用户名: 密码: 验证码:
Melamine导致大鼠认知损伤的机制研究和VC与VE联用的可能治疗
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
Melamine(1,3,5-三嗪-2,4,6-三胺),是一种重要的化工原料,常被用来生产三聚氰胺树脂与甲醛反应,用于生产塑料、粘合剂和面料等。尽管在很长一段时间内,三聚氰胺被准许可参与食品接触产品(如食品包装材料和餐具)的生产过程,但它不是食品添加剂,更没有允许直接添加到食品中。
     Melamine的毒理学研究起始于1984年。然而,当时melamine的潜在毒性并没有引起公众的关注。大量的实验结果表明,婴儿或动物食用含melamine的食品后会导致严重的损伤,其中肾脏是其作用的主要靶器官。本实验室以前的研究表明,melamine可能损害海马锥体神经元功能和诱导神经细胞凋亡,并在细胞学实验中发现其氧化损伤作用。显然,melamine诱发的肾毒性并不能完全解释其神经毒性效应。
     另一方面,melamine引发的毒性报道逐渐减少。但仍然未知服用melamine后是否会影响婴幼儿的中枢发育,甚至其毒性是否会影响成年后的认知等。抗氧化剂能够减少氧化应激,并缓解中枢神经系统功能的影响。维生素C和维生素E是两种重要的营养物质。它们能及时分解自由基,抵御异常增加的自由基的攻击,保护细胞正常的内环境稳态。联合使用维生素C和E能缓解阿尔兹海默症、帕金森症、肌萎缩性脊髓侧索硬化症以及共济运动失调等诱发的氧化损伤、焦虑和认知行为缺陷等,提高日常生活质量。
     基于以上研究背景,本实验主要探讨慢性口服melamine对空间认知和海马突触可塑性的影响。同时,检测海马内自由基和抗氧化酶活性的变化。最后,通过服用抗氧化维生素C和E对melamine引起的氧化损伤进行恢复性治疗,并探讨其可能机制。
     第一部分Melamine对空间认知和海马突触可塑性的影响
     目的:探讨melamine对Wistar大鼠的空间认知能力和海马突触可塑性的影响,并进一步揭示其可能的生理机制。
     材料与方法:大鼠随机分成两组:正常对照组(n=16)和Melamine (n=16)组。采用口服方式给予大鼠melamine悬浊液,每日一次。28天后,进行Morris水迷宫实验检测melamine对大鼠的空间认知能力的影响,包括学习、记忆和再获取能力。记录大鼠海马Schaffer侧枝到CA1区的突触传递可塑性变化,包括LTP和LTD。采用酶标法检测口服:melamine后大鼠海马内melamine含量变化。
     结果:
     1、ELISA检测结果显示:大鼠口服melamine28天后,海马内melamine含量异常增加,说明melamine能够通过血脑屏障,并在海马内积累。
     2、Morris水迷宫实验显示:在学习和再获取学习阶段,melamine损伤大鼠逃避潜伏期明显增加;在空间探索阶段,目标象限停留时间比率和穿越目标平台次数也明显减少。说明慢性口服melamine能损伤大鼠空间认知能力,包括学习,参考记忆和再获取能力。
     3、电生理记录实验结果显示:服用melamine后,LTP实验记录的场电位斜率明显低于正常组;而LTD实验记录的场电位斜率明显高于正常组。实验结果表明长期口服melamine会导致大鼠海马突触可塑性的损伤。
     结论:melamine能够通过血脑屏障进入大脑,并在海马脑区积累。Melamine导致海马长时程突触可塑性损伤,最终导致认知能力,特别是认知弹性损伤。
     第二部分Melamine导致大鼠空间认知损伤与诱发海马氧化应激相关
     目的:为证实melamine导致空间认知损伤是否与破坏海马内氧化与抗氧化稳态相关。
     方法:大鼠分为正常对照组(n=8)和Melamine (n=8)组。采用口服方式给予大鼠melamine悬浊液,每日一次。28天之后,进行Morris水迷宫实验检测了melamine对空间认知能力的影响以及海马内自由基、MDA、SOD和ATP水平。
     结果:
     1、慢性口服]melamine4周中,大鼠体重增加量明显减少。同时,海马内melamine浓度异常增加。
     2、水迷宫实验结果表示:在学习阶段,melamine损伤大鼠逃避潜伏期明显延长,在空间记忆阶段,其目标象限停留百分比和目标平台穿越次数均明显减少。
     3、组织学HE染色结果表明:melamine导致海马神经元染色明显加深,细胞核固缩,细胞松散,细胞质减少,出现大量坏死现象。
     4、生化检测试验表明:慢性口服melamine会增加海马内自由基、MDA和ATP含量,同时降低抗氧化酶活性,如SOD和GSH-Px。
     结论:Melamine在海马的神经毒性与氧化应激有关。
     第三部分VC与VE联合对melamine导致的PC12细胞氧化应激的恢复作用
     目的:探讨单独使用VC、VE或联合使用vitamin对melamine在PC12细胞引起的氧化应激的恢复作用。
     方法:利用PC12细胞建立离体melamine损伤模型。MTT法检测细胞存活率。流式细胞计数法检测PC12细胞凋亡和胞内自由基数目。通过Hoechst33342染色观察细胞凋亡形态学变化。生化检测抗氧化酶系统在恢复前后的改变。
     结果:
