stimuli: new steps towards molecular mechanisms. FEMS Microbiol Rev,1993,104: 119-190
    159. de Medina H L, Marin J C, Gutierrez E, et al. Nitrogen mobility at the sediment-water interface of Lake Maracaibo, Venezuela. Water Air Soil Pollut,2003, 145:341-357
    160. de Montigny C, Prairie Y T. The relative importance of biological and chemical processes in the release of phosphorus from a highly organic sediment. Hydrobiologia,1993,253:141-150
    161. Ding L, Wu J Q, Pang Y, et al. Simulation study on algal dynamics based on ecological flume experiment in Taihu Lake, China. Ecol Eng,2007,31:200-206
    162. Donoghue J F, Ragland P C, Chen Z Q, et al. Standardization of metal concentrations in sediments using regression residuals:an example from a large lake in Florida, USA. Environ Geol,1998,36:65-76
    163. Drouillard K G, Ciborowski J J H, Lazar R, et al. Estimation of the uptake of organochlorines by the mayfly Hexagenia limbata (Ephemeroptera:Ephemeridae). J Great Lakes Res,1996,22 (1):26-35
    164. Eckerrot A, Pettersson K. Pore water phosphorus and iron concentrations in a shallow, eutrophic lake-indications of bacterial regulation. Hydrobiologia,1993,253 (1-3):165-177
    165. Espericueta F M G, Lopez J 10, Voltolina D, et al. Metals in shrimp farm sediments, Sinaloa, northwest Mexico. Bull Environ Contamin Toxicol,2006,77:912-917
    166. Field R, Pitt R E. Urban storm-induced discharge impacts:US Environmental Protection Agency research program review. Water Sci Technol,1990,22:1-7
    167. Franzle S, Markert B, Wunschmann S. Dynamics of trace metals in organisms and ecosystems:Prediction of metal bioconcentration in different organisms and estimation of exposure risks. Environ Pollut,2007,20:1-11
    168. Frette L, Gejlsbjerg B, Westermann P. Aerobic denitrifiers isolated from an alternating activated sludge system. FEMS Microbiol Ecol,1997,24 (4):363-370
    169. Gachter R, Meyer J S, Mares A. Contribution of bacteria to release and fixation of phosphorus in lake sediments. Limnol Oceanogr,1988,33:1542-1558
    170. Gao L, Zhou J M, Yang H, et al. Phosphorus fractions in sediment profiles and their potential contributions to eutrophication in Dianchi Lake. Environ Geol,2005,48: 835-844
    171. Gardner C B, Carey A E. Trace metal and major ion inputs into the Olentangy River from urban storm sewer. Environ Sci Technol,2004,38:5319-5326
    172. Gerdes P, Kunst S. Bioavailability of phosphorus as a tool for efficient Preduction schemes. Water Sci Technol,1998,37(3):241-247
    173. Geta R, Postolache C, Vadineanu A. Ecological significance of nitrogen cycling by tubificid communities in shallow eutrophic lakes of the Danube Delta. Hydrobiologia,2004,524:193-202
    174. Gobeil C, Rondeau B, Beaudin L. Contribution of municipal effluents to metal fluxes in the St. Lawrence River. Environ Sci Technol,2005,39:456-464
    175. Gomez E, Durillon C, Rofes G, et al. Phosphate adsorption and release from sediments of brackish lagoons:pH, O2, and loading influence. Water Res,1999,33: 2437-2447
    176. Graney J R, Eriksen T M. Metals in pond sediments as archives of anthropogenic activities:A study in response to health concerns. Appl Geochem,2004,19: 1177-1188
    177. Gromaire-Mertz M C, Garnaud S, Gonzalez A, et al. Characterization of urban runoff pollution in Paris. Water Sci Technol,1999,39 (2):1-8
    178. Grum M, Aalderink R H. A statistical approach to urban runoff pollution modeling. Water Sci Technol,1997,36 (5):117-124
    179. Gulati R D, van Donk E. Lakes in The Netherlands, their origin, eutrophication and restoration:state-of-the-art review. Hydrobiologia,2002,478:73-106
    180. Hansen K, Mouridsen S, Kristensen E. The impact of Chironomus plumosus larvae on organic matter decay and nutrient (N, P) exchange in a shallow eutrophic lake sediment following a phytoplankton sedimentation. Hydrobiologia,1998,364: 65-74
