用户名: 密码: 验证码:
臭氧结合钙基吸收多种污染物及副产物提纯的试验与机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着我国环境保护要求与标准的不断提升,火电行业及其大气污染控制倍受关注。臭氧多脱技术能够有效的进行多种污染物的协同脱除,对缓解日益恶化的环境问题有着重要意义。本文对臭氧实现多种污染物协同脱除的相关问题进行了试验与机理研究。其中主要包括:NO氧化产物与SO2的吸收、副产物处理、等离子体耦合催化剂对NO的氧化以及臭氧氧化多种污染物协同脱除中试试验。
     在实现了NO的高效氧化后,主要氧化产物NO2与S02的协同吸收成为整个多脱系统的重要环节。本文从热力学和动力学的角度进行了协同吸收的反应机理与吸收特性的模拟,试验验结果与模拟结果相吻合。当吸收的气体体积与浆液体积的比值M=2870时为临界状态,超过临界后pH值会迅速下降。这表明此时为吸收液完全消耗的临界状态。同时根据传质速率的计算,亚硫酸钠溶液受pH值影响强烈,而亚硫酸钙几乎不受其影响。
     分别采用三种吸收剂Na2SO3、Ca(OH)2和CaSO3进行吸收对比,对pH值、烟气组分、液气比等影响因素及液相的吸收产物进行了分析。结果表明,NO2吸收效率随S(IV)离子浓度的增加而提高,同时液相吸收的主要产物为NO2-。当pH<7时,Na2S03对NO2的吸收变差。随着pH值低于5.7,CaSO3表现出比Na2SO3更好的效果。SO2在碱性环境中有利于NO2的吸收,酸性环境中有微弱的抑制作用。氧气量对于NO2的吸收有负面影响,使吸收效率降低10%左右。随着N02-浓度的提高,NO2的吸收也受到限制。液气比的增加能提高NO2的吸收效率。
     采用多种添加剂辅助CaS03浆液协同吸收NO2与SO2,同时对吸收产物进行分离提纯亚硝酸钙产品。添加铁、锰、铵等无机盐都能够提高CaSO3浆液对NO2的吸收。FeSO4效果最佳,NO2的吸收效率达到95%,然而由于Fe(Ⅱ)向Fe(Ⅲ)的转化,其损失率也最大。硫酸铵也具有较强的辅助吸收能力同时损失最小。它的吸收效果随着温度的升高而增强,也随pH值的降低而减弱。氧气的存在仍会使NO2的吸收效率下降4%。
     采用复盐复分解法进行液相吸收产物Ca(NO2)2的提纯,对影响提纯的因素进行优化。结果表明,加热反应时间30min,反应温度90℃,OR=12(pH5.5)时,提纯达到最优化条件。最后提出了臭氧氧化多种污染物结合钙基吸收以及副产物处理的方案。
     应用非热等离子体结合催化剂实现低能耗、低温下NO的氧化。DBD产生的活性分子O、O3、O2*、OH、H2O2、HO2等能够强化NO的氧化。放电电压5kV下,NO的主要氧化产物为NO2。以钻为活性组分,二氧化钛为载体,采用溶胶凝胶法制备钴钛催化剂与非热等离子体结合具有很好的NO氧化性能。分析表明,焙烧温度400℃下,钴负载量达到7.5%时,钴钛催化剂Co(0.75)Ti的催化活性最好。此时钴在催化剂表面分散度高,能够很好地吸附气相活性分子。在4.6kV的放电电压下催化氧化NO,能够在120~210%的反应温度内取得90%以上的氧化效率。放电产生的活性分子吸附于催化剂表面的氧缺位上,NO分子在催化剂表面以弱吸附或碰撞的形式与活性分子发生反应,形成稳定的中间体。随着键长的进一步缩短,生成的NO2分子扩散到气相,实现催化氧化过程。
     本文还对臭氧氧化结合钙基吸收多种污染物协同脱除技术进行了中试试验。提出了三种氧气来源的技术方案:空气源、液氧供氧和空分供氧,并进行了对比。中试试验采用操作简单的空气源方案进行。采用Fluent的EDC模型模拟臭氧喷射方式。结果表明三叉式喷嘴的设计能够实现臭氧与烟气的均匀混合。同时大管道内的气相混合反应中,由于气相混合的停留时间大于化学反应时间,因此混合停留时间的长短决定了化学反应是否达到反应平衡,模拟得出O3与NO反应的临界平衡时间为0.45s。
     试验工况是采用03结合钙基吸收剂对NOx、SO2、Hg以及VOCs进行协同氧化降解。采用混合吸收浆液协同吸收时脱硝效率超过86%,脱硫为99%。NOx的液相吸收产物为NO2-离子。电厂原烟气经SCR、静电除尘后Hg浓度较低,氧化效率非常明显达到99%以上。二噁英在高浓度的03作用下降解率达到94%左右。PM2.5经过喷淋塔吸收后,尘粒总浓度大量减少。同时,还对臭氧多脱技术成本进行了预估和对比。
With developing requirements and standards of environmental protection, thermal power industry and its atmospheric pollution control has been paid more and more attention. Ozone oxidation technology has effective on the removal of multi-polutions, which is of significance to alleviate the growing environmental problems. Experiment and mechanism of correlative problems based on simultaneous removal of multi-polutions by ozone were studied. It mainly includes the absorption of NO oxidation product and SO2, by-product treatment, catlytic oxidation of NO by NTP-cataltsis and a pilot test for multi-polutions control by ozone.
     It is an important part of the system to absorb the main oxidation product of NO2and SO2simultaneously after NO being oxidized high effectively. The reaction mechanism and the absorption properties of synergistic absorption were simulated from the point of view of thermodynamic and kinetic. The experimental results validate the simulation very well. The critical state is M=2870, which is the ratio of the gas volume absorbed and liquid volume. The value of pH decreases rapidly exceeding this point. It also shows that absorbent is comsumed completely. According to the calculation of mass transfer rate, the sodium sulfite solution is badly influenced by pH value, but not calcium sulfite.
     Three kinds of absorbents Na2SO3, Ca(OH)2and CaSO3were compared. Effects of different pH, flue gas components, liquid-gas ratio et al. and liquid absorbent product were investigated. Results indicate that NO2absorption efficiency was increasing with S(IV), and NO2-is the main component of liquid. NO2absorption is adverse in Na2SO3solution below pH7. When pH is less than5.7, CaSO3is more efficiency than Na2SO3. The initial concentration of SO2has weak inhibition effects on NO2absorption in acidic environment, whereas NO2absorption efficiency can be enhanced by adding SO2in alkali condition. O2is so unfavorable as to drop about10%NO2absorption efficiency. It is adverse for NO2absorption with increasing the concentration of NO2as well. NO2absorption efficiency is increasing with liquid-gas ratio.
     NO2and SO2were simultaneously absorbed by CaSO3with several additives, and calcium nitrite was purified by separation of absorption products. The additives can enhance the absorption of NO2in CaSO3slurry, including Fe, Mn, ammonium salts et al.. FeSO4is the most effective additive with absorption efficiency reaching95%, but the loss of additive is the highest due to the oxidation of Fe(Ⅱ) into Fe(Ⅲ).(NH4)2SO4also has better absorption capacity and the loss is lowest. Its absorption efficiency improves with increasing temperature and decreases with decreasing pH. The presence of O2causes a4%decrease in NO2absorption.
     Calcium nitrite was purified by double decomposition of double salt. At the same time, the influencing factors were optimized on purify process. Experimental results indicate that reaction time30min, temperature90℃and OR=12(pH5.5) are the optimal parameters for the recovery of nitrite. Finaly, a scheme of simultaneous removal of NOx and SO2by ozone with help of calcium-absorption and by-product recovery system was proposed.
     Oxidation of NO in the condition of low energy consumption and low temperature was achieved by non-thermal plasma combined with catalyst. It can be enhanced by active molecule from DBD reactor, including O, O3, O2*, OH, H2O2, HO2et al.. NO2is the main oxidation product of NO below5kV discharge voltage. The catalyst was prepared by sol-gel method, using cobalt as the active component and titanium dioxide as the carrier. Combined NTP with catalyst has well on the oxidation performance of NO. The results show that Co(0.75)Ti catalyst has the best catalytic activity, which was prepared at the calcination temperature400℃and7.5%cobalt loading. Since the cobalt has high dispersion in the catalyst surface, the gas active molecules can be adsorbed. Catalytic oxidation efficiency of NO is more than90%at the temperature range of120~210℃and4.6kV discharge voltage. Active molecules by DBD adsorb on the oxygen vacancies of catalyst surface. NO molecule reacts with active molecules to product a stable intermediate through weak adsorption on the catalyst surface or collision with active molecules. With further shortening the bond length, NO2diffuses to gas and the catalytic oxidation process is achieved.
     Simultaneously removal of multi-polutions by ozone with calcium based absorbent has been studied in the pilot test. Three technical programs of oxygen source including air source, liquid oxygen and air separation were proposed and compared. The air source program was used for easily operation in the pilot. Ozone injection was simulated using EDC model based on Fluent. The results show that the trigeminal nozzle was designed to achieve uniform mixing of ozone and flue gas. Since residence time of mixed gas is greater than the chemical reaction time, it is determined by residence time whether the chemical reaction reaches the reaction equilibrium or not when mixed gas reacts in the large pipe. The critical time is0.45s by simulation of O3and NO reaction.
     Synergistic removal of NOx, SO2, Hg, and VOCs by O3with calcium-based sorbent was discussed in the test conditions. Using the mixing slurry as the absorbent, the removal efficiency of NOx and SO2is86%and99%respectively. NO2-is the main component of liquid for NOx absorption. Hg concentration is lower after the flue gas through the SCR and electric dust precipitation, and the oxidation efficiency is greatly more than99%. Removal of dioxin is about94%due to the high ozone concentration. For PM2.5, dust concentration is significantly reduced at the outlet of washing tower. Moreover, investment and operation cost of ozone oxidation technology were estimated and compared with others.