     1、Melamine损伤后,单独使用VC、VE或联合使用vitamin均能一定程度上恢复细胞存活率,但联合使用维生素更具有优势。
     2、联合维生素能有效地减少自由基的异常积累,降低MDA水平,帮恢复抗氧化酶活性,如SOD, CAT和GSH-Px。
     3、Hoechst33342染色和流式细胞计数法结果显示:melamine能明显诱发细胞凋亡,并且联合vitamin能有效减少凋亡细胞数目。
     4、联合使用vitamin通过抑制caspase-3活性抑制细胞凋亡的发生。结论:联合VC和VE能有效降低melamine诱发的氧化损伤,并抑制细胞凋亡。
     第四部分VC与VE联用对melamine诱发的认知损伤的保护作用及机制研究
     目的:探讨联合使用VC和VE对melamine损伤大鼠认知功能的恢复作用及其机制,包括氧化损伤和海马突触可塑性。
     材料与方法:三周雄性大鼠随机分成四组:正常对照组(n=16),melamine(n=16), melamine+vitamin组(n=16)和vitamin组(n=16)。采用口服方式给予melamine悬浊液,每日一次,建立melamine损伤动物模型。随后,给予一周联合维生素C和E,腹腔注射每日一次。Morris水迷宫实验检测了大鼠空间认知能力变化。组织学HE染色观察海马锥体神经元形态变化。记录大鼠海马Schaffer侧枝到CA1区的突触可塑性变化,包括LTP和LTD。采用酶标法检测大鼠海马内自由基、MDA、NO和抗氧化剂和凋亡相关酶活性的变化等。
     结果:
     1、联合使用VC和VE能恢复大鼠空间认知损伤,包括能有效的改善学习和参考记忆能力,并一定程度上缓解再学习能力。
     2、组织学观察发现:联合vitamin能有效减少melamine导致的细胞坏死等损伤。
     3、电生理实验结果显示:melamine会导致大鼠海马突触长时程可塑性的损伤。联合使用viatamin能缓解海马突触可塑性损伤,包括LTP和LTD。
     4、Melamine损伤大鼠注射VC和VE后,海马中自由基、MDA和NO含量恢复到正常水平。SOD、CAT、GSH-Px和NOS的活性也明显提高。神经元凋亡相关蛋白Bcl-2和caspase-3的活性也明显提高。
     结论:联合VC和VE通过干预氧化损伤过程,降低melamine诱发的神经毒性,为治愈melamine导致的认知损伤提供了新的可能依据。
     第五部分慢性孕期酒精导致大鼠性别二态性的空间认知和突触可塑性平衡损伤
     目的:探讨孕期酒精性别二态性的认知行为变化,应用突触可塑性平衡探讨空间认知损伤的机制。
     材料与方法:母鼠在妊娠期口服酒精并选取其雌雄后代进行实验。出生后36天后代大鼠进行MWM实验来检测其空间认知功能变化,记录其海马Schaffer侧枝到CA1区的突触可塑性变化。用方向指数衡量雌雄大鼠突触可塑性平衡的差异,进一步揭示其性别二态性。
     结果:
     1、CPEE使后代大鼠体重增加明显减少,同时导致头小畸形和海马重量减轻。
     2、Morris水迷宫实验显示:CPEE后代大鼠的逃避潜伏期明显增加,并且其趋壁性明显增多。在探索阶段,CPEE后代大鼠在目标象限停留时间百分比和目标平台穿越次数均明显减少。此外,雌性后代比雄性后代认知损伤更严重。
     3、电生理实验结果显示:CPEE导致雄性后代LTP明显降低而去增益明显增强;而雌性LTP明显增强而去增益明显减弱。此外,雌性后代的损伤程度更严重。
     4、方向指数进一步揭示较雄性大鼠,雌性后代突触可塑性平衡损伤更为严重。
     结论:CPEE导致认知和可塑性平衡性别二态性,并且突触可塑性平衡为CPEE引起的中枢功能紊乱提供了新的解释。
Melamine (1,3,5-Triazine-2,4,6-triamine), a synthetic chemical compound, is often used to produce melamine resin by reacting with formaldehyde. They have been used to manufacture plastics, adhesives and fabrics. Although melamine has been permitted to be used in some food contact products (e.g. food package materials and tableware) for a quite long time, it is not a kind of food additive and is never approved to be added to food directly.