    181. Hartley A M, House W A, Callow M E, et al. Copreciptation of phosphate with calcite in the presence of photosynthesizing green algae. Water Res,1997,31:2 261-2268
    182. Heidenreich M, Kleeberg A. Phosphorus-binding in iron rich sediments of a shallow reservoir:spatial characterization based on sonar data. Hydrobiologia,2003,506/509: 147-153
    183. Heiri O, Lotter A F, Lemcke G. Loss on ignition as a method for estimating organic and carbonate content in sediments:reproducibility and comparability of results. J Paleolimnol,2001,25:101-110
    184. Henning S J, Frede O A. Importance of temperature, nitrate, and pH for phosphorus release from aerobic sediments of four shallow, eutrophic lakes. Limnol Oceanogr, 1992,37:557-589
    185. Herbert R A, Nedwell D B. Role of environmental factors in regulating nitrate respiration in intertidal sediments. In:Revsbech N P, Sorensen J. (eds), Denitrification in soil and sediment. Plenum Press, New York,1990,77-90
    186. Hernandez F M, Jimenez M F S, Osunal F P. Heavy metals in sediments and Lobster (Panulirus gracilis) from the discharge area of the submarine sewage outfall in Mazatlan Bay (SE Gulf of California). Arch Environ Contamin Toxicol,2004,46: 485-491
    187. Hohener P, Gachter R. Nitrogen cycling across the sediment-water interface in a eutrophic, artificially oxygenated lake. Aqua Sci,1994,56(2):115-131
    188. Holdren G C, David E A. Factors affecting phosphorus release from intact lake sediments cores. Environ Sci Technol,1980,14 (1):79-87
    189. Hongve D. Cycling of iron, manganese and phosphate in a meromictic lake. Limnol Oceanogr,1997,42(4):635-647
    190. Hu W, Zhai S, Zhu Z, et al. Impacts of the Yangtze River water transfer on the restoration of Lake Taihu. Ecol Eng,2008,34:30-49
    191. Hupher M, Gachter R, Giovanoli R. Transformation of phosphorus species in settling seston and during early sediment diagenesis. Aquat Sci,1995, 57(4):305-324
    192. Jenkins M C, Kemp W M. The coupling of nitrification and denitrification in two estuarine sediments. Limnol Oceanogr,1984,29:609-619
    193. Jensen H S, Kristensen P, Jeppesen E. Iron:phosphorus ratio in surface sediment as an indicator of phosphorus release from aerobic sediment in shallow lake. Hydrobiologia,1992,235/236:731-743
    194. Jeppsen E, Kristensen P, Jensen J P, et al. Recovery resilience following a reduction in external phosphorous loading of shallow, eutrophic Danish lakes:duration, regulating factors and method for overcoming resilience. Mem 1st Ital Hydrobiol, 1991,48:127-148
    195. Jin X C, Xu Q J, Huang C Z. Current status and future tendency of lake eutrophication in China. Sci China Ser C Life Sci,2005,48:948-954
    196. Kaiserli A, Voutas D, Samara C. Phosphorus fractionation in lake sediment-Lakes Volvi and Koronia, Greece. Chemosphere,2002,46(8):1147-1155
    197. Kasper H F. Denitrification, nitrate reduction to ammonium and inorganic nitrogen pool in intertidal sediments. Mar Biol,1983,46:157-164
    198. Keppler F, Eiden R, Niedan V, et al. Halocarbons produced by natural oxidation processes during degradation of organic matter. Nature,2000,403:298-301
    199. Kim K W, Myung J H, Ahn J S, et al. Heavy metal contamination in dusts and stream sediments in the Taejon area, Korea. J Geochem Expl,1998,64:409-419
    200. Kim L H, Choi E, Stenstrom M K. Sediment characteristics, phosphorus types and phosphorus release rates between river and lake sediments. Chemosphere,2003,50: 53-61
    201. Kuenen J G, Robertson L A. Combined nitrification-denitrification process. FEMS Microbiol Rev,1994,15:109-117
    202. Kuwae T, Hosokawa Y, Eguchi N. Dissolved inorganic nitrogen cycling in Banzu intertidal sand-flat, Japan. Mangr Salt Marsh,1998,2:167-175