引文
[1].中华人民共和国国家统计局,2011年中国统计年鉴.北京,2011
    [2].李新艳,李恒鹏,中国大气NH3和NOx排放的时空分布特征[J]中国环境科学,2012,V32(1):37-42.
    [3].中华人民共和国环境保护部污染排放总量控制司.环境统计年报.2006-2010年http://zls.mep.gov.cn/hitj/nb/.
    [4].环境保护部国家质量监督检验检疫总局,火电厂大气污染物排放标准(GB13223-2011).2011.07.29http://www.mep.gov.cn/gkml/hbb/bgg/201109/W020110921374109325564.pdf.
    [5].G I Karavaiko LBL, An overview of the bacteria and archaea involved in removal of inorganic and organic sulfur compounds from coal. Fuel Processing Technology,1994.40(2-3):p.167-182.
    [6].程军,炉内高温燃烧两段脱硫的机理研究.博士学位论文,浙江大学,2002
    [7].雷仲存,工业脱硫技术.化学工业出版社,2001
    [8].Brockerhoff PandEmonts B, Test of a premixing radiant burner for the low NOx combustion of natural gas/hydrogen mixtures. International Journal of Hydrogen Energy,1994.19(4):p. 395-398.
    [9].Li Z, Zeng L, Zhao G, Li J, Shen S, Chen L, et al., Cold experimental investigations into gas/particle flow characteristics of a low-NOx axial swirl burner in a 600-MWe wall-fired pulverized-coal utility boiler. Experimental Thermal and Fluid Science,2012.37(0):p.104-112.
    [10].97/03296 Optimization of NO, reduction with low-NO, burners and over-fire air on a coal-fired utility boiler. Fuel and Energy Abstracts,1997.38(4):p.267.
    [11].Smoot LD, Hill SC,Xu H, NOx control through reburning. Progress in Energy and Combustion Science,1998.24(5):p.385-408.
    [12].Cai L, Shang X, Gao S, Wang Y, Dong L,Xu G, Low-NOx coal combustion via combining decoupling combustion and gas reburning. Fuel, Available online 27 December 2011
    [13].Man CK, Gibbins JR, Witkamp JG,Zhang J, Coal characterisation for NOx prediction in air-staged combustion of pulverised coals. Fuel,2005.84(17):p.2190-2195.
    [14].Baltasar J, Carvalho MG, Coelho P,Costa M, Flue gas recirculation in a gas-fired laboratory furnace:Measurements and modelling. Fuel,1997.76(10):p.919-929.
    [15].Ahn SY, Go SM, Lee KY, Kim TH, Seo SI, Choi GM, et al., The characteristics of NO production mechanism on flue gas recirculation in oxy-firing condition. Applied Thermal Engineering,2011.31(6-7):p.1163-1171.
    [16].J(?)dal M, Nielsen C, Hulgaard T,Dam-Johansen K, Pilot-scale experiments with ammonia and urea as reductants in selective non-catalytic reduction of nitric oxide. Symposium (International) on Combustion,1991.23(1):p.237-243.
    [17].J(?)dal M, Lauridsen TL,Dam-Johansen K, NOx removal on a coal-fired utility boiler by selective non-catalytic reduction. Environmental Progress,1992.11(4):p.296-301.
    [18].Lee G-W, Shon B-H, Yoo J-G, Jung J-H,Oh K-J, The influence of mixing between NH3 and NO for a De-NOx reaction in the SNCR process. Journal of Industrial and Engineering Chemistry, 2008.14(4):p.457-467.
    [19].Ramis G, Yi L,Busca G, Ammonia activation over catalysts for the selective catalytic reduction of NOx and the selective catalytic oxidation of NH3. An FT-IR study. Catalysis Today, 1996.28(4):p.373-380.
    [20].Traa Y, Burger B,Weitkamp J, Zeolite-based materials for the selective catalytic reduction of NOx with hydrocarbons. Microporous and Mesoporous Materials,1999.30(1):p.3-41.
    [21].Sjovall H, Olsson L, Fridell E,Blint RJ, Selective catalytic reduction of NOx with NH3 over Cu-ZSM-5—The effect of changing the gas composition. Applied Catalysis B:Environmental, 2006.64(3-4):p.180-188.
    [22].Li Z, Shen L-T, Huang W.Xie K-C, Kinetics of selective catalytic reduction of NO by NH3 on Fe-Mo/ZSM-5 catalyst. Journal of Environmental Sciences,2007.19(12):p.1516-1519.
    [23]. 王智化,周昊,周俊虎,樊建人,岑可法,不同温度下炉内喷射氨水脱除NOx的模拟与试验研究[J].燃料化学学报,2004.32(1):p.48-53.
    [24]. 王智化,周俊虎,周昊,樊建人,岑可法,炉内高温喷射氨水脱除NOx机理及其影响因素的研究[J].浙江大学学报(工学版),2004.38(4):p.495-500.
    [25].Huang Y, Tong Z-Q, Wu B,Zhang J-F, Low temperature selective catalytic reduction of NO by ammonia over V2O5-CeO2/TiO2. Journal of Fuel Chemistry and Technology,2008.36(5):p. 616-620.
    [26].Seo C-K, Kim H, Choi B, Lim MT, Lee C-H,Lee C-B, De-NOx characteristics of a combined system of LNT and SCR catalysts according to hydrothermal aging and sulfur poisoning. Catalysis Today,2011.164(1):p.507-514.
    [27].Tang F, Xu B, Shi H, Qiu J,Fan Y, The poisoning effect of Na+ and Ca2+ ions doped on the V2O5/TiO2 catalysts for selective catalytic reduction of NO by NH3. Applied Catalysis B: Environmental,2010.94(1-2):p.71-76.
    [28].Yu J, Guo F, Wang Y, Zhu J, Liu Y, Su F, et al., Sulfur poisoning resistant mesoporous Mn-base catalyst for low-temperature SCR of NO with NH3. Applied Catalysis B:Environmental, 2010.95(1-2):p.160-168.
    [29].Ho TC, Shetty S, Chu HW, Lin CJ,Hopper JR, Simulation of mercury emission control by activated carbon under confined-bed operations. Powder Technology,2008.180(3):p.332-338.
    [30].Pflughoeft-Hassett DF, Hassett DJ, Buckley TD, Heebink LV,Pavlish JH, Activated carbon for mercury control:Implications for fly ash management. Fuel Processing Technology,2009. 90(11):p.1430-1434.
    [31].Hower JC, Senior CL, Suuberg EM, Hurt RH, Wilcox JL,Olson ES, Mercury capture by native fly ash carbons in coal-fired power plants. Progress in Energy and Combustion Science, 2010.36(4):p.510-529.
    [32].00/00536 Low concentration mercury sorption mechanisms and control by calcium-based sorbents. Application in coal-fired processes. Fuel and Energy Abstracts,2000.41(1):p.56.
    [33].Zhuang Y, Thompson JS, Zygarlicke CJ,Pavlish JH, Impact of calcium chloride addition on mercury transformations and control in coal flue gas. Fuel,2007.86(15):p.2351-2359.
    [34].Hutson ND, Krzyzynska R,Srivastava RK, Simultaneous Removal of SO2, NOX, and Hg from Coal Flue Gas Using a NaClO2-Enhanced Wet Scrubber. Ind Eng Chem Res,2008.47(16):p. 5825-5831.
    [35].Byun Y, Ko KB, Cho M, Namkung W, Shin DN, Lee JW, et al., Oxidation of elemental mercury using atmospheric pressure non-thermal plasma. Chemosphere,2008.72(4):p.652-658.
    [36].Wang ZH, Jiang SD, Zhu YQ, Zhou JS, Zhou JH, Li ZS, et al., Investigation on elemental mercury oxidation mechanism by non-thermal plasma treatment. Fuel Processing Technology, 2010.91(11):p.1395-1400.
    [37].Jo-Chun Kim K-HK, Al Armendariz, and Mohamad Al-Sheikhly, Electron Beam Irradiation for Mercury Oxidation and Mercury Emissions Control. Journal of Environmental Engineering, 2010.136(5):p.554-559.
    [38].Wang Z, Zhou J, Zhu Y, Wen Z, Liu J,Cen K, Simultaneous removal of NOx, SO2 and Hg in nitrogen flow in a narrow reactor by ozone injection:Experimental results. Fuel Processing Technology,2007.88(8):p.817-823.
    [39].Furubayashi M. SR, And Nagai K, Study of dioxin removal by activated carbon. Kagaku Kogaku Ronbunshu,,2001.27(2):p.236-242.
    [40].Furubayashi M. Nagai K., Estimation of dioxins removal efficiency by activated carbon. Kagaku Kogaku Ronbunshu,2004.30(1):p.54-64.
    [41].Mori K, Matsui H, Yamaguchi N,Nakagawa Y, Multi-component behavior of fixed-bed adsorption of dioxins by activated carbon fiber. Chemosphere,2005.61(7):p.941-946.
    [42].Chi K.H., Chang S.H., Huang C.H., et al. Partitioning and removal of dioxin-like congeners in flue gases treated with activated carbon adsorption. Chemosphere,2006.64(9):p.1489-1498.
    [43]..Hsi H.C., Wang L.C., and Yu T.H. Effects of injected activated carbon and solidification treatment on the leachability of polychlorinated dibenzo-p-dioxins and dibenzofurans from air pollution control residues of municipal waste incineration. Chemosphere,2007.67(7):p. 1394-1402.
    [44].Wang Y.H., Lin C.E., and Chang-Chien G.P. Characteristics of PCDD/Fs in a Particles Filtration Device with Activated Carbon Injection..Aerosol and Air Quality Research,2009.9(3): p.317-322.