     The study of melamine toxicity in animals started as early as1984, however, it did not attract widespread public concern. Ample evidence certified that infants and animals were affected by food which were contaminated by melamine, and the renal pathology was the main manifestation in intoxicated case. Our previous studies showed that melamine produced the impairment of hippocampal function and induced apoptosis and oxidative damage in PC12cell. Obviously, the known nephrotoxicity of melamine could not fully explain its neurotoxicity effects.
     On the other hand, its impact may persist longer than we thought. Antioxidants have been shown to decrease some of the biochemical measures of oxidative stress, and then mitigate function impairment of CNS. Vitamin C and E are two essential nutrients that can scavenge free radicals and constitute a strong line of defense in retarding reactive oxygen species (ROS)-induced cellular damage. Combination of vitamin C and E treatment can significantly attenuate oxidative damage, anxiety disorders and cognitive-behavioral impairment in AD, PD, amyotrophic lateral sclerosis and ataxia and improve their daily life viability as well as social activity.
     Against above background, we investigated the effects of melamine on the spatial cognition and hippocampal synaptic plasticity of Wistar rats by gavage for28consecutive days. Meanwhile, hippocampal ROS and antioxidative enzyme activities were detected. Subsequently, we explored the antioxidative effect of vitamin C and E combination on melamine-induced neurotoxicology and attempted to make clear the potential mechanism.
     Part1the effects of melamine on the spatial cognition and hippocampal synaptic plasticity in rats
     Objective:To investigate the effects of melamine on spatial cognition and hippocampal synaptic plasticity in Wistar rats, and explore the potential mechanism.
     Methods:Male adolescent Wistar rats, three-week-old, were randomly divided into two groups:control group (n=16) and melamine group (n=16). Rats were intragastric administered with melamine at a dose of300mg/kg/day once a day for4weeks. After that, Morris water maze (MWM) test was performed to evaluate the spatial cognitive function, including learning, reference memory and re-acquisition abilities. The long term potentiation (LTP) and long-term depression (LTD) from Schaffer collaterals to hippocampal CA1region were measured. In addition, the melamine concentration in the hippocampus was detected by enzyme linked immunosorbent assay (ELISA) method.