    203. Larsen D P, Schults D W, Malereg K W. Summer internal phosphorus supplies in Shagawa Lake, Minnesota. Limnol Oceanogr,198,26:740-753
    204. Lasat M M. Phyto-extraction of toxic metals:A review of biological mechanisms. J Environ Quality,2002,31:109-120
    205. Lee J H, Bang K W. Characterization of urban stormwater runoff. Water Res,2000, 34(6):1773-1780
    206. Lerman A. Migrational processes and chemical reactions in interstitial waters. In: Goldberg E D, McCave I N, O'Brien, J J, Steele J H eds. The Sea Vol 6, New York: Wiley-Interscience,1997.695-738
    207. Li L Y, Hall K, Yuan Y, et al. Mobility and bioavailability of trace metals in the water-sediment system of the highly urbanized brunette watershed. Wat Air Soil Pollut,2009,197:249-266
    208. Lijklema L, Koelmans A A, Portielje R. Water quality impacts of sediment pollution and the role of early diagenesis. Water Sci Technol.,1993,28:1-12
    209. Lin J G, Chen S Y. The relationship between adsorption of heavy metals and organic matter in river sediments. Environ Internat,1998,24:345-352
    210. Liu Z W, Zhang Q F, Liu G H. Lake eutrophication associated with geographic location, lake morphology and climate in China. Hydrobiologia,2010,644:289-299
    211. Lucassen E C H E T, Smolders A J P, Roelofs J G M. Effects of temporary desiccation on the mobility of phosphorus and metals in sulphur-rich fens: differential responses of sediments and consequences for water table management. Wetl Ecol Manag,2005,13:135-148
    212. Luettich R A, Harleman D R F, Somlody L. Dynamic behaviour of suspended sediment concentrations in a shallow lake perturbed by episodic wind events. Limnol Oceasogr,1990,35:1050-1067
    213. Ma M, Zhu W, Wang Z, et al. Accumulation, assimilation and growth inhibition of copper on freshwater alga (Scenedesmus subspicatus 86.81 SAG) in presence of EDTA and fulvic acid. Aquat Toxicol,2003,63:221-228
    214. Macia H, Bates N, Neafus J E. Phosphorus release from sediments from Lake Carl Blackwell, Oklahoma. Water Res,1980,14:1477-1481
    215. Makela K, Tuominen L. Pore water nutrient profiles and dynamics in soft bottoms of the northern Baltic Sea. Hydrobiologia,2003,492:43-53
    216. Marvin C, Painter S, Williams D, et al. Spatial and temporal trends in surface water and sediment contamination in the Laurentian Great Lakes. Environ Pollut,2004, 129:131-144
    217. McCauley D T, DeCraeve G M, Linton T K. Sediment quality guidelines and assessment:overview and research needs. Environ Sci Policy,2000,3:133-134
    218. Moon J W, Moon H S, Woo N C, et al. Evaluation of heavy metal contamination and implication of multiple sources from Hunchun basin, northeastern China. Environ Geol,1999,39(9):1039-1052
    219. Morin J, Morse J W. Ammonium release from resuspended sediments in the Laguna Madre estuary. Mar Chem,1999,65 (1):97-110
    220. Morris J T, Bowden W B. A mechanistic, numerical model of sedimentation, mineralization, and decomposition for marsh sediments. Soil Sci Soc A merica J, 1986,50 (1):96-105
    221. Mortimer R J G, Davey J T, Krom M D, et al. The effect of macrofauna on porewater profiles and nutrient fluxes in the intertidal zone of the Humber Estuary. Estuar Coast Shelf Sci,1999,48:683-699
    222. Miiller G. Index of geo-accumulation in sediments of the Rhine River. Geol J,1969, 3:108-118
    223. Murray T E. The correlation between iron sulfide precipitation and hypolimnetic phosphorus accumulation during one summer in a softwater lake. Can J Fish Aquat Sci,1995,52:1190-1194
    224. Nixdorf B, Deneke R. Why'very shallow'lakes are more successful opposing reduced nutrient loads. Hydrobiologia,1997,342/343:269-284
    225. Novotny V, Olem H. Water quality:Prevention, identification and management of diffuse pollution. New York:Van Nostrand Reinhold,1994
    226. Nriagu J O, Pacyna J M. Quantitative assessment of worldwide contamination of air, water and soils by trace metals. Nature,1988,333:134-140
