用户名: 密码: 验证码:
潮滩湿地植物对磷素迁移转化及截留的影响机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
磷(P)是生态系统中必须的营养元素,也是导致水体富营养化关键因子之一。由磷污染引发的湖泊、河口和近海水体富营养化是当今世界面临的重大环境问题。湿地被誉为“地球之肾”,滨岸潮滩湿地是重要的湿地类型之一,位于海陆交错地带,具有较强的过滤和沉降外来污染物的能力。潮滩湿地是全球磷的主要源、汇和转换器之一,在全球磷循环过程中扮演着十分重要的角色,其对水体磷素的截留能力日益受到关注。但是,有关潮滩湿地系统磷素截留作用中生物因子的驱动过程和机制依然缺乏研究。本论文以我国杭州湾南岸典型潮滩湿地为研究区,通过野外定位观测和室内模拟实验,研究典型潮滩植物对磷素的吸收、植物枯落物分解及其磷素释放、沉积物磷素形态分布及其季节动态,分析沉积物物理化学因子与磷形态分布及转化的关系,探讨植物影响下沉积物微生物和酶活性变化对磷素形态及其转化的作用。研究结果主要包括:
     1、获取了潮滩湿地植物生物量、P含量动态及枯落物分解与磷素释放特征。3种优势植物芦苇(Phragmites australis)、互花米草(Spartina alterniflora)和海三棱蔗草(Scirpus mariqueter)地上生物量呈典型的单峰值曲线,P含量随植物生长而逐渐降低。地下生物量及根系P含量变化相对不明显。植物P储量与植物生物量显著正相关,表现为互花米草>芦苇>海三棱蔗草。从净化功能上考虑,7月可认为是本研究区域三种植物的最佳收割时间。分解袋法模拟实验表明,枯落物分解具有明显的阶段性,初期(0-15d)损失最快。地下根系分解速率表现为:海三棱蔗草>芦苇>互花米草,地上部分则相反。植物不同部位分解95%所需时间在1.2~8.3年之间。植物分解速率与C/N比相关性不显著,而受C/P比影响较大。环境因子中的大气温度对分解也有影响。
     2、明确了沿岸潮间带和离岸沙洲两种类型潮滩湿地沉积物中磷形态分布特征及其影响因素。沉积物中各形态磷含量表现为Exch-P     3、分析了植物对杭州湾潮滩沉积物-水界面磷素吸附特征的影响。磷酸盐吸附动力学实验表明,沉积物磷的吸附与释放过程包括快速吸附(0-1h)、慢速吸附(1-16h)和平衡(16~72h)三个阶段,植被类型的差异没有明显影响这一趋势,取48h为等温吸附实验的平衡时间。利用改进的Langmuir模型拟合等温吸附过程表明,研究区最大吸附容量(Qmax)在154.5~436.3mg·kg-1间,相比周边区域较高,生长植物的沉积物Qmax明显高于裸滩沉积物。沉积物本底吸附态磷(NAP)较少,分布趋势与Qmax值相似。四种植被类型沉积物间吸附解吸平衡浓度(EPC0)差异较小,且EPCo值低于潮汐水体中PO43--P浓度,说明沉积物主要扮演“汇”的角色。研究区沉积物Qmax口NAP受OM、颗粒组成和TIP含量影响,其中Qmax还受EC影响。说明植物可以通过影响沉积物的物理化学参数,进而影响PO43--P的吸附过程。但研究区EPCo与沉积物理化性质不存在显著相关性。这可能与研究区受潮汐的影响,水体化学环境因子变化剧烈有关。
     4、探讨了植物及其影响下的沉积物生物化学性质与磷形态分异的关系。春秋两个季节的调查表明,碱性磷酸酶活性表现为夏季高于春季,植物生长下沉积物高于裸滩沉积物,说明其具有显著的空间和时间分布特征。沉积物碱性磷酸酶活性与Fe/Al-P含量显著正相关,与Ca-P含量显著负相关,说明碱性磷酸酶影响着沉积物中磷形态转化。利用Biolog生态板对沉积物微生物群落的功能多样性分析表明,随着植被的演替,沉积物微生物群落功能多样性增加。不同植被类型沉积物微生物群落代谢过程的主要区别在于对糖类及其衍生物和氨基酸及其衍生物等碳源利用的不同。微生物总PLFAs表现为:互花米草>芦苇>海三棱蔗草>裸滩,说明植物生长下沉积物中微生物数量比裸滩要高。沉积物细菌PLFAs与碱性磷酸酶活性显著相关,但不同类型微生物群落生物量与沉积物磷形态含量没有显著的相关关系,需要进一步关注磷素循环的关键功能菌群研究。
     5、分析了磷储量在杭州湾潮滩湿地沉积物-植物系统的分配,并评估了杭州湾潮滩湿地磷的截留效应。系统中98%以上的磷分布在沉积物系统中,而植物系统的储量占的百分比很小。根据植物的净初级生产力,湿地植物通过吸收磷素对水体的净化系数为6.04~24.0t·(m-2yr-1)。根据颗粒沉积速率,湿地沉积物对磷的截留效应为25.4~31.5g·(m-2y-1)。且沉积物的截留作用远高于植物。总体上,潮滩湿地沉积物-植物系统具有较高的磷素截留效应,保护滨岸湿地对减轻水体富营养化具有重要作用。
Eutrophication of surface water body is a worldwide concern. Phosphorus (P) is one of the key nutrients that can cause algal blooms and other water quality problems in lakes, rivers and estuaries. Wetlands are called the "Kidney of the Earth". Coastal wetland is one type of wetlands composed of a complex and assemblage of swamps, marshes, mudflats and etc. As a transitional zone between terrestrial and marine ecosystems, salt marshes are one of the most biologically productive habitats that drive P cycles. The important ecosystem functions particularly nutrient recycling of coastal wetlands has attracted great attention. However, the driving processes and mechanisms of biological factor in P retention of the tidal flat coastal wetland system are still lack of extensive research. In this thesis, the South Bank of Hangzhou Bay, a typical tidal wetland was taken as the study area. By field investigation and litterbag field experiment, the P retention by marsh plants and sediments were evaluated. Plant litter decomposition and release of P from sediment were studied by litterbag field experiment. We investigated typical intertidal plants on P absorption by batch incubation experiments. The influences of sediment properties and macrophytes on phosphorous speciation in the intertidal marsh were investigated. We also analyze the relationship between sediment microbial biomass, enzyme activity and P forms distribution and transformation. The followings were the main results.