    [45].Chang Y-M, Hung C-Y, Chen J-H, Chang C-T,Chen C-H, Minimum feeding rate of activated carbon to control dioxin emissions from a large-scale municipal solid waste incinerator. Journal of Hazardous Materials,2009.161(2-3):p.1436-1443.
    [46].Debecker DP, Bertinchamps F, Blangenois N, Eloy P,Gaigneaux EM, On the impact of the choice of model VOC in the evaluation of V-based catalysts for the total oxidation of dioxins: Furan vs. chlorobenzene. Applied Catalysis B:Environmental,2007.74(3-4):p.223-232.
    [47].Debecker DP, Delaigle R, Eloy P,Gaigneaux EM, Abatement of model molecules for dioxin total oxidation on V2O5-WO3/TiO2 catalysts:The case of substituted oxygen-containing VOC. Journal of Molecular Catalysis A:Chemical,2008.289(1-2):p.38-43.
    [48].Yang CC, Chang SH, Hong BZ, Chi KH,Chang MB, Innovative PCDD/F-containing gas stream generating system applied in catalytic decomposition of gaseous dioxins over V2O5-WO3/TiO2-based catalysts. Chemosphere,2008.73(6):p.890-895.
    [49].Lee J-M, Kim J-H, Chang Y-Y,Chang Y-S, Steel dust catalysis for Fenton-like oxidation of polychlorinated dibenzo-p-dioxins. Journal of Hazardous Materials,2009.163(1):p.222-230.
    [50].Hilmi A, Luong JHT,Nguyen A-L, Applicability of micellar electrokinetic chromatography to kinetic studies of photocatalytic oxidation of dibenzo-p-dioxin. Chemosphere,1998.36(15):p. 3113-3117.
    [51].. Liu Y, Wei Z.B., Feng Z.C., et al. Oxidative destruction of chlorobenzene and o-dichlorobenzene on a highly active catalyst:MnOx/TiO2-Al2O3. Journal of Catalysis,2001. 202(1):p.200-204.
    [52].Wu C.H. Ng H.Y. Photodegradation of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans:Direct photolysis and photocatalysis processes. Journal of Hazardous Materials,2008.151(2-3):p.507-514.
    [53].Zhang L.H., Li P.J., Gong Z.Q., et al. Photocatalytic degradation of polycyclic aromatic hydrocarbons on soil surfaces using TiO2 under UV light. Journal of Hazardous Materials,2008. 158(2-3):p.478-484.
    [54].Conesa JA, Fullana A,Font R, Dioxin production during the thermal treatment of meat and bone meal residues. Chemosphere,2005.59(1):p.85-90.
    [55].Noma Y, Yamamoto T, Giraud R,Sakai S-I, Behavior of PCNs, PCDDs, PCDFs, and dioxin-like PCBs in the thermal destruction of wastes containing PCNs. Chemosphere,2006. 62(7):p.1183-1195.
    [56].Mizukoshi H, Masui M, Namiki N, Kim J-C,Otani Y, Suppression of solidification of calcium-rich incinerator fly ash during thermal treatment for decomposition/detoxification of dioxins. Advanced Powder Technology,2007.18(2):p.143-154.
    [57].Lee W-J, Shih S-I, Chang C-Y, Lai Y-C, Wang L-C,Chang-Chien G-P, Thermal treatment of polychlorinated dibenzo-p-dioxins and dibenzofurans from contaminated soils. Journal of Hazardous Materials,2008.160(1):p.220-227.
    [58].Wang HC, Chang SH, Hung PC, Hwang JF,Chang MB, Catalytic oxidation of gaseous PCDD/Fs with ozone over iron oxide catalysts. Chemosphere,2008.71(2):p.388-397.
    [59]. Wang HC, Chang SH, Hung PC, Hwang JF,Chang MB, Synergistic effect of transition metal oxides and ozone on PCDD/F destruction. Journal of Hazardous Materials,2009.164(2-3):p. 1452-1459.
    [60].Zhou YX, Yan P, Cheng ZX, Nifuku M, Liang XD,Guan ZC, Application of non-thermal plasmas on toxic removal of dioxin-contained fly ash. Powder Technology,2003.135-136(0):p. 345-353.
    [61].Hirota K. Kojima T. Decomposition behavior of PCDD/F isomers in incinerator gases under electron-beam irradiation. Bulletin Of The Chemical Society Of Japan,2005.78(9):p.1685-1690.
    [62].Wang Q., Yan J.H., Tu X., et al. Thermal treatment of municipal solid waste incinerator fly ash using DC double arc argon plasma. Fuel,2009.88(5):p.955-958.
    [63].杜黎明刘,燃煤锅炉同时脱硫脱硝技术工艺性分析[J].中国电力,2007.40(2)
    [64].Nolan PS, Flue Gas Desulfurization Technologies for Coal-Fired Power Plants. Coal-Tech 2000 International Conference November 13-14,2000
    [65].Blumrich SandEngler B, The DESONOX/REDOX-process for flue gas cleaning:A flue gas purification process for the simultaneous removal of NOx and SO2 resp. CO and UHC. Catalysis Today,1993.17(1-2):p.301-310.
    [66].Norbert O, DESONOX process for flue gas cleaning. Catalysis Today,1993.16(2):p. 247-261.
    [67].Developments of the SNOX process. Applied Catalysis B:Environmental,1994.3(4):p. N28-N29.
    [68]. Ricci R;Bruno L(Snamprogetti);De Santis G(Agip Petroli) Application of SNOX technology at the Gela power plant in sicily. Paper presented on the power gen conference in Helsinki 2000.
    [69].G.T NCHR, Simultaneous sulfur dioxide and nitrogen dioxide removal by calcium hydroxide and calcium silicate solids. Journal Of The Air & Waste Management Association,1998.48(9):p. 819-828.
    [70].Ishizuka T. KH, Yamaguchi T., et al. Initial step of flue gas desulfurization-An IR study of the reaction of SO2 with NOx on CaO. Environmental Science & Technology,2000.34(13):p. 2799-2803.
    [71].Patsias AA, Nimmo W, Gibbs BM,Williams PT, Calcium-based sorbents for simultaneous NOx/SOx reduction in a down-fired furnace. Fuel,2005.84(14-15):p.1864-1873.
    [72].06/01444 Calcium-based sorbents for simultaneous NOx/SOx reduction in a down-fired furnace:Patsias, A. A. et al. Fuel,2005,84, (14-15),1864-1873. Fuel and Energy Abstracts,2006. 47(3):p.214.
    [73].Zhao Y. XPY, And Wang L.D., Simultaneous Removal of SO2 and NO by Highly Reactive Absorbent Containing Calcium Hypochlorite. Environmental Progress,2008.27(4):p.460-468.
    [74].Dahlan I. LKT, Kamaruddin A.H., et al. Rice Husk Ash/Calcium Oxide/Ceria Sorbent for Simultaneous Removal of Sulfur Dioxide and Nitric Oxide from Flue Gas at Low Temperature. Environmental Engineering Science,2009.26(7):p.1257-1265.
    [75].Atal A, Steciak J,Levendis YA, Combustion and SO2 NOx emissions of bituminous coal particles treated with calcium magnesium acetate. Fuel,1995.74(4):p.495-506.
    [76].Nimmo W, Patsias AA, Hampartsoumian E, Gibbs BM,Williams PT, Simultaneous reduction of NOx and SO2 emissions from coal combustion by calcium magnesium acetate. Fuel,2004. 83(2):p.149-155.
    [77].Zhang H. THL, Wang S.J., et al. Simultaneous removal of SO2 and NO from flue gas with calcium-based sorbent at low temperature. Industrial & Engineering Chemistry Research,2006. 45(18):p.6099-6103.
    [78].Mochida I, Korai Y, Shirahama M, Kawano S, Hada T, Seo Y, et al., Removal of SOx and NOx over activated carbon fibers. Carbon,2000.38(2):p.227-239.
    [79].Paolo D, SO2 and NOx adsorption properties of activated carbons obtained from a pitch containing iron derivatives. Carbon,2001.39(14):p.2173-2179.
    [80].Izquierdo MaT, Rubio B, Mayoral C,Andres JM, Low cost coal-based carbons for combined SO2 and NO removal from exhaust gas. Fuel,2003.82(2):p.147-151.
    [81].Qiang T, Zhigang Z, Wenpei Z,Zidong C, SO2 and NO selective adsorption properties of coal-based activated carbons. Fuel,2005.84(4):p.461-465.
    [82].Zhen-Shu L, Adsorption of SO2 and NO from incineration flue gas onto activated carbon fibers. Waste Management,2008.28(11):p.2329-2335.
    [83].Nese andT. Ennil K, A kinetic study of nitrite adsorption onto sepiolite and powdered activated carbon. Desalination,2008.223(1-3):p.174-179.
    [84].Lee Y-W, Park J-W, Yun J-H, Lee J-H,Choi D-K, Studies on the Surface Chemistry Based on Competitive Adsorption of NOx-SO2 onto a KOH Impregnated Activated Carbon in Excess 02. Environmental Science & Technology,2002.36(22):p.4928-4935.
    [85].Lee Y-W, Kim H-J, Park J-W, Choi B-U, Choi D-K,Park J-W, Adsorption and reaction behavior for the simultaneous adsorption of NO-NO2 and SO2 on activated carbon impregnated with KOH. Carbon,2003.41(10):p.1881-1888.
    [86].S. Sumathi SB, K.T. Lee, A.R. Mohamed, Selection of best impregnated palm shell activated carbon (PS AC) for simultaneous removal of SO2 and NOx. Journal of Hazardous Materials,2010. 176(1-3):p.1093-1096.
    [87].Macken C, Hodnett BK,Paparatto G, Testing of the CuO/Al2O3 Catalyst-Sorbent in Extended Operation for the Simultaneous Removal of NOx and SO2 from Flue Gases. Industrial & Engineering Chemistry Research,2000.39(10):p.3868-3874.