    227. Oglivie B, Nedwell D B, Harrison R M, et al. High nitrate, muddy estuarine as nitrogen sinks:the nitrogen budget of the River Colne estuary (United Kingdom). Mar Ecol Prog Ser,1997,150:21-28
    228. Padisak J, Reynolds C S. Selection of phytoplankton associations in Lake Balaton, Hungary, in response to eutrophication and restoration measures, with special reference to Cyana prokaryotes. Hydrobiologia,1998,383:41-53
    229. Paerl H W. Coastal eutrophication in relation to atmospheric nitrogen deposition: Current perspectives. Ophelia,1995,41:237-259
    230. Park S U, Lee Y H. Spatial distribution of wet deposition of nitrogen in South Korea. Atmos Envir,2002,36(4):619-628
    231. Petterson K. Mechanisms for internal loading of phosphorus in lakes. Hydrobiologia, 1997,374:21-25
    232. Pienitz R, Smol J P, Lean D P S. Physical and chemical limnology of 59 lakes located between the southern Yukon and the Tuktoyaktuk Peninsula, Northwest Territories (Cananda). Can J Fish Aquat Sci,1996,54:330-346
    233. Pomeroy L R, Smith E E, Grant C M. The exchange of phosphorus between estuarine water and sediments. Limnol Oceanogr,1965,10 (1):167-172
    234. Qin B Q, Zhu G W, Zhang L, et al. Estimation of internal nutrient release in large shallow Lake Taihu, China. Sci China Ser D Earth Sci,2006,49(Supp.):38-50
    235. Qu W C, Morrison R J, West R J, et al. Diagenetic stoichiometry and benthic nutrient fluxes at the sediment-water interface of Lake Illawarra, Australia. Hydrobiologia,2005,537:249-264
    236. Ramin N, Bates M H. The effects of pH on the aluminum, iron and calcium phosphate fraction of lake sediments. Water Res,1979,13:813-815
    237. Reddy K R, Fisher M M, Ivanoff D. Resuspension and diffusive flux of nitrogen and phosphorus in a hypereutrophic lake. J Envir Qual,1999,25:363-371
    238. Reynolds C S, Petersen A C. The distribution of planktonic Cyanobacteria in Irish lakes in relation to their trophic states. Hydrobiologia,2000,424:91-99
    239. Rich J J, Olivia R D, Song B, et al. Anaerobic ammonium oxidation (Anammox) in Chesapeake Bay sediments. Microb Ecol,2008,55:311-320
    240. Rosales H L, Edwards A C, Hernandez M L. Heavy metals in sediments of a large, turbid tropical lake affected by anthropogenic discharges. Environ Geo,2000,139: 378-383
    241. Rosales H L, Edwards A C. Heavy metals in sediments from Coatzacoalcos River, Mexico. Bull Environ Contamin Toxicol,1998,60:553-561
    242. Rossi G, Premazzi G. Delay in lake recovery caused by internal loading. Water Res, 1991,25,567-575
    243. Ruban V, Demare D. Sediment phosphorus and internal phosphate flux in the hydroelectric reservoir of Bort-les-Orgues, France. Hydrobiologia,1998,373/374: 349-359
    244. Ruttenberg K C. Development of a sequential extraction method for different forms of phosphorus in marine sediments. Limnol Oceanogr,1992,37:1460-1482
    245. Rydin E. Mobile phosphorus in lake sediments, sludge and soil. A catchment perspective. Acta Universitatis Upsaliensis. Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology,1999,426, Uppsala:35
    246. Rydin E. Potentially mobile phosphorus in lake Erken sediment.Water Res,2000,34: 2037-2042
    247. Ryding S O, Walter R. The control of eutrophication of lake and reservoirs. Paris: UNESCO and the Parthenon Publishing Group,1992
    248. Samara C. Phosphorus fractionation in lake sediment-Lakes Volvi and Koronia, N. Greece. Chemosphere,2002,46(8):1147-1155
    249. Sas H. Lake restoration by reduction of nutrient loading:Expectations, experiences, extrapolations. St Augustin, Germany:Academia Ver Richarz,1989
    250. Scheffer M. Ecology of shallow Lakes. New York:Chapman and Hall.1998
    251. Schindler D W, Hecky R E, Findlay D L, et al. Eutrophication of lakes cannot be controlled by reducing nitrogen input:results of a 37 year whole ecosystem experiment. Proc Nat Acad Sci,2008,105:11254-11258