     (1) The plant biomass, concentration and pools of P were measured seasonally in three marsh species Phragmites australis, Spartina alterniflora and Scirpus mariqueter. Results showed that plant aboveground biomass displayed a unimodal curve with nutrient concentration generally decreased from spring to winter. The belowground biomass was relatively low during the rapid growth period with nutrient concentration tended to decrease and then increase during this period. Plant total P (TP) pools showed significant seasonal variations and were significantly correlated to plant biomass. The pools among plant species were under S. mariqueter P. australis> S. alterniflora, while the trend is opposite for that of aboveground tissues. The time needed for95%of dry mass decomposition in the plant tissues is between 1.2-8.3a. Pearson's correlation coefficient shows that there is no significant correlation between the litter decomposition rate and C/N ratio. However, the litter C/P ratio effects greatly on plant decomposition rate. Environmental factors in the atmospheric temperature also have an impact on the decomposition rate of leaves.
     (2) The influences of sediment properties and plant community types on P speciation in sediments under four plant community types in the tidal flat and offshore sandbar were investigated. The rank order of P species in sediment based on concentration was exchangeable P (Exch-P)     (3) Phosphate adsorption kinetics and isotherms on sediment under different plant community types in Hangzhou Bay wetland were studied, and the influence of the sediment physicochemical properties on P sorption characteristics were analyzed. The results showed that there were three stages during sediment adsorption process with rapid adsorption (0-1h), slow adsorption (1~16h) and balance (16~72h). The trend was not affected significantly by different plants. Indexes fitted from improved Langmuir model showed that sediment Qmax is between154.5~436.3mg·kg-1, and is significantly higher in sediment with plant growth than that of bare mudflat. The Qmaxis also higher than the results of adjacent areas. Sediment NAP is between1.84~4.78mg·kg-1, indicating a low native adsorbed exchangeable P. NAP trends between different types of sediments are similar to that of Qmax values. Sediments EPC0under different plant community types are lower than soluble reactive P concentration in the overlying water. So the sediment acts as the P "sink" from tidal water. The variation of EPCo between different sediments is minor. Correlation analysis showed that the sediment Qmax and NAP in Hangzhou Bay wetland were affected by organic matter, particle composition and total inorganic P concentration, and Qmax is also affected by the electrical conductivity value. However, there are no significant correlations between sediments EPCo and physicochemical properties. In conclusion of that, plants can affect the physical and chemical parameters of sediments, thus affecting the adsorption kinetics and isotherms of P.
     (4) The influences of sediment biochemical properties and plant community types on P speciation in sediments were investigated. Surveys carried out in spring and autumn showed that alkaline phosphatase activity (APA) varied among seasons and plant community types. There were significant positive correlation between APA and Fe/Al-P concentrations, and significant native correlation between APA and Ca-P. This indicates that APA affects the transformation of P forms in sediments. Sediment microbial community functional diversity analysis using Biolog Eco-plate showed that the sediment microbial carbon metabolic function diversity increased with the succession of plant community. Analysis of PCA showed that carbon sources of sugars and amino acids and their derivatives indicate strong differentiation for the microbial communities under different plant community types. Microbial total PLFAs were under S. alterniflora> P. australis> S. mariqueter> bare mudflut. The plant growth increased the microbial biomass than that of bare mudflut. There was significant positive correlation between bacteria PLFAs and APA, while no significant positive correlation between different types of microbial biomass and different P species. As a result, further attention on key functional bacteria in P cycling was needed.
     (5) The distribution patter of P pools in the sediments and plants were analyzed. Phosphours retention capacity during the process of plants uptake and sedimentation in the marshes were calculated. More than98%of the P pools distributed in sediment while only little percent in plant system. The water purification coefficient (WPC) of P by plant assimilation was6.04~24.0t·(m-2yr-1). According to the sedimentation rate, retention of P in sediments were25.4~31.5g·(m-2yr-1). Sediment has a higher retention capacity than that of plants. Overall, these results suggest that higher annual plant biomass and nutrient assimilation contribute to greater nutrient retention capacity and accumulation in sediments, thereby enabling reduced eutrophication in the transitional waters.
引文
Allison V J, Condron L M, Peltzer D A, et al. Changes in enzyme activities and soil microbial community composition along carbon and nutrient gradients at the Franz Josef chronosequence, New Zealand. Soil Biology and Biochemistry,2007,39:1770-1781.
    Alvarez-Rogel J, Jimenez-Carceles F J, Egea-Nicol s C. Phosphorus retention in a coastal salt marsh in SE Spain. Science of The Total Environment,2007,378:71-74.
    Andrieux-Loyer F, Aminot A. Phosphorus Forms Related to Sediment Grain Size and Geochemical Characteristics in French Coastal Areas. Estuarine, Coastal and Shelf Science,2001,52:617-629.
    Ann Y, Reddy K R, Delfino J J. Influence of chemical amendments on phosphorus immobilization in soils from a constructed wetland. Ecological Engineering,1999,14: 157-167.
    Ansola G, Arroyo P, Saenz D M L. Characterisation of the soil bacterial community structure and composition of natural and constructed wetlands. Science of The Total Environment, 2014,473-474:63-71.
    Aon M A, Colaneri A C. Temporal and spatial evolution of enzymatic activities and physico-chemical properties in an agricultural soil. Applied Soil Ecology,2001,18: 255-270.
    Appan A, Wang H. Sorption isotherms and kinetics of sediment phosphorus in a tropical reservoir. Journal of environmental engineering,2000,126:993-998.
    Bowman R A, Cole C V. An exploratory method for fractionation of organic phosphorus from grassland soils. Soil Science,1978,125:95-101.
    Bruland G L, Richardson C J. An Assessment of the Phosphorus Retention Capacity of Wetlands in the Painter Creek Watershed, Minnesota, USA. Water, Air, and Soil Pollution,2006,171:169-184.
    Cacador I C V. Nitrogen sequestration capacity of two salt marshes from the Tagus estuary. Hydrobiologia,2007,587:137-145.