    [88].Kim S-DandJeong SM, Removal of NOX and SO2 by CuO/-Al2O3 Sorbent/Catalyst in a Fluidized-Bed Reactor.2000, American Chemical Society.
    [89].Xie G, Liu Z, Zhu Z, Liu Q, Ge J,Huang Z, Simultaneous removal of SO2 and NOx from flue gas using a CuO/Al2O3 catalyst sorbent:Ⅰ. Deactivation of SCR activity by SO2 at low temperatures. Journal of Catalysis,2004.224(1):p.36-41.
    [90].Xie G, Liu Z, Zhu Z, Liu Q, Ge J,Huang Z, Simultaneous removal of SO2 and NOx from flue gas using a CuO/Al2O3 catalyst sorbent:Ⅱ. Promotion of SCR activity by SO2 at high temperatures. Journal of Catalysis,2004.224(1):p.42-49.
    [91].Liu Q, Liu Z, Zhu Z, Xie G,Wang Y, Al2O3-Coated Honeycomb Cordierite-Supported CuO for Simultaneous SO2 and NO Removal from Flue Gas:Effect of Na2O Additive. Industrial & Engineering Chemistry Research,2004.43(15):p.4031-4037.
    [92].Liu Q, Liu Z,Wu W, Effect of V2O5 additive on simultaneous SO2 and NO removal from flue gas over a monolithic cordierite-based CuO/Al2O3 catalyst. Catalysis Today,2009.147, Supplement(0):p. S285-S289.
    [93].Sun ZG, Gao, H. Y.,Hu, G. X, Preparation of HA-Na/a-aluminumoxide adsorbents for flue gas desulfurization. Environ. Eng. Sci,2009.26:p.1249-1255.
    [94].Sun Z, Zhao Y, Gao H,Hu G, Removal of SO2 from Flue Gas by Sodium Humate Solution. Energy & Fuels,2010.24(2):p.1013-1019.
    [95].Zhao Y, Hu G, Sun Z,Yang J, Simultaneous Removal of SO2 and NO2 on α-Al2O3 Absorbents Loaded with Sodium Humate and Ammonia Water. Energy & Fuels,2011.25(7):p. 2927-2931.
    [96].Van Der Maas P, Peng S, Klapwijk B,Lens P, Enzymatic versus Nonenzymatic Conversions during the Reduction of EDTA-Chelated Fe(Ⅲ) in BioDeNOx Reactors. Environmental Science & Technology,2005.39(8):p.2616-2623.
    [97].Nymoen H, Van Velzen D,Langenkamp H, Absorption of NO in aqueous solutions of Fe(Ⅱ)EDTA:determination of the equilibrium constant. Chemical Engineering and Processing: Process Intensification,1993.32(1):p.9-12.
    [98].Li W, Wu C-Z, Zhang S-H, Shao K,Shi Y, Evaluation of Microbial Reduction of Fe(Ⅲ)EDTA in a Chemical Absorption-Biological Reduction Integrated NOx Removal System. Environmental Science & Technology,2006.41(2):p.639-644.
    [99].Wang L, Zhao W,Wu Z, Simultaneous absorption of NO and SO2 by FeIIEDTA combined with Na2SO3 solution. Chemical Engineering Journal,2007.132(1-3):p.227-232.
    [100].Maigut J, Meier R,Eldik RV, Influence of Fluoride on the Reversible Binding of NO by [Fe II(EDTA)(H 20)] 2-. Inhibition of Autoxidation of [Fe II(EDTA)(H 2O)] 2-. Inorganic Chemistry, 2008.47(14):p.6314-6321.
    [101].Chien TW, Hsueh HT, Chu BY,Chu H, Absorption kinetics of NO from simulated flue gas using Fe(II)EDTA solutions. Process Safety and Environmental Protection,2009.87(5):p. 300-306.
    [102].Jaworska M, Stopa G,Stasicka Z, Photochemical NO-removal and NOx-release in the presence of Fe-EDTA complexes. DFT calculations of electronic structure and spectroscopy of the [Fe(edta)(NO)]2-complex. Nitric Oxide,2010.23(3):p.227-233.
    [103].Zhu H-S, Mao Y-P, Yang X-J, Chen Y, Long X-L,Yuan W-K, Simultaneous absorption of NO and SO2 into Fell-EDTA solution coupled with the Fell-EDTA regeneration catalyzed by activated carbon. Separation and Purification Technology,2010.74(1):p.1-6.
    [104].Chang S.G. LD, And Liu D.K., Use of Ferrous Chelates of Sh-Containing Amino-Acids and Peptides for the Removal of NOx and SO2 from Flue-Gas. Industrial & Engineering Chemistry Research,1988.27(11):p.2156-2161.
    [105].Yang X-J, Yang L, Dong L, Long X-L,Yuan W-K, Kinetics of the [Fe(Ⅲ)-EDTA]-Reduction by Sulfite under the Catalysis of Activated Carbon. Energy & Fuels,2011.25(10):p. 4248-4255.
    [106].Sada E, Kumazawa H, Kudo I,Kondo T, Absorption of no in aqueous mixed solutions of NaClO2 and NaOH. Chemical Engineering Science,1978.33(3):p.315-318.
    [107].Sadat E, Kumazawa H, Kudo I,Kondo T, Absorption of lean NO in aqueous slurries of Ca(OH)2 with NaC102 or Mg(OH)2 with NaC102. Chemical Engineering Science,1979.34(5):p. 719-724.
    [108].Chu H. CT-W, And Twu B.-W., The absorption kinetics of NO in NaClO2/NaOH solutions. Journal of Hazardous Materials,2001.84(2-3):p.241-252.
    [109].Chien T.W. CH, And Li Y.C., Absorption kinetics of nitrogen oxides using sodium chlorite solutions in twin spray columns. Water Air and Soil Pollution,2005.166(1-4):p.237-250.
    [110].Deshwal BR, Lee SH, Jung JH, Shon BH,Lee HK, Study on the removal of NOx from simulated flue gas using acidic NaC102 solution. Journal of Environmental Sciences,2008.20(1): p.33-38.
    [111].Hutson ND, Krzyzynska R,Srivastava RK, Simultaneous Removal of SO2, NOX, and Hg from Coal Flue Gas Using a NaClO2-Enhanced Wet Scrubber. Industrial & Engineering Chemistry Research,2008.47(16):p.5825-5831.
    [112].Deshwal B-RandLee H-K, Mass transfer in the absorption of SO2 and NOx using aqueous euchlorine scrubbing solution. Journal of Environmental Sciences,2009.21(2):p.155-161.
    [113].Wei J, Luo Y, Yu P, Cai B,Tan H, Removal of NO from flue gas by wet scrubbing with NaC102/(NH2)2C0 solutions. Journal of Industrial and Engineering Chemistry,2009.15(1):p. 16-22.
    [114].Zhao Y, Guo T-X, Chen Z-Y,Du Y-R, Simultaneous removal of SO2 and NO using M/NaC102 complex absorbent. Chemical Engineering Journal,2010.160(1):p.42-47.
    [115].Pourmohammadbagher A, Jamshidi E, Ale-Ebrahim H.Dabir S, Study on Simultaneous Removal of NOx and SO2 with NaClO2 in a Novel Swirl Wet System. Industrial & Engineering Chemistry Research,2011.50(13):p.8278-8284.
    [116].D.Thomas JV, Modeling of NOx absorption into nitric acid solutions containing hydrogen peroxide. Ind. Eng. Chem. Res,1997.36(8):p.3315-3322.
    [117].De Paiva JLandKachan GC, Modeling and Simulation of a Packed Column for NOx Absorption with Hydrogen Peroxide. Industrial & Engineering Chemistry Research,1998.37(2): p.609-614.
    [118].Cooper CD, Clausen CA, Pettey L, Collins MM,Fernandez MPD, Investigation of Ultraviolet Light-Enhanced H2O2 Oxidation of NOx Emissions Journal of Environmental Engineering,2002.128(1):p.68-72.
    [119].Diane Thomas, Sandrine Colle,Vanderschuren J, Kinetics of SO2 absorption into fairly concentrated sulphuric acid solutions containing hydrogen peroxide Chemical Engineering and Processing,2003.42(6):p.487-494.
    [120].Colle S, Vanderschuren J,Thomas D, Simulation of SO2 absorption into sulfuric acid solutions containing hydrogen peroxide in the fast and moderately fast kinetic regimes. Chemical Engineering Science,2005.60(22):p.6472-6479.
    [121].Liu Y, Zhang J, Sheng C, Zhang Y,Zhao L, Simultaneous removal of NO and SO2 from coal-fired flue gas by UV/H2O2 advanced oxidation process. Chemical Engineering Journal,2010. 162(3):p.1006-1011.
    [122].Liu Y, Zhang J,Sheng C, Kinetic Model of NO Removal from SO2-Containing Simulated Flue Gas by Wet UV/H2O2 Advanced Oxidation Process. Chemical Engineering Journal,2011. 168(1):p.183-189.
    [123].M.Hammond, High-strength acid containing H2O2 to scrub SO2:US Patent 3760061 (1973).
    [124].Sandrine Colle JV, Diane Thomas, Pilot-scale validation of the kinetics of SO2 absorption into sulphuric acid solutions containing hydrogen peroxide. Chemical Engineering and Processing, 2004.43(11):p.1379-1402.
    [125].Betterton EAandHoffmann MR, Oxidation of AqueousSO2 by Peroxymonosulfate. Phys. Chem.,1988.92():p.5962.
    [126].Betterton EAandHoffmann MR, Kinetics and Mechanism of the Oxidation of Aqueous Hydrogen Sulfide by Peroxymonosulfate. Environ. Sci. Technol.,1990.24:p.1819.