     Results:
     1. The ELISA test showed that the melamine content in the hippocampus was abnormally increased after melamine-treatment for28days, which indicated that melamine could pass through blood brain barrier (BBB).
     2. The MWM test showed that the escape latencies in both initial training (IT) and reversal training (RT) stages were significantly increased in melamine group compared to that in control group (P<0.01). In space exploring test (SET) stage, both the platform crossings (P<0.01) and the quadrant dwell time (P<0.01) were decreased in melamine group compared to that in control group.
     3. LTP recording were showed that the slope of field excitatory postsynaptic potentials (fEPSPs) was significantly lower in melamine group than that of control group (P<0.01). Meanwhile, LTD test was found that the fEPSPs slope was dramatically higher in melamine group than that in control group (P<0.01).
     Conclusions:
     Melamine is able to pass the BBB and accumulate in the hippocampus region. Meanwhile, the deleterious effects of melamine on hippocampal long-term synaptic plasticity broke the balance between stability and flexibility of cognition, which could further explain the poor performance in behavioral tests.
     Part2Spatial cognition was impaired by melamine associated with oxidative damage in rat
     Objective:To investigate whether cognitive deficits induced by melamine was associated with the impairment of oxidation-antioxidation homeostasis.
     Methods:Male adolescent Wistar rats, three-week-old, were randomly divided into two groups:control group (n=8) and melamine group (n=8). Rats were intragastric administered with melamine at a dose of300mg/kg/day once a day for4weeks. After that, the MWM experiment and histopathological examination were performed. Meanwhile, the level of reactive oxygen species (ROS), malonaldehyde (MDA) superoxide dismutase (SOD), glutathione peroxidase (GSH-Px) and adenosine-triphosphate (ATP) levels were detected in the hippocampus.
     Results:
     1. During the four weeks of melamine treatment, rats gained significant less weight in melamine group than those in control group (P<0.01). There was an abnormal increasing in the concentration of melamine in hippocampus in melamine group.
     2. In IT stage of MWM test, it was significantly prolonged in melamine group compared to that in control group (P<0.01). Furthermore, in SET stage, it was found that both the platform crossings (P<0.01) and the quadrant dwell time (P<0.01) were decreased in melamine group compared to that in control group. However, swimming speeds of these two groups remained constant throughout testing and no difference was found between them (P>0.05).
     3. Results of biochemical tests:Chronic melamine exposure induced dysfunction of oxidation-antioxidation homeostasis, including increased the levels of ROS and MDA, decreased SOD, GSH-Px and ATP.
     Conclusions:
     The neurotoxicity of melamine in hippocampus may be partly associated with oxidative damage.
     Part3The reversal effects of VC and VE joining application on hippocampal oxidative stress induced by melamine in PC12cells
     Objective:To explore the potential treatment efficacy of vitamin C and vitamin E alone, the combination of vitamin C and E on oxidative stress induced by melamine.
     Methods:PC12cells were cultured with melamine to establish an in vitro model of neuronal cells. The cellular viability was tested by MTT assay. The flow cytometry was used to detect the apoptosis of PC12cells and the level of intracellular reactive oxygen species (ROS). Furthermore, the inverted phase contrast microscope was used to observe the morphology of cells by Hoechst33342staining. The biochemical assays were used to evoluate the effect of antioxidative vitamins on the neurotoxicology of melamine.
     Results:
     1. Compared with vitamin C and vitamin E alone, the combination of vitamin C and E was statistically increased PC12cells viability as demonstrated by MTT assay.
     2. The further evidences indicated that vitamin complex was effectively reduced the formation of reaction oxygen species ROS), decreased the level of MDA and elevated the activities of antioxidative enzymes, such as superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GSH-Px).
     3. Hoechst33342staining and flow cytometric analysis of apoptosis revealed the apoptotic nuclear features of the melamine-induced cell death, and showed that vitamin combination, but not vitamin C or vitamin E, effectively prevented PC12cells from this melamine-induced apoptosis.