    252. Schultz P, Urban N R. Effects of bacterial dynamics on organic matter decomposition and nutrient release from sediments:A modeling study. Ecol model, 2008, (210):1-14
    253. Seidemann D E. Metal pollution in sediment of Jamaica Bay, New York, USA-an urban estuary. Environ Manage,1991,15:73-81
    254. Seitzinger S P. Denitrification in freshwater and coastal marine ecological and geochemical significance. Limnol Oceanogr,1988,33:702-724
    255. Selig U. Particle size-related phosphate binding and P-release at the sediment-water interface in a shallow German lake. Hydrobiologia,2003,492:107-118
    256. Shang G P, Shang J C. Spatial and Temporal Variations of Eutrophication in Western Chaohu Lake, China. Environ Monit Assess,2007,130:99-109
    257. Shen J, Liu E F, Zhu Y X, et al. Distribution and chemical fractionation of heavy metals in recent sediments from Lake Taihu, China. Hydrobiologia,2007,581: 141-150
    258. Shriadah M A. Metals pollution in marine sediments of the United Arab Emirates creeks along the Arabian Gulf shoreline. Bull Environ Contamin Toxicol,1998,60: 417-424
    259. Simpson N, Sarkar D, Datta R, et al. Effects of sewage sludge disposal on metal content in the sediment and water of Mitchell Lake, San Antonio, Texas, USA. Bull Environ Contamin Toxicol,2006,77:104-111
    260. Singh K P, Mohan D, Singh V K, et al. Studies on distribution and fractionation of heavy metals in Gomti river sediments-a tributary of the Ganges, India. J Hydrol, 2005,312:14-27
    261. Sinke A, Cornelese A A, Keizer P, et al. Mineralization, pore water chemistry and phosphorus release from peaty sediments in the eutrophic Loosdrecht lakes, Netherlands. Freshwat Biol,1990,23:587-599
    262. Slomp C P, van der Gaast S J, van Raaphorst W. Phosphorus binding by poorly crystalline iron oxides in North Sea sediments. Mar Chem,1996,52:55-73
    263. Smith V H, Tilman G D, Nekola J C. Eutrophication:impacts of excess nutrient inputs on freshwater, marine and terrestrial ecosystems. Envir Pollut,1999,100: 179-169
    264. Smolders A, Roelofs J G M. Sulphate-mediated iron limitation and eutrophication in aquatic ecosystems. Aquat Bot,1993,46:247-253
    265. Smullen J T, Shalllcross A L, Cave K A. Updating the U S nationwide urban runoff quality database. Wat Sci Tech,1999,39(12):9-16
    266. Sondergaard M, Jensen J P, Jeppesen E. Retention and internal loading of phosphorus in shallow, eutrophic lakes. Sci World,2001,1:427-442
    267. S(?)ndergaard M, Jensen J P, Jeppesen E. Role of sediment and internal loading of phosphorus in shallow lakes. Hydrobiologia,2003,506-509:135-145
    268. S(?)ndergaard M, Kristensen P, Jeppesen E. Phosphorus release from resuspended sediment in the shallow and wind-exposed Lake Arreso, Denmark. Hydrobiologia, 1992,228:91-99
    269. S(?)ndergaard M, Windolf J, Jeppesen E. Phosphorus fractions and profiles in the sediment of shallow Danish lakes as related to phosphorus load, sediment composition and lake chemistry. Wat Res,1996,4:992-1002
    270. Span D, Arbouille D, Howa H, et al. Variation of nutrient stocks in the superficial sediments of the Lake Geneva from 1978 to 1988. Hydrobiologia,1990,207: 161-166
    271. Sridharan N, Lee G F. Phosphorus studies in lower Green Bay Lake Michigan. J Wat Pollut Control Fed,1974,46:648-696
    272. Srinivasan R, Ramannarayanan T S, Arnold J G, et al. Large area hydrologic modeling and assessment part II:Model application. J Am Water Res Assoc,1998, 34(1):91-101
    273. Strauss E A. Nitrification in the Upper Mississippi River:Patterns, controls, and contribution to the NO3-budget. J North Am Benthol Soc,2004,23(1):1-14
    274. Sweerts J P, St Louis V, Cappenberg T E. Oxygen concentration profiles and exchange in sediment cores with circulated overlying water. Freshwat Biol,1989,21: 401-409