    Carignan R, Vaithiyanathan P. Phosphorus availability in the Parana floodplain lakes (Argentina):Influence of pH and phosphate buffering by fluvial sediments. Limnology and Oceanography,1999,44:1540-1548.
    Chang S C, Jackson M L. Fractionation of soil phosphorus. Soil Science,1957,84:133-144.
    Choi K, Dobbs F C. Comparison of two kinds of Biolog microplates (GN and ECO) in their ability to distinguish among aquatic microbial communities. Journal of Microbiological Methods,1999,36:203-213.
    Chung C H, Zhuo R Z, Xu G W. Creation of Spartina plantations for reclaiming Dongtai, China, tidal flats and offshore sands. Ecological Engineering,2004,23:135-150.
    Coelho J P, Flindt M R, Jensen H S, et al. Phosphorus speciation and availability in intertidal sediments of a temperate estuary:relation to eutrophication and annual P-fluxes. Estuarine, Coastal and Shelf Science,2004,61:583-590.
    Davis S M. Patterns of radiophosphorus accumulation in the everglades florida usa after its introduction into surface water. Bulletin of The Ecological Society of America,1991,72: 97.
    Deng J J, Jiang C H, Hu J W, et al. Studies on Activity of Alkaline Phosphatase and Phosphorus Speciation in Sediments from Lake Hongfeng, China. Advanced Materials Research,2010,113:412-415.
    DeSilva C, Bhosle N B. Phosphorus availability and phosphatase activity in the sediments of Mandovi estuary, Goa. Indian Journal of Marine Sciences,1990,19:143-144.
    Ding N, Guo H, Hayat T, et al. Microbial community structure changes during Aroclor 1242 degradation in the rhizosphere of ryegrass (Lolium multiflorum L.). FEMS Microbiology Ecology,2009,70:305-314.
    Dong L, Yang Z, Liu X. Phosphorus fractions, sorption characteristics, and its release in the sediments of Baiyangdian Lake, China. Environmental Monitoring and Assessment, 2011,179:335-345.
    Dunne E J, Culleton N, O Donovan G, et al. Phosphorus retention and sorption by constructed wetland soils in Southeast Ireland. Water Research,2005,39:4355-4362.
    Dunne E J, Smith J, Perkins D B, et al. Phosphorus storages in historically isolated wetland ecosystems and surrounding pasture uplands. Ecological Engineering,2007,31:16-28.
    E. Lindstrom J, P. Barry R, Braddock J F. Microbial community analysis:a kinetic approach to constructing potential C source utilization patterns. Soil Biology and Biochemistry, 1998,30:231-239.
    Ehrenfeld J G. Ecosystem consequences of biological invasions. Annual Review of Ecology Evolution and Systematics,2010,41:59-80.
    Ehrenfeld J G. Effects of exotic plant invasions on soil nutrient cycling processes. Ecosystems, 2003,6:503-523.
    Fabre A, Qotbi A, Dauta A, et al. Relation between algal available phosphate in the sediments of the River Garonne and chemically-determined phosphate fractions. Hydrobiologia, 1996,335:43-48.
    Fan Y, Li S. Fractionation of moderately and highly stable organic phosphorus in acid soil. Pedosphere,1998,8:261-266.
    Fan Y, Xiong H, Li S. Some improvements of the fractionation method of organic phosphorus in calcareous soils. Geoderma,1999,93:195-206.
    Fang T H. Partitioning and Behaviour of Different Forms of Phosphorus in the Tanshui Estuary and One of its Tributaries, Northern Taiwan. Estuarine, Coastal and Shelf Science,2000,50:689-701.
    Faulwetter J L, Gagnon V, Sundberg C, et al. Microbial processes influencing performance of treatment wetlands:a review. Ecological engineering,2009,35:987-1004.
    Fisk M C, Ruether K F, Yavitt J B. Microbial activity and functional composition among northern peatland ecosystems. Soil Biology and Biochemistry,2003,35:591-602.
    Froelich P N. Kinetic control of dissolved phosphate in natural rivers and estuaries:A primer on the phosphate buffer mechanism. Limnology and oceanography,1988,649-668.
    Gao X J, Xu S Y, Zhang N L. Distribution and forms of phosphorus in tidal flat sedimentsof the Yangtze Estuary and coast. Science in China (Series B),2001,44:190-196.
    Garland J L, Mills A L. Classification and characterization of heterotrophic microbial communities on the basis of patterns of community-level sole-carbon-source utilization. Applied and Environmental Microbiology,1991,57:2351-2359.
    Gerdes P, Kunst S. Bioavailability of phosphorus as a tool for efficient P reduction schemes. Water Science and Technology,1998,37:241-247.
    Gessner M O. Breakdown and nutrient dynamics of submerged Phragmites shoots in the littoral zone of a temperate hardwater lake. Aquatic Botany,2000,66:9-20.
    Golterman H L. Fractionation of sediment phosphate with chelating compounds:a simplification, and comparison with other methods. Hydrobiologia,1996,335:87-95.
    Golterman H L. The calcium- and iron bound phosphate phase diagram. Hydrobiologia,1988, 159:149-151.
    Gonzalez-Alcaraz M N, Egea C, Jimenez-Carceles F J, et al. Storage of organic carbon, nitrogen and phosphorus in the soil-plant system of Phragmites australis stands from a eutrophicated Mediterranean salt marsh. Geoderma,2012,185-186:61-72.
    Guo F, Yost R S, Jones R C. Evaluating iron-impregnated paper strips for assessing available soil phosphorus. Communications in Soil Science and Plant Analysis,1996,27: 2561-2590.
    Hedley M J, Stewart J, Chauhan B S. Changes in inorganic and organic soil phosphorus fractions induced by cultivation practices and by laboratory incubations. Soil Science Society of America Journal,1982,46:970-976.
    Hieltjes A H, Lijklema L. Fractionation of inorganic phosphates in calcareous sediments. Journal of Environmental Quality,1980,9:405-407.
    Hogan D M, Jordan T E, Walbridge M R. Phosphorus retention and soil organic carbon in restored and natural freshwater wetlands. Wetlands,2004,24:573-585.