     4. The combination of vitamins effectively inhibited apoptosis via blocking the incesased activation of caspase-3.
     Conclusions:
     Vitamin E and C combination protect PC12cells from the injury induced by melamine through the down-regulation of oxidative stress and prevention of melamine-induced apoptosis.
     Part4The potential treatment effects of VC and VE joining application on spatial cognition and its possible mechanisms in melamine-treated rats
     Objective:To investigate the antioxidative effect of combination of vitamin C and E on cognitive function in melamine rats and explore the potential mechanism.
     Methods:Male adolescent Wistar rats, three-week-old, were randomly divided into four groups:control group (n=16), melamine group (n=16), melamine+vtamin group (n=16) and vitamin group (n=16). Rats were intragastric administered with melamine at a dose of300mg/kg/day once a day for4weeks. Rat in melamine+vitamin group received vitamins C and E at a dose of150and200mg/kg respectively, intraperitoneally once a day for the next7consecutive days. After that, spatial cognitive function was investigated using a spatial version of the Morris water maze test. The long term potentiation (LTP) and long-term depression (LTD) from Schaffer collaterals to hippocampal CA1region were recorded. In addition, the levels of ROS, MDA and NO and the activities of SOD, CAT, GSH-Px, NOS, apoptotic related proteins Bcl-2and caspase-3were detected by ELISA method.
     Results:
     1. Rats treated with vitamins E and C had part of the above effects prevented in MWM tests, with mitigating the melamine-induced deficit in the learning and memory stage of MWM test but slightly improving the reversal learning ability.
     2. Histological observation indicated that vitamin complex effectively alleviated the injuries of hippocampal neurons induced by melamine.
     3. In vivo electrophysiological assessment found that melamine was able to cause the impairment of hippocampal synaptic plasticity drastically. The vitamins C plus E regimen mitigated the melamine-induced impairment of hippocampal synaptic plasticity, with an entirely ameliorated LTP and a significantly reversal LTD. Furthermore, in the S group, this vitamin regimen did not produce obviously deficits in behavioral and electrophysiological experiments.
     4. ROS, MDA, NO contents were reversed to control levels after treatment with combination of vitamin C and E. SOD, CAT, GSH-Px, NOS activities were also improved compared to melamine-treated group. The neural apoptosis in the hippocampus were ameliorated by regulating the expression of pro-apoptotic protein (Bcl-2) and anti-apoptotic protein (caspase-3).
     Conclusions:
     It is concluded that oxidative damage plays an important role in the melamine-induced hippocampal impairment. The modulation of oxidative stress with vitamins E and C reduced the melamine-induced damage and may support to a novel therapeutic strategy to the cognitive dysfunction observed in melamine-induced patient.
     Part5Spatial cognition and sexually dimorphic synaptic plasticity balance impairment in rats with chronic prenatal ethanol exposure
     Objective:To investigate the sexual different effects of chronic prenatal ethanol exposure (CPEE) on behavior cognition and cognitive flexibility, and interpret the possible mechanism by evaluating the alternation of synaptic plasticity balance.
     Methods:The animal model was produced by ethanol exposure throughout gestational period with4g/kg bodyweight. The offspring of both male and female was selected and studied on postnatal days36. After that, the Morris water maze (MWM) test was performed to evaluate the spatial cognitive function, including learning, reference memory and re-acquisition abilities. LTP and depotentiation from Schaffer collaterals to hippocampal CA1region were recorded.
     Results:
     1. It demonstrated that chronic ethanol exposure reduced birth weight, losing bodyweight gain, microcephaly and retarded hippocampal weight.
     2. In Morris water maze (MWM) test, it was found that the latencies were significantly higher in adolescent CPEE-treated rats than that in normal rats. The time spent of CPEE-treated rats was markedly increased near the periphery of the pool. Furthermore, they took less time in the target quadrant and reduced platform crossing times in the probe phase.In addition, the behavioral test also showed that there was a particularly serious impairment of females than that of males after CPEE treatment.