    275. Thorsson M H, Hedman J E, Bradshaw C, et al. Effects of settling organic matter on the bioaccumulation of cadmium and BDE-99 by Baltic Sea benthic invertebrates. Mar Environ Res,2008,65:264-281
    276. Urban N R, Dinkel C, Wehrli B. Solute transfer across the sediment surface of a eutrophic lake:I. Porewater profiles from dialysis samplers. Aquat Sci,1997,1-25
    277. US EPA. National Water Quality Inventory. Report to Congress Executive Summary. Washington DC:USEPA,1995
    278. van der Molen D T, Boers P C M. Influence of internal phosphorus loading on phosphorus concentration in shallow lakes before and after reduction of the external loading. Hydrobiologia.1994,275/276:379-389
    279. Vazquez F G, Sharma V K, Cruz L P. Concentrations of elements and metals in sediments of the southeastern Gulf of Mexico. Environ Geol,2002,42:41-46
    280. Wallschlage D, Desai M V M, Spengler M, et al. How humic substances dominate mercury geochemistry in contaminated floodplain soils and sediments. J Environ Qual,1998,27 (5):1044-1054
    281. Wang H, Wang C X, Wang Z J, et al. Fractionation of heavy metals in surface sediments of Taihu Lake, east China. Environ Geochem Health,2004,26:303-309
    282. Wangerski P J. Biological control of trace metal residence time and speciation:a review and synthesis. Mar Chem,1986,18:269-297
    283. Waston S B, Mccauley E, Downing J. Sigmoid relationships between phosphorus, algal biomass, and algal community structure. Can J Fish Aquat Sci,1992,49: 2605-2610
    284. Wetzel R G. Limnology:Lake and River Ecosystem (Third Edition). San Diego: Academic Press, USA,2001
    285. Wu F, Qing H, Wan G. Regeneration of N, P and Si near the sediment/water interface of lakes from southwestern China plateau. Wat Res,2001,35(5): 1334-1337
    286. Xie L Q, Xie P, Tang H J. Enhancement of dissolved phosphorus release from sediment to lake water by Microcystis blooms-an enclosure experiment in a hyper-eutrophic, subtropical Chinese lake. Envir Pollut,2003,122:391-399
    287. Xie, L Q, Xie, P. Long-term dynamics of phosphorus in a shallow, subtropical Chinese lake with the possible effects of cyanobacterial blooms. Water Res,2002,36: 343-349
    288. Yamamuro M, Koike I. Concentrations of nitrogen in sandy sediments of a eutrophic estuarine lagoon. Hydrobiologia,1998,386 (1-3):37-44
    289. Yang H, Rose N L, Battarbee R W. Distribution of some trace metals in Lochnagar, a Scottish mountain lake ecosystem and its catchment. Sci Total Environ,2002,285: 197-208
    290. Yang H, Rose N.L. Trace element pollution records in some UK lake sediments, their history, influence factors and regional differences. Environ Internat,2005,31: 63-75
    291. Yang M, Yu J W, Li Z L, et al. Taihu Lake not to blame for Wuxi's woes. Science, 2008,319:158
    292. Ye W J, Liu X, Tan J, et al. Diversity and dynamics of microcystin-producing cyanobacteria in China's third largest lake, Lake Taihu. Harmful Algae,2009,8(5): 637-644
    293. Zhang M, Xu J, Xie P. Metals in surface sediments of large shallow eutrophic Lake Chaohu, China. Bull Environ Contamin Toxicol,2007,79:242-245
    294. Zhou Q, Gibson C E, Zhu Y. Evaluation phosphorus bioavailability in sediment of three contrasting lakes in China and the UK. Chemosphere,2001,42(2):221-225
    295. Zhu G W, Qin B Q, Gao G. Direct evidence of phosphorus outbreak release from sediment to overlying water in a large shallow lake caused by strong wind. Chinese Sci Bull,2005,50(6):577-582
    296. Zicker E L, Berger K C, Hasler A D. Phosphorus release from bog lake muds. Limnol Oceanogr,1956,1:296-303
    297. Zoumis T, Schmidt A, Grigorova L, et al. Contaminants in sediments:remobilization and demobilization. Sci Total Environ,2001,266:195-202

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700