    Hou L J, Liu M, Ou D N, et al. Influences of the macrophyte (Scirpus mariqueter) on phosphorous geochemical properties in the intertidal marsh of the Yangtze Estuary. Journal of Geophysical Research:Biogeosciences,2008,113:G4038.
    House W A, Denison F H. Exchange of inorganic phosphate between river waters and bed-sediments. Environmental Science & Technology,2002,36:4295-4301.
    Huo S, Zan F, Xi B, et al. Phosphorus fractionation in different trophic sediments of lakes from different regions, China. Journal of Environmental Monitoring,2011,13: 1088-1095.
    Hupfer M, Dollan A. Immobilisation of phosphorus by iron-coated roots of submerged macrophytes. Hydrobiologia,2003,506-509:635-640.
    Ivanoff D B, Reddy K R. Chemical fractionation of organic phosphorus in selected histosols. Soil Science,1998,163:36-45.
    Jensen H S, Kristensen P, Jeppesen E, et al. Iron:phosphorus ratio in surface sediment as an indicator of phosphate release from aerobic sediments in shallow lakes. Hydrobiologia, 1992,235-236:731-743.
    Jensen H S, McGlathery K J, Marino R, et al. Forms and availability of sediment phosphorus in carbonate sand of Bermuda seagrass beds. Limnology and Oceanography,1998,43: 799-810.
    Jimenez-Carceles F J, Alvarez-Rogel J. Phosphorus fractionation and distribution in salt marsh soils affected by mine wastes and eutrophicated water:A case study in SE Spain. Geoderma,2008,144:299-309.
    Jin X, Wang S, Pang Y, et al. Phosphorus fractions and the effect of pH on the phosphorus release of the sediments from different trophic areas in Taihu Lake, China. Environmental Pollution,2006,139:288-295.
    Jin X, Wang S, Pang Y, et al. The adsorption of phosphate on different trophic lake sediments. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2005,254: 241-248.
    Jordan T E, Cornwell J C, Boynton W R, et al. Changes in phosphorus biogeochemistry along an estuarine salinity gradient, The iron conveyer belt. Limnol Oceanogr,2008,53: 172-184.
    Kang S, Kang H, Ko D, et al. Nitrogen removal from a riverine wetland:a field survey and simulation study of Phragmites japonica. Ecological Engineering,2002,18:467-475.
    Karjalainen H, Stefansdottir G, Tuominen L, et al. Do submersed plants enhance microbial activity in sediment? Aquatic Botany,2001,69:1-13.
    Katsaounos C Z, Giokas D L, Leonardos I D, et al. Speciation of phosphorus fractionation in river sediments by explanatory data analysis. Water Research,2007,41:406-418.
    Koch M S, Benz R E, Rudnick D T. Solid-phase Phosphorus Pools in Highly Organic Carbonate Sediments of Northeastern Florida Bay. Estuarine, Coastal and Shelf Science, 2001,52:279-291.
    Kr A Mer S, Green D M. Acid and alkaline phosphatase dynamics and their relationship to soil microclimate in a semiarid woodland. Soil Biology and Biochemistry,2000,32: 179-188.
    Labry C, Delmas D, Herbland A. Phytoplankton and bacterial alkaline phosphatase activities in relation to phosphate and DOP availability within the Gironde plume waters (Bay of Biscay). Journal of Experimental Marine Biology and Ecology,2005,318:213-225.
    Ladygina N, Hedlund K. Plant species influence microbial diversity and carbon allocation in the rhizosphere. Soil Biology and Biochemistry,2010,42:162-168.
    Lai D Y F, Lam K C. Phosphorus rention and release by sediments in the euirophic Mai Po Marshes, Hong Kong. Marine Pollution Bulletin,2008,57:349-356.
    Lavery P S, Oldham C E, Ghisalberti M. The use of Fick's First Law for predicting porewater nutrient fluxes under diffusive conditions. Hydrological Processes,2001,15:2435-2451.
    Lee A A, Bukaveckas P A. Surface water nutrient concentrations and litter decomposition rates in wetlands impacted by agriculture and mining activities. Aquatic Botany,2002, 74:273-285.
    Li B, Liao C, Zhang X, et al. Spartina alterniflora invasions in the Yangtze River estuary, China:An overview of current status and ecosystem effects. Ecological Engineering, 2009,35:511-520.
    Liang W, Wu Z, Cheng S, et al. Roles of substrate microorganisms and urease activities in wastewater purification in a constructed wetland system. Ecological Engineering,2003, 21:191-195.
    Liao C Z, Luo Y Q, Fang C M, et al. Litter pool sizes, decomposition, and nitrogen dynamics in Spartina alterniflora-invaded and native coastal marshlands of the Yangtze Estuary. Oecologia,2008,156:589-600.
    Liao C, Peng R, Luo Y, et al. Altered ecosystem carbon and nitrogen cycles by plant invasion: a meta-analysis. New Phytologist,2008,177:706-714.
    Lillebo A I, Neto J M, Flindt M R, et al. Phosphorous dynamics in a temperate intertidal estuary. Estuarine, Coastal and Shelf Science,2004,61:101-109.
    Liu M, Xu S Y, HoU L J, et al. Phosphorous Forms in Sediments and Their Distribution in the Yangtze Estuary and Coastal Areas. Marine Science Bulletin,2001,55-62.
    Lopez P, Lluch X, Vidal M, et al. Adsorption of phosphorus on sediments of the Balearic Islands (Spain) related to their composition. Estuarine, Coastal and Shelf Science,1996, 42:185-196.
    Maricle B R, Lee R W. Aerenchyma development and oxygen transport in the estuarine cordgrasses Spartina alterniflora and S. anglica. Aquatic Botany,2002,74:109-120.
    Marinucci A C. Trophic importance of Spartina alterniflora production and decomposition to the marsh-estuarine ecosystem. Biological conservation,1982,22:35-58.
    McLatchey G P, Reddy K R. Regulation of organic matter decomposition and nutrient release in a wetland soil. Journal of Environmental Quality,1998,27:1268-1274.
    Mitsch W J, Day J W, Gilliam J W, et al. Reducing Nitrogen Loading to the Gulf of Mexico from the Mississippi River Basin:Strategies to Counter a Persistent Ecological Problem Ecotechnology-the use of natural ecosystems to solve environmental problems-should be a part of efforts to shrink the zone of hypoxia in the Gulf of Mexico. BioScience, 2001,51:373-388.