     3. Electrophysiological studies showed that CPEE dramatically depressed long-term potentiation (LTP) and obviously enhanced depotentiation in male adolescent hippocampus, while drastically exaggerated LTP and hardly impacted depotentiation in female.
     4. Our original index also displayed that synaptic plasticity balance of female was much more sensitive to the effect of CPEE than that of males.
     Conclusions:
     The investigation revealed the sex different effect of CPEE on synaptic plasticity balance and provided a better understanding of CNS dysfunction in CPEE treatment.
引文
[1]Cook HA, Klampfl CW, Buchberger W. Analysis of melamine resins by capillary zone electrophoresis with electrospray ionization-mass spectrometric detection [J]. Electrophoresis,2005, 26 (7-8):1576-1583.
    [2]Langman CB. Melamine, powdered milk, and nephrolithiasis in Chinese infants [J]. N Engl J Med, 2009,360 (11):1139-1141.
    [3]Parry J. China's tainted infant formula sickens nearly 13,000 babies [J]. BMJ,2008,337:a1802.
    [4]Brown CA, Jeong KS, Poppenga RH, et al. Outbreaks of renal failure associated with melamine and cyanuric acid in dogs and cats in 2004 and 2007 [J]. J Vet Diagn Invest,2007,19 (5):525-531.
    [5]Ingelfinger JR. Melamine and the global implications of food contamination [J]. N Engl J Med, 2008,359 (26):2745-2748.
    [6]Hau AK, Kwan TH, Li PK. Melamine toxicity and the kidney [J]. J Am Soc Nephrol,2009,20 (2): 245-250.
    [7]Chen JS. A worldwide food safety concern in 2008-melamine-contaminated infant formula in China caused urinary tract stone in 290,000 children in China [J]. Chin Med J (Engl),2009,122 (3): 243-244.
    [8]Chu CY, Chu KO, Chan JY, et al. Distribution of melamine in rat foetuses and neonates [J]. Toxicol Lett,2010,199 (3):398-402.
    [9]Jingbin W, Ndong M, Kai H, et al. Placental transfer of melamine and its effects on rat dams and fetuses [J]. Food Chem Toxicol,2010,48 (7):1791-1795.
    [10]Hu P, Wang J, Zhang M, et al. Liver involvement in melamine-associated nephrolithiasis [J]. Arch Iran Med,2012,15 (4):247-248.
    [11]Wilson HM. Primary carcinoma of the liver:report of 20 cases, including two treated with triethylene melamine [J]. Ann Intern Med,1954,41 (1):118-123.
    [12]Wilson WL, Ryzin JV, Weiss AJ, et al. A phase III study in lung carcinoma comparing hexamethyl-melamine (NSC 13875) to dibromodulcitol (NSC 104800) 1,2 [J]. Oncology,1975,31 (5-6):293-309.
    [13]Rumbeiha WK, Agnew D, Maxie G, et al. Analysis of a survey database of pet food-induced poisoning in North America [J]. J Med Toxicol,2010,6 (2):172-184.
    [14]Wu YT, Huang CM, Lin CC, et al. Determination of melamine in rat plasma, liver, kidney, spleen, bladder and brain by liquid chromatography-tandem mass spectrometry [J]. J Chromatogr A,2009, 1216 (44):7595-7601.
    [15]Yang JJ, Tian YT, Yang Z, et al. Effect of melamine on potassium currents in rat hippocampal CA1 neurons [J]. Toxicol In Vitro,2010,24 (2):397-403.
    [16]Yang JJ, Yang Z, Zhang T. Action potential changes associated with impairment of functional properties of sodium channels in hippocampal neurons induced by melamine [J]. Toxicol Lett,2010, 198 (2):171-176.
    [17]Han YG, Liu SC, Zhang T, et al. Induction of apoptosis by melamine in differentiated PC12 cells [J]. Cell Mol Neurobiol,2011,31 (1):65-71.