    [127].Betterton EA, Oxidation of Akyl Sulfides by Aqueous Peroxymonosulfate..Environ. Sci. Technol.,1992.26:p.527.
    [128].Adewuyi YGandOwusu SO, Aqueous Absorption and Oxidation of Nitric Oxide with Oxone for the Treatment of Tail Gases:Process Feasibility, Stoichiometry, Reaction Pathways, and Absorption Rate. Industrial & Engineering Chemistry Research,2003.42(17):p.4084-4100.
    [129].Connick RE, Shaoyung L,Adamic R, Kinetics and Mechanism of the Oxidation of HSO3- by HSO5-. Inorg. Chem.,1993.32:p.565.
    [130].Khan NEandAdewuyi YG, Absorption and Oxidation of Nitric Oxide (NO) by Aqueous Solutions of Sodium Persulfate in a Bubble Column Reactor. Industrial & Engineering Chemistry Research,2010.49(18):p.8749-8760.
    [131].Rastogi A, Al-Abed SR,Dionysiou DD, Sulfate radical-based ferrous-peroxymonosulfate oxidative system for PCBs degradation in aqueous and sediment systems. Applied Catalysis B: Environmental,2009.85(3-4):p.171-179.
    [132].Antoniou MG, De La Cruz AA,Dionysiou DD, Degradation of microcystin-LR using sulfate radicals generated through photolysis, thermolysis and e- transfer mechanisms. Applied Catalysis B:Environmental,2010.96(3-4):p.290-298.
    [133].House DA, Kinetics and Mechanism of Oxidations by Peroxy-disulfate. Chem. Re V,1962. 62:p.185-203.
    [134].Aurousseau M, Roizard C, Storck A,Lapicque F, Scrubbing of Sulfur Dioxide Using a Cerium(Ⅳ)-Containing Acidic Solution:A Kinetic Investigation. Industrial & Engineering Chemistry Research,1996.35(4):p.1243-1250.
    [135].Balaji S, Chung S, Matheswaran M,Moon I, Cerium(IV)-mediated electrochemical oxidation process for destruction of organic pollutants in a batch and a continuous flow reactor. Korean Journal of Chemical Engineering,2007.24(6):p.1009-1016.
    [136].Raju T, Chung SJ, Pillai KC,Moon I-S, Simultaneous Removal of NOx and SO2:A Promising Ag(Ⅱ)/Ag(Ⅰ) Based Mediated Electrochemical Oxidation System. CLEAN-Soil, Air, Water,2008.36(5-6):p.476-481.
    [137].Raju T, Chung SJ,Moon IS, Novel Process for Simultaneous Removal of NOx and SO2 from Simulated Flue Gas by Using a Sustainable Ag(I)/Ag(II) Redox Mediator. Environmental Science & Technology,2008.42(19):p.7464-7469.
    [138].T R, A sustainable mediated electrochemical process for the abatement of NOx from simulated flue gas by using Ag(Ⅰ)/Ag(Ⅱ) redox mediators. Electrochimica Acta,2009.54(12):p. 3467-3472.
    [139].Chung,#160, Sangjoon, Pillai C, K.,Moon IS, A sustainable environmentally friendly NO[x] removal process using Ag(Ⅱ)/Ag(Ⅰ)-mediated electrochemical oxidation. Vol.65.2009, Kidlington, ROYAUME-UNI:Elsevier.8.
    [140].Zhao Y, Han Y, Ma T,Guo T, Simultaneous Desulfurization and Denitrification from Flue Gas by Ferrate(VI). Environmental Science & Technology,2011.45(9):p.4060-4065.
    [141].Gao X, Du Z, Ding H-L, Wu Z-L, Lu H, Luo Z-Y, et al., Effect of gas-liquid phase compositions on NO2 and NO absorption into ammonium-sulfite and bisulfite solutions. Fuel Processing Technology,2011.92(8):p.1506-1512.
    [142].Dalton JS, Janes PA, Jones NG, Nicholson JA, Hallam KR,Allen GC, Photocatalytic oxidation of NOx gases using TiO2:a surface spectroscopic approach. Environmental Pollution, 2002.120(2):p.415-422.
    [143].Li FB, Li XZ, Ao CH, Hou MF,Lee SC, Photocatalytic conversion of NO using TiO2-NH3 catalysts in ambient air environment. Applied Catalysis B:Environmental,2004.54(4):p. 275-283.
    [144].Chien S, Huang K.Kuo M, Photocatalytic decomposition of nitric oxide on TiO2 modified MCM-41 catalysts, in Studies in Surface Science and Catalysis, MC E. van Steen and LH Callanan, Editors.2004, Elsevier. p.2876-2883.
    [145].Ao CH, Lee SC, Yu JZ,Xu JH, Photodegradation of formaldehyde by photocatalyst TiO2: effects on the presences of NO, SO2 and VOCs. Applied Catalysis B:Environmental,2004.54(1): p.41-50.
    [146].Inagaki M, Imai T, Yoshikawa T,Tryba B, Photocatalytic activity of anatase powders for oxidation of methylene blue in water and diluted NO gas. Applied Catalysis B:Environmental, 2004.51(4):p.247-254.
    [147].Maggos T, Bartzis JG, Liakou M,Gobin C, Photocatalytic degradation of NOx gases using TiO2-containing paint:A real scale study. Journal of Hazardous Materials,2007.146(3):p. 668-673.
    [148].Shelimov BN, Tolkachev NN, Tkachenko OP, Baeva GN, Klementiev KV, Stakheev AY, et al., Enhancement effect of TiO2 dispersion over alumina on the photocatalytic removal of NOx admixtures from O2-N2 flow. Journal of Photochemistry and Photobiology A:Chemistry,2008. 195(1):p.81-88.
    [149].Sheng Z, Wu Z, Liu Y,Wang H, Gas-phase photocatalytic oxidation of NO over palladium modified TiO2 catalysts. Catalysis Communications,2008.9(9):p.1941-1944.
    [150].Wu Z, Wang H, Liu Y,Gu Z, Photocatalytic oxidation of nitric oxide with immobilized titanium dioxide films synthesized by hydrothermal method. Journal of Hazardous Materials,2008. 151(1):p.17-25.
    [151].Li Z, Yi Z, Jing H,Li-Qin S, Removal of high concentration NO through photocatalytic oxidation. Acta Chimica Sinica,2008.66(17):p.2001-2005.
    [152].Wu Z, Sheng Z, Liu Y, Wang H, Tang N,Wang J, Characterization and activity of Pd-modified TiO2 catalysts for photocatalytic oxidation of NO in gas phase. Journal of Hazardous Materials,2009.164(2-3):p.542-548.
    [153].Poulston S, Twigg MV,Walker AP, The Effect of nitric oxide on the photocatalytic oxidation of small hydrocarbons over titania. Applied Catalysis B:Environmental,2009.89(3-4):p. 335-341.
    [154]Jin R, Wu Z, Liu Y, Jiang B,Wang H, Photocatalytic reduction of NO with NH3 using Si-doped TiO2 prepared by hydrothermal method. Journal of Hazardous Materials,2009.161(1): p.42-48.
    [155].Zhao Y, Han J, Shao Y,Feng Y, Simultaneous SO2 and NO removal from flue gas based on TiO2 photocatalytic oxidation. Environmental Technology,2009.30(14):p.1555-1563.
    [156].Yuan Y, Zhang J, Li H, Li Y, Zhao Y,Zheng C, Simultaneous Removal of SO2, NO and Mercury using TiO2-Aluminum Silicate Fiber by Photocatalysis. Chemical Engineering Journal, 2012(0)
    [157]. 姜树栋,利用臭氧及活性分子协同脱除多种污染物的实验及机理研究.杭州.浙江大学.2010
    [158].Fuchs P, Roth B, Schwing U, Angele H,Gottstein J, Removal of NOx and SO2 by the electron beam process. International Journal of Radiation Applications and Instrumentation. Part C. Radiation Physics and Chemistry,1988.31(1-3):p.45-56.
    [159].Person JCandHam DO, Removal of SO2 and NOx from stack gases by electron beam irradiation. International Journal of Radiation Applications and Instrumentation. Part C. Radiation Physics and Chemistry,1988.31(1-3):p.1-8.
    [160].Doi T, Osada Y, Morishige A, Tokunaga O, Miyata T, Hirota K, et al., Pilot-plant for NOx, SO2 and HC□ removal from flue-gas of municipal waste incinerator by electron beam irradiation. Radiation Physics and Chemistry,1993.42(4-6):p.679-682.
    [161].Namba H, Tokunaga O, Hashimoto S, Tanaka T, Ogura Y, Doi Y, et al., Pilot-scale test for electron beam purification of flue gas from coal-combustion boiler. Radiation Physics and Chemistry,1995.46(4-6, Part 2):p.1103-1106.
    [162].Nichipor HV, Dashouk EM,Yatsko SN, Investigation of SO2, NO and H2S oxidation in humid air by electron beam. Radiation Physics and Chemistry,1995.46(4-6, Part 2):p. 1111-1114.
    [163].Paur HR, Baumann W, Matzing H,Lindner W, Flue gas cleaning by multiple irradiation with electron beam. Radiation Physics and Chemistry,1995.46(4-6, Part 2):p.1119-1122,
    [164].Zimek Z, Chmielewski AG, Bulka S, Lysov GW, Artukh IQFrank NW, Flue gases treatment by simultaneous use of electron beam and streams of microwave energy. Radiation Physics and Chemistry,1995.46(4-6, Part 2):p.1159-1162.
    [165].Onda K, Kasuga Y, Kato K, Fujiwara M,Tanimoto M, Electric discharge removal of SO2 and NOx from combustion flue gas by pulsed corona discharge. Energy Conversion and Management,1997.38(10-13):p.1377-1387.