    Nannipieri P, Ascher J, Ceccherini M T, et al. Microbial diversity and soil functions. European Journal of Soil Science,2003,54:655-670.
    Nixon S W, Ammerman J W, Atkinson L P, et al. The fate of nitrogen and phosphorus at the land-sea margin of the North Atlantic Ocean. Biogeochemistry,1996,35:141-180.
    Ogrinc N, Faganeli J. Phosphorus regeneration and burial in near-shore marine sediments (the Gulf of Trieste, northern Adriatic Sea). Estuarine, Coastal and Shelf Science,2006,67: 579-588.
    Palomo L, Clavero V, Izquierdo J J, et al. Influence of macrophytes on sediment phosphorus accumulation in a eutrophic estuary (Palmones River, Southern Spain). Aquatic Botany, 2004,80:103-113.
    Palomo L, Niell F X. Primary production and nutrient budgets of Sarcocornia perennis ssp. alpini (Lag.) Castroviejo in the salt marsh of the Palmones River estuary (Southern Spain). Aquatic Botany,2009,91:130-136.
    Paludan C, Morris J T. Distribution and speciation of phosphorus along a salinity gradient in intertidal marsh sediments. Biogeochemistry,1999,45:197-221.
    Pant H K, Reddy K R. Phosphorus sorption characteristics of estuarine sediments under different redox conditions. Journal of Environmental Quality,2001,30:1474-1480.
    Pant H K, Reddy K R, Lemon E. Phosphorus retention capacity of root bed media of sub-surface flow constructed wetlands. Ecological Engineering,2001,17:345-355.
    Picard C R, Fraser L H, Steer D. The interacting effects of temperature and plant community type on nutrient removal in wetland microcosms. Bioresource Technology,2005,96: 1039-1047.
    Potthoff M, Steenwerth K L, Jackson L E, et al. Soil microbial community composition as affected by restoration practices in California grassland. Soil Biology and Biochemistry, 2006,38:1851-1860.
    Quan W M, Han J D, Shen A L, et al. Uptake and distribution of N, P and heavy metals in three dominant salt marsh macrophytes from Yangtze River estuary, China. Marine Environmental Research,2007,64:21-37.
    Rao J, Berner R A. Time variations of phosphorus and sources of sediments beneath the Chang Jiang (Yangtze River). Marine Geology,1997,139:95-108.
    Ravit B, Ehrcnfcld J, Haggblom M. A compaxison of sediment microbial communities associated with Phragmites australis and Spartina alterniflora in two brackish wetlands of New Jersey. Estuaries,2003,26:465-474.
    Reddy K R, Kadlec R H, Flaig E, et al. Phosphorus retention in streams and wetlands:a review. Critical reviews in environmental science and technology,1999,29:83-146.
    Richardson C J. Mechanisms controlling phosphorus retention capacity in freshwater wetlands. Science,1985,228:1424-1426.
    Richardson C J, Vaithiyanathan P. Phosphorus sorption characteristics of Everglades soils along a eutrophication gradient. Soil Science Society of America Journal,1995,59: 1782-1788.
    Rogers B F, Tate III R L. Temporal analysis of the soil microbial community along a toposequence in Pineland soils. Soil Biology and Biochemistry,2001,33:1389-1401.
    Ruban V, L O Pez-S A Nchez J F, Pardo P, et al. Development of a harmonised phosphorus extraction procedure and certification of a sediment reference material. Journal of Environmental Monitoring,2001,3:121-125.
    Ruban V, L pez-S nchez J F, Pardo P, et al. Harmonized protocol and certified reference material for the determination of extractable contents of phosphorus in freshwater sediments-A synthesis of recent works. Fresenius Journal of Analytical Chemistry,2001, 370:224.
    Ruttenberg K C. Development of a sequential extraction method for different forms of phosphorus in marine sediments. Limnology and Oceanography,1992,37:1460-1482.
    Rydin E. Potentially mobile phosphorus in Lake Erken sediment. Water Research,2000,34: 2037-2042.
    Sanchez J M, SanLeon D G, Izco J. Primary colonisation of mudflat estuaries by Spartina maritima (Curtis) Fernald in Northwest Spain:vegetation structure and sediment accretion. Aquatic Botany,2001,69:15-25.
    Sariyildiz T, Anderson J M. Interactions between litter quality, decomposition and soil fertility:a laboratory study. Soil Biology and Biochemistry,2003,35:391-399.
    Schindlbacher A, Rodler A, Kuffner M, et al. Experimental warming effects on the microbial community of a temperate mountain forest soil. Soil Biology and Biochemistry,2011,43: 1417-1425.
    Schulz M, Kozerski H, Pluntke T, et al. The influence of macrophytes on sedimentation and nutrient retention in the lower River Spree (Germany). Water Research,2003,37: 569-578.
    Shao X, Wu M, Gu B, et al. Nutrient retention in plant biomass and sediments from the salt marsh in Hangzhou Bay estuary, China. Environmental Science and Pollution Research, 2013,20:6382-6391.
    Sinsabaugh R L, Antibus R K, Linkins A E, et al. Wood decomposition:nitrogen and phosphorus dynamics in relation to extracellular enzyme activity. Ecology,1993, 1586-1593.
    Smith S V. LOICZ Modelling Team (2002) Carbon-nitrogen-phosphorus fluxes in the coastal zone:The global approach. Global Change Newsletter,2002,49:7-11.
    Smith S, Swaney D, Talaue-McManus L. Carbon-Nitrogen-Phosphorus Fluxes in the Coastal Zone:The LOICZ Approach to Global Assessment[M]//Liu K K, ATKINSON L, QUINONES R, TALAUE-MCMANUS L. Carbon and Nutrient Fluxes in Continental Margins. Springer Berlin Heidelberg,2010:575-586.
    Song K, Zoh K, Kang H. Release of phosphate in a wetland by changes in hydrological regime. Science of The Total Environment,2007,380:13-18.
    Sousa A I, Lillebo A I, Cacador I, et al. Contribution of Spartina maritima to the reduction of eutrophication in estuarine systems. Environmental Pollution,2008,156:628-635.
    Stumm W. Chemistry of the solid-water interface. In Processes at the mineral-water and particle- water interface in natural systems[M]. New York:Wiley-Interscience Publication,1992.