    [18]Kuloglu M, Ustundag B, Atmaca M, et al. Lipid peroxidation and antioxidant enzyme levels in patients with schizophrenia and bipolar disorder [J]. Cell Biochem Funct,2002,20 (2):171-175.
    [19]Ranjekar PK, Hinge A, Hegde MV, et al. Decreased antioxidant enzymes and membrane essential polyunsaturated fatty acids in schizophrenic and bipolar mood disorder patients [J]. Psychiatry Res, 2003,121 (2):109-122.
    [20]Cui J, Shao L, Young LT, et al. Role of glutathione in neuroprotective effects of mood stabilizing drugs lithium and valproate [J]. Neuroscience,2007,144 (4):1447-1453.
    [21]Shao L, Cui J, Young LT, et al. The effect of mood stabilizer lithium on expression and activity of glutathione s-transferase isoenzymes [J]. Neuroscience,2008,151 (2):518-524.
    [22]Frey BN, Valvassori SS, Reus GZ, et al. Effects of lithium and valproate on amphetamine-induced oxidative stress generation in an animal model of mania [J]. J Psychiatry Neurosci,2006,31 (5): 326-332.
    [23]Knapp LT, Klann E. Potentiation of hippocampal synaptic transmission by superoxide requires the oxidative activation of protein kinase C [J]. J Neurosci,2002,22 (3):674-683.
    [24]Kamsler A, Segal M. Hydrogen peroxide modulation of synaptic plasticity [J]. J Neurosci,2003, 23 (1):269-276.
    [25]Kamsler A, Segal M. Paradoxical actions of hydrogen peroxide on long-term potentiation in transgenic superoxide dismutase-1 mice [J]. J Neurosci,2003,23 (32):10359-10367.
    [26]Milton VJ, Sweeney ST. Oxidative stress in synapse development and function [J]. Dev Neurobiol, 2012,72(1):100-110.
    [27]Klann E. Cell-permeable scavengers of superoxide prevent long-term potentiation in hippocampal area CA1 [J]. J Neurophysiol,1998,80 (1):452-457.
    [28]Serrano F, Klann E. Reactive oxygen species and synaptic plasticity in the aging hippocampus [J]. Ageing Res Rev,2004,3 (4):431-443.
    [29]Auerbach JM, Segal M. Peroxide modulation of slow onset potentiation in rat hippocampus [J]. J Neurosci,1997,17 (22):8695-8701.
    [30]Avshalumov MV, Chen BT, Rice ME. Mechanisms underlying H(2)O(2)-mediated inhibition of synaptic transmission in rat hippocampal slices [J]. Brain Res,2000,882 (1-2):86-94.
    [31]Watson JB, Khorasani H, Persson A, et al. Age-related deficits in long-term potentiation are insensitive to hydrogen peroxide:coincidence with enhanced autophosphorylation of Ca2+/calmodulin-dependent protein kinase II [J]. J Neurosci Res,2002,70 (3):298-308.
    [32]Bowry VW, Mohr D, Cleary J, et al. Prevention of tocopherol-mediated peroxidation in ubiquinol-10-free human low density lipoprotein [J]. Journal of Biological Chemistry,1995,270 (11): 5756-5763.
    [33]Neuzil J, Thomas SR, Stocker R. Requirement for, promotion, or inhibition by alpha-tocopherol of radical-induced initiation of plasma lipoprotein lipid peroxidation [J]. Free radical biology & medicine, 1997,22 (1-2):57.
    [34]Vatassery GT, Smith WE, Quach HT. Effect of oxidative stress induced by L-dopa on endogenous antioxidants in PC-12 cells [J]. Ann N Y Acad Sci,2006,1074:330-336.
    [35]Rebec GV, Pierce R. A vitamin as neuromodulator:ascorbate release into the extracellular fluid of the brain regulates dopaminergic and glutamatergic transmission [J]. Progress in neurobiology,1994, 43 (6):537.
    [36]Neves G, Cooke SF, Bliss TV. Synaptic plasticity, memory and the hippocampus:a neural network approach to causality [J]. Nat Rev Neurosci,2008,9 (1):65-75.