    [166].Radoiu M, Martin D, Georgescu Ⅱ, Calinescu Ⅰ, Bestea V, Indreias I, et al., A laboratory test unit for exhausted gas cleaning by electron beam and combined electron beam-microwave irradiation. Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and Atoms,1998.139(1-4):p.506-510,
    [167].Chmielewski AG, Sun Y, Zimek Z, Bulka S,Licki J, Mechanism of NOx removal by electron beam process in the presence of scavengers. Radiation Physics and Chemistry,2002.65(4-5):p. 397-403.
    [168].Licki J, Chmielewski AG, Zimek Z, Tyminski B,Bulka S, Electron beam process for SO2 removal from flue gases with high SO2 content. Radiation Physics and Chemistry,2002.63(3-6): p.637-639.
    [169].Chmielewski AG, Sun Y-X, Licki J, Bulka S, Kubica K,Zimek Z, NOx and PAHs removal from industrial flue gas by using electron beam technology with alcohol addition. Radiation Physics and Chemistry,2003.67(3-4):p.555-560.
    [170].Ighigeanu D, Martin D, Zissulescu E, Macarie R, Oproiu C, Cirstea E, et al., SO2 and NOx removal by electron beam and electrical discharge induced non-thermal plasmas. Vacuum,2005. 77(4):p.493-500.
    [171].Basfar AA, Fageeha OI, Kunnummal N, Al-Ghamdi S, Chmielewski AG, Licki J, et al., Electron beam flue gas treatment (EBFGT) technology for simultaneous removal of SO2 and NOx from combustion of liquid fuels. Fuel,2008.87(8-9):p.1446-1452.
    [172].Ostapczuk A, Licki J,Chmielewski AG, Polycyclic aromatic hydrocarbons in coal combustion flue gas under electron beam irradiation. Radiation Physics and Chemistry,2008. 77(4):p.490-496.
    [173].Kikuchi RandPelovski Y, Low-dose irradiation by electron beam for the treatment of high-SOx flue gas on a semi-pilot scale—Consideration of by-product quality and approach to clean technology. Process Safety and Environmental Protection,2009.87(2):p.135-143.
    [174].Kwon YKandHan DH, Microwave Effect in the Simultaneous Removal of NOx and SO2 under Electron Beam Irradiation and Kinetic Investigation of NOx Removal Rate. Industrial & Engineering Chemistry Research,2010.49(17):p.8147-8156.
    [175].Chmielewski AG, Sun Y, Licki J, Pawelec A, Witman S,Zimek Z, Electron beam treatment of high NOx concentration off-gases. Radiation Physics and Chemistry,2011
    [176].Wanming Sun BP, Shirshak K. Dhali, and Frank I. Honea., Non-thermal plasma remediation of SO2/NO using a dielectric-barrier discharge. Fuel and Energy Abstracts,1996.37(6):p. 464-464.
    [177].Yamamoto T., Okubo M., Nagaoka T,Hayakawa K, Towards ideal NOx control technology using a plasma-chemical hybrid process. IEEE Transactions on Industry Applications,2001.37(5): p.1492-1498.
    [178].Nagao I, Nishida M, Yukimura K, Kambara S,Maruyama T, NOx removal using nitrogen gas activated by dielectric barrier discharge at atmospheric pressure. Vacuum,2002.65(3-4):p. 481-487.
    [179].Yamamoto T., Okubo M., Nagaoka T,Hayakawa K, Simultaneous removal of NOx, SOx, and CO2 at elevated temperature using a plasma-chemical hybrid process. IEEE Transactions on Industry Applications,2002.38(5):p.1168-1173.
    [180].Yu Q, Yang H-M, Zeng K-S, Zhang Z-W,Yu G, Simultaneous removal of NO and SO2 from dry gas stream using non-thermal plasma. Journal of Environmental Sciences,2007.19(11):p. 1393-1397.
    [181].Yukimura K, Kawamura K, Hiramatsu T, Murakami H, Kambara S, Moritomi H, et al., Efficient decomposition of NO by ammonia radical-injection method using an intermittent dielectric barrier discharge. Thin Solid Films,2007.515(9):p.4278-4282.
    [182].Ko KB, Byun Y, Cho M, Namkung W, Shin DN, Koh DJ, et al., Influence of HCl on oxidation of gaseous elemental mercury by dielectric barrier discharge process. Chemosphere, 2008.71(9):p.1674-1682.
    [183].Song C-L, Bin F, Tao Z-M, Li F-C,Huang Q-F, Simultaneous removals of NOx, HC and PM from diesel exhaust emissions by dielectric barrier discharges. Journal of Hazardous Materials, 2009.166(1):p.523-530.
    [184].Obradovic BM, Sretenovic GB,Kuraica MM, A dual-use of DBD plasma for simultaneous NOx and SO2 removal from coal-combustion flue gas. Journal of Hazardous Materials,2011. 185(2-3):p.1280-1286.
    [185].Fujii T, Aoki Y, Yoshioka N,Rea M, Removal of NOx by DC corona reactor with water. Journal of Electrostatics,2001.51-52(0):p.8-14.
    [186].Guan P, Hayashi N, Satoh S,Yamabe C, NOx treatment by DC streamer corona discharge with series gap. Vacuum,2002.65(3-4):p.469-474.
    [187].Chang JS, Urashima K, Tong YX, Liu WP, Wei HY, Yang FM, et al., Simultaneous removal of NOx and SO2 from coal boiler flue gases by DC corona discharge ammonia radical shower systems:pilot plant tests. Journal of Electrostatics,2003.57(3-4):p.313-323.
    [188].Chang JS, Urashima K, Tong YX, Liu WP, Wei HY, Yang FM, et al., Simultaneous removal of NOx and SO2 from coal boiler flue gases by DC corona discharge ammonia radical shower systems:pilot plant tests. Journal of Electrostatics,2003.57(3-4):p.313-323.
    [189].Lin H, Gao X, Luo Z, Cen K, Pei M,Huang Z, Removal of NOx from wet flue gas by corona discharge. Fuel,2004.83(9):p.1251-1255.
    [190].Ming S, Yan W, Jie L, Guofeng L, Ninghui W,Kefeng S, Removal of SO2 from flue Gas by Water Vapor and NH3 Activated in Positive DC Corona Discharge, in Recent Developments in Applied Electrostatics, K Sun and G Yu, Editors.2004, Elsevier Science Ltd:Oxford, p.141-144.
    [191].Vinogradov J, Rivin B,Sher E, NOx reduction from compression ignition engines with DC corona discharge—An experimental study. Energy,2007.32(3):p.174-186.
    [192].Wang ZW, Cai Zeng H, Guo J, Zhou J,Liu N, Sulfur dioxide (SO2) gas transfer process enhanced by corona discharge. Journal of Electrostatics,2007.65(8):p.485-489.
    [193].Wang Z-W, Guo J, Zeng H-C, Ge C-L,Yu J, Sulphur dioxide (SO2) electrotransfer in electric field generated by corona discharge. Fuel Processing Technology,2007.88(5):p.471-475.
    [194].Christopher R,McLarnon D S.Combined SO2,NOx,PM and Hg removal from coal fired boilers[C].Combined Power Plant Air Pollutant ControlMega Symposium,Washington DC,2003.
    [195]. 吴祖良,直流电晕自由基簇射烟气中多种污染物脱除的机理研究.杭州.浙江大学.2006
    [196].Onda K, Kasuga Y, Kato K, Fujiwara M,Tanimoto M, Electric discharge removal of SO2 and NOx from combustion flue gas by pulsed corona discharge. Energy Conversion and Management,1997.38(10-13):p.1377-1387.
    [197].Dors M, Mizeraczyk J, Czech T,Rea M, Removal of NOx by DC and pulsed corona discharges in a wet electrostatic precipitator model. Journal of Electrostatics,1998.45(1):p. 25-36.
    [198].Li R, Yan K, Miao J,Wu X, Heterogeneous reactions in non-thermal plasma flue gas desulfurization. Chemical Engineering Science,1998.53(8):p.1529-1540.
    [199].Yan W, Ninghui W, Yimin Z,Yanbin Z, SO2 removal from industrial flue gases using pulsed corona discharge. Journal of Electrostatics,1998.44(1-2):p.11-16.
    [200].Shao G, Li J, Wang W, He Z,Li S, Desulfurization and simultaneous treatment of coke-oven wastewater by pulsed corona discharge. Journal of Electrostatics,2004.62(1):p.1-13.
    [201].Vinogradov J, Rivin B,Sher E, NOx reduction from compression ignition engines with pulsed corona discharge. Energy,2008.33(3):p.480-491.
    [202].Shi N, Zhang X,Lei L, Sulfite oxidation in seawater flue gas desulfurization by a pulsed corona discharge process. Separation and Purification Technology,2009.70(2):p.212-218.
    [203].Xu F, Luo Z, Cao W, Wang P, Wei B, Gao X, et al., Simultaneous oxidation of NO, SO2 and HgO from flue gas by pulsed corona discharge. Journal of Environmental Sciences,2009.21(3):p. 328-332.
    [204].Yu CJ, Xu F, Luo ZY, Cao W, Wei B, Gao X, et al., Influences of water vapor and fly ash addition on NO and SO2 gas conversion efficiencies enhanced by pulsed corona discharge. Journal of Electrostatics,2009.67(6):p.829-834.
    [205].Huang LandDang Y, Removal of SO2 and NOx by Pulsed Corona Combined with in situ Ca(OH)2 Absorption. Chinese Journal of Chemical Engineering,2011.19(3):p.518-522.
    [206].Liu DK, Shen D-X,Chang S-G, Removal of nitrogen oxide (NOx) and sulfur dioxide from flue gas using aqueous emulsions of yellow phosphorus and alkali. Environmental Science & Technology,1991.25(1):p.55-60.
    [207].Chang SGandLee GC, LBL PhoSNOX process for combined removal of SO2 and NOx from flue gas. Environmental Progress,1992.11(1):p.66-73.