    Suleiman A K, Manoeli L, Boldo J T, et al. Shifts in soil bacterial community after eight years of land-use change. Systematic and Applied Microbiology,36:137-144.
    Sundara B, Natarajan V, Hari K. Influence of phosphorus solubilizing bacteria on the changes in soil available phosphorus and sugarcane and sugar yields. Field Crops Research,2002, 77:43-49.
    Tian J R, Zhou P J. Phosphorus fractions of floodplain sediments and phosphorus exchange on the sediment-water interface in the lower reaches of the Han River in China. Ecological Engineering,2007,30:264-270.
    Tiessen H, Stewart J W B, Moir J O. Changes in organic and inorganic phosphorus composition of two grassland soils and their particle size fractions during 40-90 years of cultivation. Journal of Soil Science,1983,34:815-823.
    Tiessen H, Stewart J W B, Moir J O. Changes in organic and inorganic phosphorus composition of two grassland soils and their particle size fractions during 60-90 years of cultivation. European Journal of Soil Science,2006,4.
    Tiessen H, Stewart J, Moir J O. Changes in organic and inorganic phosphorus composition of two grassland soils and their particle size fractions during 60-90 years of cultivation. Journal of Soil Science,1983,34:815-823.
    Tietz A, Kirschner A, Langergraber G, et al. Characterisation of microbial biocoenosis in vertical subsurface flow constructed wetlands. Science of The Total Environment,2007, 380:163-172.
    Vighi M, Chiaudani G. A simple method to estimate lake phosphorus concentrations resulting from natural, background, loading. Water research,1985,8:987-991.
    Vymazal J. Removal of nutrients in various types of constructed wetlands. Science of the Total Environment,2007,380:48-65.
    Wang L X, Wang J, Huang J H. Comparison of major nutrient release patterns of Quercus liaotungensis leaf litter decomposition in different climatic zones. Acta Botanica Sinica, 2003,45:399-407.
    Wang N, Mitsch W J. A detailed ecosystem model of phosphorus dynamics in created riparian wetlands. Ecological Modelling,2000,126:101-130.
    Wang P, He M, Lin C, et al. Phosphorus distribution in the estuarine sediments of the Daliao river, China. Estuarine, Coastal and Shelf Science,2009,84:246-252.
    Wang Q, Li Y. Phosphorus adsorption and desorption behavior on sediments of different origins. Journal of Soils and Sediments,2010,10:1159-1173.
    Wang S, Jin X, Bu Q, et al. Effects of particle size, organic matter and ionic strength on the phosphate sorption in different trophic lake sediments. Journal of Hazardous Materials, 2006,128:95-105.
    Wang Y, Shen Z, Niu J, et al. Adsorption of phosphorus on sediments from the Three-Gorges Reservoir (China) and the relation with sediment compositions. Journal of Hazardous Materials,2009,162:92-98.
    Warnken K W, Gill G A, Santschi P H, et al. Benthic exchange of nutrients in Galveston Bay, Texas. Estuaries,2000,23:647-661.
    Williams J D H, Jaquet J, Thomas R L. Forms of Phosphorus in the Surficial Sediments of Lake Erie. Journal of the Fisheries Research Board of Canada,1976,33:413-429.
    Wong M H. Wetlands Ecosystems in Asia:Function and Management:Function and Management[M]. Elsevier,2004.
    Wright A L, Reddy K R. Phosphorus loading effects on extracellular enzyme activity in Everglades wetland soils. Soil Science Society of America Journal,2001,65:588-595.
    Xie C, Tang J, Zhao J, et al. Comparison of phosphorus fractions and alkaline phosphatase activity in sludge, soils, and sediments. Journal of Soils and Sediments,2011,11: 1432-1439.
    Yu S, Ehrenfeld J G. Relationships among plants, soils and microbial communities along a hydro logical gradient in the New Jersey Pinelands, USA. Annals of Botany,2010,105: 185-196.
    Yu Y, Wang H, Liu J, et al. Shifts in microbial community function and structure along the successional gradient of coastal wetlands in Yellow River Estuary. European Journal of Soil Biology,2012,49:12-21.
    Zhang R, Wang L, Wu F, et al. Phosphorus speciation in the sediment profile of Lake Erhai, southwestern China:Fractionation and 31P NMR. Journal of Environmental Sciences, 2013,25:1124-1130.
    Zhang R, Wu F, Liu C, et al. Characteristics of organic phosphorus fractions in different trophic sediments of lakes from the middle and lower reaches of Yangtze River region and Southwestern Plateau, China. Environmental Pollution,2008,152:366-372.
    Zhao Q, Zeng D, Fan Z, et al. Seasonal variations in phosphorus fractions in semiarid sandy soils under different vegetation types. Forest Ecology and Management,2009,258: 1376-1382.
    Zhou A, Tang H, Wang D. Phosphorus adsorption on natural sediments:Modeling and effects of pH and sediment composition. Water Research,2005,39:1245-1254.
    Zhou J, Wu Y, Kang Q, et al. Spatial variations of carbon, nitrogen, phosphorous and sulfur in the salt marsh sediments of the Yangtze Estuary in China. Estuarine, Coastal and Shelf Science,2007,71:47-59.
    Zhou Q, Gibson C E, Zhu Y. Evaluation of phosphorus bioavailability in sediments of three contrasting lakes in China and the UK. Chemosphere,2001,42:221-225.
    Zhu T, Jenssen P D, Ma;hlum T, et al. Phosphorus sorption and chemical characteristics of lightweight aggregates (LWA)-potential filter media in treatment wetlands. Water Science and Technology,1997,35:103-108.
    陈洪涛,刘素美,陈淑珠,等.渤海莱州湾沉积物-海水界面磷酸盐的交换通量.环境化学,2003,22(02):110-114.
    董洪芳,于君宝,孙志高,等.黄河口滨岸潮滩湿地植物-土壤系统有机碳空间分布特征.环境科学,2010,31(6):1594-1599.
    范成新,王春霞.长江中下游湖泊环境地球化学与富营养化[M].北京:科学出版社,2007.
    高丽,侯金枝,宋鹏鹏.天鹅湖沉积物对磷的吸附动力学及等温吸附特征.土壤,2013,45(01):67-72.
    耿玉清,白翠霞,赵广亮,等.土壤磷酸酶活性及其与有机磷组分的相关性.北京林业大学学报,2008,30(S2):139-143.
    郭长城,胡洪营,李锋民,等.湿地植物香蒲体内氮、磷含量的季节变化及适宜收割期.生态环境学报,2009,18(3):1020-1025.
    郭沛涌,朱荫湄,宋祥甫,等.陆生植物黑麦草(Lolium multi florum)对富营养化水体修复的围隔实验研究——氨氮的净化效应及其动态过程.浙江大学学报(理学版),2007, 34(01):76-79.
    郭跃东,何岩,邓伟,等.扎龙河滨湿地对地表径流氮磷污染物的净化作用.环境科学,2005,26(03):49-55.
    何起利,梁威,贺锋,等.人工湿地氧化还原特征及其与微生物活性相关性.华中农业大学学报,2007,26(6):844-849.
    胡婵娟,刘国华,吴雅琼.土壤微生物生物量及多样性测定方法评述.生态环境学报,2011,20(6-7):1161-1167.
    黄清辉,王东红,马梅,等.沉积物和土壤中磷的生物有效性评估新方法.环境科学,2005,26(02):206-208.
    黄清辉,王磊,王子健.中国湖泊水域中磷形态转化及其潜在生态效应研究动态.湖泊科学,2006,18(3):199-206.
    贾建伟,王磊,唐玉姝,等.九段沙不同演替阶段湿地土壤微生物呼吸的差异性及其影响因素.生态学报,2010,30(17):4529-4538.
    姜经梅,赵慧,沈铭能,等.长江口潮滩表层沉积物中碱性磷酸酶活性及其影响因素.环境科学学报,2011,31(10):2233-2239.
    姜睿玲,杨统一,唐玉斌,等.多环芳烃污染对桑园土壤微生物结构及种群多样性的影响.中国环境科学,2012,32(09):1655-1661.
    蒋柏藩,沈仁芳.土壤无机磷分级的研究.土壤学进展,1990,(01):1-8.
    金相灿,屠清英.湖泊富营养化调查规范[M].北京:中国环境科学出版社,1990.
    金相灿,王圣瑞,庞燕,等.湖泊沉积物对磷酸盐的负吸附研究.生态环境,2004,13(04):493-496.
    李宝,丁士明,范成新,等.滇池福保湾间隙水氮磷分布及其与底泥微生物和磷酸酶相互关系.湖泊科学,2008,20(04):420-427.
    李科德,胡正嘉.芦苇床系统净化污水的机理.中国环境科学,1995,15(02):140-144.
    李敏,韦鹤平,王光谦,等.长江口、杭州湾水域沉积物中磷的化学形态分布特征.海洋学报(中文版),2004,26(2):125-131.
    李文红,陈英旭,孙建平.不同溶解氧水平对控制底泥向上覆水体释放污染物的影响研究.农业环境科学学报,2003,22(02):170-173.
    李炎,G. W. Berger, Tj. C. E. VanWeering杭州湾南岸潮滩的210Pb分布及其沉积学意义.东海海洋,1993,11(01):34-43.
    梁威.杭州湾滨海湿地磷素迁移转化特征及净化功能[D].中国林业科学研究院,2012.
    廖成章,唐小平,程小玲,等.外来种互花米草和土著种芦苇空中凋落物氮动态的比较研究.生物多样性,2010,18(6):631-637.
    林先贵,胡君利.土壤微生物多样性的科学内涵及其生态服务功能.土壤学报,2008,45(05):892-900.
    刘白贵,仝川,罗榕婷.闽江河口湿地3种主要植物冬春季枯落物分解特征.福建师范大学学报(自然科学版),2008,24(02):80-85.
    刘存歧,陆健健,李贺鹏.长江口潮滩湿地土壤酶活性的陆向变化以及与环境因子的相关性.生态学报,2007,27(09):3663-3669.
    刘敏,侯立军,许世远,等.长江河口潮滩表层沉积物对磷酸盐的吸附特征.地理学报,2002,57(04):397-406.
    刘增文,高文俊,潘开文,等.枯落物分解研究方法和模型讨论.生态学报,2006,26(06):1993-2000.
    柳新伟.温度对芦苇不同部位分解动态的影响.生态环境学报,2009,18(03):1042-1044.
    鲁如坤.土壤农业化学分析方法[M].北京:中国农业科技出版社,1999.
    陆健健.河口生态学[M].北京:海洋出版社,2003.
    路娜,胡维平,邓建才,等.太湖水体中碱性磷酸酶的空间分布及生态意义.环境科学,2009,30(10):2898-2903.
    毛志刚,谷孝鸿,刘金娥,等.盐城海滨湿地盐沼植被及农作物下土壤酶活性特征.生态学报,2010,30(18):5043-5049.
    梅雪英,张修峰.崇明东滩湿地自然植被演替过程中领储碳及回碳功能变化.应用生态学报,2007,18(4):933-936.
    孟晗,惠威,肖义平,等.崇明岛东滩不同植物覆盖的土壤可培养细菌多样性比较.复旦学报(自然科学版),2010,49(01):43-50.
    欧冬妮,刘敏,侯立军,等.河口潮滩沉积物磷的季节性累积和生物有效性.海洋科学,2007,31(2):20-26.
    欧维新,杨桂山,高建华.盐城潮滩湿地对N、P营养物质的截留效应研究.湿地科学,2006,4(03):179-186.
    欧阳林梅,王纯,王维奇,等.互花米草与短叶茳芏枯落物分解过程中碳氮磷化学计量学特征.生态学报,2013,33(2):389-394.
    裴希超,许艳丽,魏巍.湿地生态系统土壤微生物研究进展.湿地科学,2009,7(02):181-186.
    钱轶超.浅水湖泊沉积物磷素迁移转化特征与生物作用影响机制研究[D].浙江大学,2011.
    钱轶超,陈英旭,楼莉萍,等.核磁共振技术在沉积物磷素组分及迁移转化规律研究中的应用.应用生态学报,2010,21(07):1892-1898.
    全为民,李春鞠,沈盎绿,等.崇明东滩湿地营养盐与重金属的分布与累积.生态学报,2006,26(10):3324-3331.