    [208].Kingston WH, Cunninghis S, Evans RJ,Speth CH, Demonstration of the WSA-SNOX process through the CCT program.1990. Medium:X; Size:Pages:(9 p).
    [209].Ohlms N, DESONOX process for flue gas cleaning. Catalysis Today,1993.16(2):p. 247-261.
    [210].None, SOx-NOx-Rox Box{trademark} flue gas clean-up demonstration. Final report, in Other Information:PBD:Sep 1995.1995. p. Medium:ED; Size:300 p.
    [211].Gilbert RL, Proof of concept testing of the advanced NOXSO flue gas cleanup process. 1990. p. Medium:ED; Size:Pages:(13 p).
    [212].None, Commercial demonstration of the NOXSO SO{sub 2}/NO{sub x} removal flue gas cleanup system. Quarterly technical progress report No.3, September 1--November 30,1991, in Other Information:PBD:1991.1991. p. Medium:ED; Size:6 p.
    [213].Kaczur JJ, Oxidation chemistry of chloric acid in NOx/SOx and air toxic metal removal from gas streams. Journal Name:Environmental Progress; Journal Volume:15; Journal Issue:4; Other Information:PBD:Win 1996,1996:p. Medium:X; Size:pp.245-254.
    [214]. 王智化,燃煤多种污染物一体化协同脱除机理及反应射流直接数值模拟DNS的研究.杭州.浙江大学.2005
    [215]. 魏林生,高频介质阻挡放电产生臭氧的试验研究.杭州.浙江大学.2008
    [216]. 张国平,高频介质阻挡放电产生臭氧的实验研究.杭州.浙江大学.2007
    [217]. 王静,臭氧烟气多脱技术中SO2氧化脱除的试验研究.杭州.浙江大学.2008
    [218]. 温正城,臭氧在烟气中氧化降解多种污染物的机理研究.杭州.浙江大学.2009
    [219]. 郝吉明,大气污染控制工程.北京.高等教育出版社.1989
    [220]. 刘彬,物理化学.武汉.华中科技大学出版社.2008
    [221].Sander R, Compilation of Henry's Law constants for inorganic and organic species of potential importance in environmental chemistry. Air Chemistry Department Max-Planck Institute of Chemistry, Germany,1999.3
    [222].Mohr PJ, And Taylor, Barry N., J. Phys Chem. Ref. Data 28,1713,1999; Rev. Mod. Phys. 72,351,,
    [223].Takeuchi H, Ando M,Kizawa N, Absorption of Nitrogen Oxides in Aqueous Sodium Sulfite and Bisulfite Solutions. Industrial & Engineering Chemistry Process Design and Development, 1977.16(3):p.303-308.
    [224].Kameoka YandPigford RL, Absorption of Nitrogen Dioxide into Water, Sulfuric Acid, Sodium Hydroxide, and Alkaline Sodium Sulfite Aqueous Solutions. Industrial & Engineering Chemistry Fundamentals,1977.16(1):p.163-169.
    [225].Clifton CL, Altstein N,Huie RE, Rate constant for the reaction of nitrogen dioxide with sulfur(IV) over the pH range 5.3-13. Environmental Science & Technology,1988.22(5):p. 586-589.
    [226].Shen CHandRochelle GT, Nitrogen Dioxide Absorption and Sulfite Oxidation in Aqueous Sulfite. Environmental Science & Technology,1998.32(13):p.1994-2003.
    [227].Tursic JandGrgic I, Influence of NO2 on S(IV) oxidation in aqueous suspensions of aerosol particles from two different origins. Atmospheric Environment,2001.35(22):p.3897-3904.
    [228].Chen L, Lin J-W,Yang C-L, Absorption of NO2 in a packed tower with Na2SO3 aqueous solution. Environmental Progress,2002.21(4):p.225-230.
    [229].Mok YS, Absorption-reduction technique assisted by ozone injection and sodium sulfide for NOx removal from exhaust gas. Chemical Engineering Journal,2006.118(1-2):p.63-67.
    [230].Mok YSandLee H-J, Removal of sulfur dioxide and nitrogen oxides by using ozone injection and absorption-reduction technique. Fuel Processing Technology,2006.87(7):p. 591-597.
    [231].Wang Z, Zhou J, Fan J,Cen K, Direct Numerical Simulation of Ozone Injection Technology for NOx Control in Flue Gas. Energy & Fuels,2006.20(6):p.2432-2438.
    [232].Davies CW, in "The Structure of Electrolytic Solutions". WJ Harmer ed. Wiley:New York,1959.
    [233].Cronkright WAandLeddy WJ, Improving mass transfer characteristics of limestone slurries by use of magnesium sulfate. Environmental Science & Technology,1976.10(6):p.569-572.
    [234].Rochelle GTandKing CJ, The Effect of Additives on Mass Transfer in CaCO3 or CaO Slurry Scrubbing of SO2 from Waste Gases. Industrial & Engineering Chemistry Fundamentals,1977. 16(1):p.67-75.
    [235].Huss A, Lim PK,Eckert CA, Oxidation of aqueous sulfur dioxide.1. Homogeneous manganese(Ⅱ) and iron(Ⅱ) catalysis at low pH. The Journal of Physical Chemistry,1982.86(21):p. 4224-4228.
    [236].Huss A, Lim PK,Eckert CA, Oxidation of aqueous sulfur dioxide.2. High-pressure studies and proposed reaction mechanisms. The Journal of Physical Chemistry,1982.86(21):p. 4229-4233.
    [237].Tang N, Liu Y, Wang H, Xiao L,Wu Z, Enhanced absorption process of NO2 in CaSO3 slurry by the addition of MgSO4. Chemical Engineering Journal,2010.160(1):p.145-149.
    [238].Roy RN, Zhang J-Z,Millero FJ, The ionization of sulfurous acid in Na-Mg-Cl solutions at 25℃. Journal of Solution Chemistry,1991.20(4):p.361-373.
    [239].Gao X, Ding H, Du Z, Wu Z, Fang M, Luo Z, et al., Gas-liquid absorption reaction between (NH4)2SO3 solution and SO2 for ammonia-based wet flue gas desulfurization. Applied Energy, 2010.87(8):p.2647-2651.
    [240].Xiang G, Rui-Tang G, Hong-Lei D, Zhong-Yang L,Ke-Fa C, Dissolution rate of limestone for wet flue gas desulfurization in the presence of sulfite. Journal of Hazardous Materials,2009. 168(2-3):p.1059-1064.
    [241].Berdnikov VM, Terent'eva LA,Zhuravleva OS, Reaction of divalent iron with tetranitromethane in aqueous solution. Russian Chemical Bulletin,1976.25(12):p.2471-2474.
    [242].Hikita H, Asai S,Tsuji T, ABSORPTION OF SULFUR-DIOXIDE INTO AQUEOUS AMMONIA AND AMMONIUM SULFITE SOLUTIONS. Journal of Chemical Engineering of Japan,1978.11(3):p.236-238.
    [243].Ngala VT, Page CL,Page MM, Corrosion inhibitor systems for remedial treatment of reinforced concrete. Part 1:calcium nitrite. Corrosion Science,2002.44(9):p.2073-2087.
    [244].Sideris KKandSavva AE, Durability of mixtures containing calcium nitrite based corrosion inhibitor. Cement and Concrete Composites,2005.27(2):p.277-287.
    [245].Reou JSandAnn KY, The electrochemical assessment of corrosion inhibition effect of calcium nitrite in blended concretes. Materials Chemistry and Physics,2008.109(2-3):p. 526-533.
    [246].Ahn J-H, Choo K-H,Park H-S, Reverse osmosis membrane treatment of acidic etchant wastewater:Effect of neutralization and polyelectrolyte coating on nitrate removal. Journal of Membrane Science,2008.310(1-2):p.296-302.
    [247].Hu H-Y, Goto N,Fujie K, Effect of ph on the reduction of nitrite in water by metallic iron. Water Research,2001.35(11):p.2789-2793.
    [248].Zhang Z, Hao Z, Yang Y, Zhang J, Wang Q,Xu X, Reductive denitrification kinetics of nitrite by zero-valent iron. Desalination,2010.257(1-3):p.158-162.
    [249].Horold S, Vorlop KD, Tacke T,Sell M, Development of catalysts for a selective nitrate and nitrite removal from drinking water. Catalysis Today,1993.17(1-2):p.21-30.
    [250].Strukul G, Pinna F, Marella M, Meregalli L,Tomaselli M, Sol-gel palladium catalysts for nitrate and nitrite removal from drinking water. Catalysis Today,1996.27(1-2):p.209-214.
    [251].Marchesini FA, Gutierrez LB, Querini CA,Miro EE, Pt,In and Pd,In catalysts for the hydrogenation of nitrates and nitrites in water. FTIR characterization and reaction studies. Chemical Engineering Journal,2010.159(1-3):p.203-211.
    [252].Guo Z, Zheng Z, Gu C,Zheng Y, Gamma irradiation-induced removal of low-concentration nitrite in aqueous solution. Radiation Physics and Chemistry,2008.77(6):p.702-707.
    [253].Lin SHandWu CL, Removal of nitrogenous compounds from aqueous solution by ozonation and ion exchange. Water Research,1996.30(8):p.1851-1857.
    [254].Nasonova A, Pham HC, Kim D-J,Kim K-S, NO and SO2 removal in non-thermal plasma reactor packed with glass beads-TiO2 thin film coated by PCVD process. Chemical Engineering Journal,2010.156(3):p.557-561.
    [255].Lin H, Gao X, Luo Z, Cen K.Huang Z, Removal of NOx with radical injection caused by corona discharge. Fuel,2004.83(10):p.1349-1355.