    邵学新,杨文英,吴明,等.杭州湾滨海湿地土壤有机碳含量及其分布格局.应用生态学报,2011,22(3):658-664.
    舒世燕,王克林,张伟,等.喀斯特峰丛洼地植被不同演替阶段土壤磷酸酶活性.生态学杂志,2010,29(09):1722-1728.
    宋炜,袁丽娜,肖琳,等.太湖沉积物中解磷细菌分布及其与碱性磷酸酶活性的关系.环境科学,2007,28(10):2355-2360.
    宋新章,江洪,余树全,等.中亚热带森林群落不同演替阶段优势种凋落物分解试验.应用生态学报,2009,20(03):537-542.
    宋祖光,高效江,张弛.杭州湾潮滩表层沉积物中磷的分布、赋存形态及生态意义.生态学杂志,2007,26(6):853-858.
    孙晓杭,张昱,张斌亮,等.微生物作用对太湖沉积物磷释放影响的模拟实验研究.环境化学,2006,25(01):24-27.
    孙志高,刘景双.湿地枯落物分解及其对全球变化的响应.生态学报,2007,27(04):1606-1618.
    汤鸿霄.微界面水质过程的理论与模式应用.环境科学学报,2000,20(1):2-9.
    田应兵,宋光煜,艾天成.湿地土壤及其生态功能.生态学杂志,2002,21(06):36-39.
    仝川,刘白贵.不同水淹环境下河口感潮湿地枯落物分解及营养动态.地理研究,2009,28(01):118-128.
    汪青,刘敏,侯立军,等.海三棱蔗草对崇明东滩沉积物磷素分布的影响.长江流域资源与环境,2005,14(6):731-734.
    王爱萍,杨守业,周琪.长江口崇明东滩湿地沉积物对磷的吸附特征.生态学杂志,2006,25(08):926-930.
    王茹华,张启发,周宝利,等.浅析植物根分泌物与根际微生物的相互作用关系.土壤通报,2007,38(01):167-172.
    王圣瑞.湖泊沉积物-水界面过程:氮磷生物地球化学[M].北京:科学出版社,2013.
    王圣瑞,金相灿,庞燕.湖泊沉积物对磷的吸附特征及其吸附热力学参数.地理研究,2006,25(01):19-26.
    王世岩,杨永兴.三江平原小叶章枯落物分解动态及其分解残留物中磷素季节动态.中国草地,2000,(06):7-11.
    王相娥,薛立,谢腾芳.凋落物分解研究综述.土壤通报,2009,40(06):1473-1478.
    吴淑杭,徐亚同,姜震方,等.梦清园人工湿地芦苇的氮磷和生物量动态及其适宜收割期的研究.农业环境科学学报,2006,25(06):1594-1597.
    吴振斌,陈辉蓉,贺锋,等.人工湿地系统对污水磷的净化效果.水生生物学报,2001,25(01):28-35.
    武海涛,吕宪国,杨青.湿地草本植物枯落物分解的影响因素.生态学杂志,2006,25(11):1405-1411.
    武海涛,吕宪国,杨青,等.三江平原典型湿地枯落物早期分解过程及影响因素.生态学报,2007,27(10):4027-4035.
    夏学惠,东野脉兴,周建民,等.滇池现代沉积物中磷的地球化学及其对环境影响.沉积学报,2002,20(03):416-420.
    徐华勤,肖润林,邹冬生,等.长期施肥对茶园土壤微生物群落功能多样性的影响.生态学报,2007,27(08):3355-3361.姜培坤,邬奇峰,等.集约经营板栗土壤微生物量碳与微生物多样性研究.林业科学,2007,43(03):15-19.
    许云台.西湖沉积物中微生物对有机磷循环影响研究[D].浙江大学,2005.
    薛雄志,洪华生,黄邦钦,等.厦门西海域沉积物中碱性磷酸酶活力的分布、动态及其与各形态磷的关系.海洋学报(中文版),1995,17(05):81-87.
    杨继松,刘景双,于君宝,等.三江平原沼泽湿地枯落物分解及其营养动态.生态学报,2006,26(05):1297-1302.
    杨蕉文,陈学林.杭州湾北岸潮滩沉积物中的孢子和花粉.海洋地质与第四纪地质,1985,5(03):101-108.
    杨文澜,蒋功成,王兆群,等.洪泽湖不同湖区表层沉积物对磷的吸附特征.地理学报, 2012,67(07):985-991.
    叶温乐,何雪青,赵平芝,等.江苏盐城新洋港互花米草盐沼的微生物区系调查.中国农学通报,2007,23(08):420-424.
    余小青,杨军,刘乐冕,等.九龙江口滨海湿地生源要素空间分布特征.环境科学,2012,33(11):3739-3747.
    宇万太,于永强.植物地下生物量研究进展.应用生态学报,2001,12(06):927-932.
    曾繁富,赵同谦,徐华山,等.滨河湿地土壤微生物数量及多样性研究.环境科学与技术,2009,32(10):13-18.
    张林海,曾从盛,仝川.闽江河口湿地芦苇和互花米草生物量季节动态研究.亚热带资源与环境学报,2008,3(02):25-33.
    张路,范成新,朱广伟,等.长江中下游湖泊沉积物生物可利用磷分布特征.湖泊科学,2006,18(1):36-42.
    张燕燕,曲来叶,陈利顶Biolog EcoPlate-(TM)实验信息提取方法改进.微生物学通报,2009,36(07):1083-1091.
    张志明,许艳丽,韩晓增,等.连续施肥对农田黑土微生物功能多样性的影响.生态学杂志,2012,31(03):647-651.
    章婷曦,王晓蓉,金相灿.太湖沉积物中碱性磷酸酶活力(APA)和磷形态的垂向特征及相关性.农业环境科学学报,2007,26(01):36-40.
    赵少华,宇万太,张璐,等.土壤有机磷研究进展.应用生态学报,2004,15(11):2189-2194.
    周俊丽,吴莹,张经,等.长江口潮滩先锋植物蔗草腐烂分解过程研究.海洋科学进展,2006,24(01):44-50.
    周易勇,李建秋,张敏.湿地中碱性磷酸酶的动力学特征与水生植物的关系.湖泊科学,2002,14(02):134-138.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700