    [256].Zhao G-B, Garikipati SVBJ, Hu X, Argyle MD,Radosz M, Effect of oxygen on nonthermal plasma reactions of nitrogen oxides in nitrogen. AIChE Journal,2005.51(6):p.1800-1812.
    [257].Heejoon K, Han J, Yuhei S,Wataru M, Simultaneous Oxidization of NO x and SO 2 by a New Non-thermal Plasma Reactor Enhanced by Catalyst and Additive. Plasma Science and Technology,2008.10(1):p.53-56.
    [258].Han J, Heejoon K, Yuhei S,Yao H, Reduction of NO x and SO 2 in a non-thermal plasma reactor combined with catalyst and methanol. Journal of Physics D:Applied Physics,2008.41(20): p.205213.
    [259].Holzer F, Roland U.Kopinke FD, Combination of non-thermal plasma and heterogeneous catalysis for oxidation of volatile organic compounds:Part 1. Accessibility of the intra-particle volume. Applied Catalysis B:Environmental,2002.38(3):p.163-181.
    [260].Roland U, Holzer F,Kopinke FD, Combination of non-thermal plasma and heterogeneous catalysis for oxidation of volatile organic compounds:Part 2. Ozone decomposition and deactivation of γ-Al2O3. Applied Catalysis B:Environmental,2005.58(3-4):p.217-226.
    [261].Kirkpatrick MJ, Finney WC,Locke BR, Plasma-catalyst interactions in the treatment of volatile organic compounds and NOx with pulsed corona discharge and reticulated vitreous carbon Pt/Rh-coated electrodes. Catalysis Today,2004.89(1-2):p.117-126.
    [262].Van Durme J, Dewulf J, Leys C,Van Langenhove H, Combining non-thermal plasma with heterogeneous catalysis in waste gas treatment:A review. Applied Catalysis B:Environmental, 2008.78(3-4):p.324-333.
    [263].Takahashi N, Shinjoh H, Iijima T, Suzuki T, Yamazaki K, Yokota K, et al., The new concept 3-way catalyst for automotive lean-burn engine:NOx storage and reduction catalyst. Catalysis Today,1996.27(1-2):p.63-69.
    [264].Kromer BR, Cao L, Cumaranatunge L, Mulla SS, Ratts JL, Yezerets A, et al., Modeling of NO oxidation and NOx storage on Pt/BaO/Al2O3 NOx traps. Catalysis Today,2008.136(1-2):p. 93-103.
    [265].Harrison PG, Ball IK, Daniell W, Lukinskas P, Cespedes MA, Miro EE, et al., Cobalt catalysts for the oxidation of diesel soot particulate. Chemical Engineering Journal,2003.95(1-3): p.47-55.
    [266].Krishna K, Bueno-Lopez A, Makkee M,Moulijn JA, Potential rare earth modified CeO2 catalysts for soot oxidation:Ⅰ. Characterisation and catalytic activity with O2. Applied Catalysis B: Environmental,2007.75(3-4):p.189-200.
    [267].Liu J, Zhao Z, Wang J, Xu C, Duan A, Jiang G, et al., The highly active catalysts of nanometric CeO2-supported cobalt oxides for soot combustion. Applied Catalysis B: Environmental,2008.84(1-2):p.185-195.
    [268].Madia G, Koebel M, Elsener M,Wokaun A, The Effect of an Oxidation Precatalyst on the NOx Reduction by Ammonia SCR. Industrial & Engineering Chemistry Research,2002.41(15):p. 3512-3517.
    [269].Boyano A, Lazaro MJ, Cristiani C, Maldonado-Hodar FJ, Forzatti P,Moliner R, A comparative study of V2O5/AC and V2O5/Al2O3 catalysts for the selective catalytic reduction of NO by NH3. Chemical Engineering Journal,2009.149(1-3):p.173-182.
    [270].Gao X, Jiang Y, Zhong Y, Luo Z,Cen K, The activity and characterization of CeO2-TiO2 catalysts prepared by the sol-gel method for selective catalytic reduction of NO with NH3. Journal of Hazardous Materials,2010.174(1-3):p.734-739.
    [271].Guo Z, Xie Y, Hong I.Kim J, Catalytic oxidation of NO to NO2 on activated carbon. Energy Conversion and Management,2001.42(15-17):p.2005-2018.
    [272].Adapa S, Gaur V.Verma N, Catalytic oxidation of NO by activated carbon fiber (ACF). Chemical Engineering Journal,2006.116(1):p.25-37.
    [273].Ono M, Shimanoe K, Miura N,Yamazoe N, Amperometric sensor based on NASICON and NO oxidation catalysts for detection of total NOx in atmospheric environment. Solid State Ionics, 2000.136-137(0):p.583-588.
    [274].Dawody,#160, Jazaer, Skoglundh, Magnus, Fridell, et al., The effect of metal oxide additives (WO[3], MoO[3], V[2]O[5], Ga[2]O[3]) on the oxidation of NO and SO[2] over Pt/Al[2]O[3] and Pt/BaO/Al[2]O[3] catalysts. Vol.209.2004, Amsterdam, PAYS-BAS:Elsevier. 11.
    [275].Kaneeda M, Iizuka H, Hiratsuka T, Shinotsuka N,Arai M, Improvement of thermal stability of NO oxidation Pt/Al2O3 catalyst by addition of Pd. Applied Catalysis B:Environmental,2009. 90(3-4):p.564-569.
    [276].Despres J, Elsener M, Koebel M, Krocher O, Schnyder B,Wokaun A, Catalytic oxidation of nitrogen monoxide over Pt/SiO2. Applied Catalysis B:Environmental,2004.50(2):p.73-82.
    [277].Mok YSandHam SW, Conversion of NO to NO2 in air by a pulsed corona discharge process. Chemical Engineering Science,1998.53(9):p.1667-1678.
    [278].Chen Z, Mannava DP,Mathur VK, Mercury Oxidization in Dielectric Barrier Discharge Plasma System. Industrial & Engineering Chemistry Research,2006.45(17):p.6050-6055.
    [279].Atkinson R, Baulch DL, Cox RA, Crowley JN, Hampson RF, Hynes RG, et al., Evaluated kinetic and photochemical data for atmospheric chemistry:Volume Ⅰ-gas phase reactions of Ox, HOx, NOx and SOx species. Atmos. Chem. Phys.,2004.4(6):p.1461-1738.
    [280].Li L, Qu L, Cheng J, Li J,Hao Z, Oxidation of nitric oxide to nitrogen dioxide over Ru catalysts. Applied Catalysis B:Environmental,2009.88(1-2):p.224-231.
    [281].Nakajima FandHamada I, The state-of-the-art technology of NOx control. Catalysis Today, 1996.29(1-4):p.109-115.
    [282].Luo M, Chen J, Chen L, Lu J, Feng Z,Li C, Structure and Redox Properties of CexTil-xO2 Solid Solution. Chemistry of Materials,2000.13(1):p.197-202.
    [283].Reddy BM, Khan A, Yamada Y, Kobayashi T, Loridant S,Volta J-C, Structural Characterization of CeO2-TiO2 and V2O5/CeO2-TiO2 Catalysts by Raman and XPS Techniques. The Journal of Physical Chemistry B,2003.107(22):p.5162-5167.
    [284].Mulla SS, Chen N, Cumaranatunge L, Blau GE, Zemlyanov DY, Delgass WN, et al., Reaction of NO and O2 to NO2 on Pt:Kinetics and catalyst deactivation. Journal of Catalysis, 2006.241(2):p.389-399.
    [285].Bhatia D, Mccabe RW, Harold MP,Balakotaiah V, Experimental and kinetic study of NO oxidation on model Pt catalysts. Journal of Catalysis,2009.266(1):p.106-119.
    [286].Lin SSY, Kim DH,Ha SY, Metallic phases of cobalt-based catalysts in ethanol steam reforming:The effect of cerium oxide. Applied Catalysis A:General,2009.355(1-2):p.69-77.
    [287].Wang H, Wang J, Wu Z,Liu Y, NO Catalytic Oxidation Behaviors over CoOx/TiO<sub>2</sub> Catalysts Synthesized by Sol-Gel Method. Catalysis Letters, 2010.134(3):p.295-302.
    [288].C. D. Wagner WMR, L. E. Davis, Et Al. Handbook of X-Ray Photoelectron Spectroscopy. Perkin-Elmer Corporation, Eden Prairie, Minnesota,1979.,
    [289].Zhang ZandHenrich VE, Electronic interactions in the vanadium/TiO2(110) and vanadia/TiO2(110) model catalyst systems. Surface Science,1992.277(3):p.263-272.
    [290].Dupin J-C, Gonbeau D, Vinatier P,Levasseur A, Systematic XPS studies of metal oxides, hydroxides and peroxides. Physical Chemistry Chemical Physics,2000.2(6):p.1319-1324.
    [291].Takagi M, Kawai T, Soma M, Onishi T,Tamaru K, The mechanism of the reaction between NOx and NH3 on V2O5 in the presence of oxygen. Journal of Catalysis,1977.50(3):p.441-446.
    [292].Wu JCSandCheng Y-T, In situ FTIR study of photocatalytic NO reaction on photocatalysts under UV irradiation. Journal of Catalysis,2006.237(2):p.393-404.
    [293].Ott KC, Clark NC,Rau JA, Hysteresis in activity of microporous lean NOx catalysts in the presence of water vapor. Catalysis Today,2002.73(3-4):p.223-231.
    [294].Magnussen, B. F. On the structure of turbulence and a generalized eddy dissipation concept for chemical reaction in turbulent flow[c].19th; AIAA Meeting. St. Louds; AIAA.1981.
    [295].吴阿峰,李明伟等,烟气脱硝技术及其技术经济分析[J].中国电力,2006.39(11):p.71-75.
    [296].李晓芸蔡,混合SNCR-SCR烟气脱硝工艺及其应用[J].华电技术,2008.30(3):p.22-25.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700