    [37]Nicholls RE, Alarcon JM, Malleret G, et al. Transgenic mice lacking NMDAR-dependent LTD exhibit deficits in behavioral flexibility [J]. Neuron,2008,58 (1):104-117.
    [38]Brigman JL, Wright T, Talani G, et al. Loss of GluN2B-containing NMDA receptors in CA1 hippocampus and cortex impairs long-term depression, reduces dendritic spine density, and disrupts learning [J]. J Neurosci,2010,30 (13):4590-4600.
    [39]Sanderson TM. Molecular Mechanisms Involved in Depotentiation and Their Relevance to Schizophrenia [J]. Chonnam Med J,2012,48 (1):1-6.
    [40]Yasuda H, Higashi H, Kudo Y, et al. Imaging of calcineurin activated by long-term depression-inducing synaptic inputs in living neurons of rat visual cortex [J]. European Journal of Neuroscience, 2003,17 (2):287-297.
    [41]Zeng H, Chattarji S, Barbarosie M, et al. Forebrain-specific calcineurin knockout selectively impairs bidirectional synaptic plasticity and working/episodic-like memory [J]. Cell,2001,107 (5): 617-629.
    [42]Lisman J, Schulman H, Cline H. The molecular basis of CaMKII function in synaptic and behavioural memory [J]. Nature Reviews Neuroscience,2002,3 (3):175-190.
    [43]Shifman JM, Choi MH, Mihalas S, et al. Ca2+/calmodulin-dependent protein kinase II (CaMKII) is activated by calmodulin with two bound calciums [J]. Proceedings of the National Academy of Sciences,2006,103 (38):13968-13973.
    [44]Zhong L, Gerges NZ. Neurogranin and synaptic plasticity balance [J]. Commun Integr Biol,2010, 3 (4):340-342.
    [45]Norris CM, Korol DL, Foster TC. Increased susceptibility to induction of long-term depression and long-term potentiation reversal during aging [J]. The Journal of Neuroscience,1996,16 (17): 5382-5392.
    [46]Melnick RL, Boorman GA, Haseman JK, et al. Urolithiasis and bladder carcinogenicity of melamine in rodents [J]. Toxicol Appl Pharmacol,1984,72 (2):292-303.
    [47]Sharma K, Paradakar M. The melamine adulteration scandal [J]. Food Security,2010,2 (1): 97-107.
    [48]Wei Y, Liu D. Review of melamine scandal:still a long way ahead [J]. Toxicol Ind Health,2012, 28 (7):579-582.
    [49]Okumura M, Hasegawa R, Shirai T, et al. Relationship between calculus formation and carcinogenesis in the urinary bladder of rats administered the non-genotoxic agents, thymine or melamine [J]. Carcinogenesis,1992,13 (6):1043-1045.
    [50]Puschner B, Poppenga RH, Lowenstine LJ, et al. Assessment of melamine and cyanuric acid toxicity in cats [J]. Journal of Veterinary Diagnostic Investigation,2007,19 (6):616-624.
    [51]Cianciolo RE, Bischoff K, Ebel JG, et al. Clinicopathologic, histologic, and toxicologic findings in 70 cats inadvertently exposed to pet food contaminated with melamine and cyanuric acid [J]. Journal of the American Veterinary Medical Association,2008,233 (5):729-737.
    [52]Reimschuessel R, Gieseker CM, Miller RA, et al. Evaluation of the renal effects of experimental feeding of melamine and cyanuric acid to fish and pigs [J]. American journal of veterinary research, 2008,69 (9):1217-1228.
    [53]Heck HD, Tyl RW. The induction of bladder stones by terephthalic acid, dimethyl terephthalate, and melamine (2,4,6-triamino-s-triazine) and its relevance to risk assessment [J]. Regul Toxicol Pharmacol,1985,5 (3):294-313.
    [54]Lazarov A. Textile dermatitis in patients with contact sensitization in Israel:a 4-year prospective study [J]. J Eur Acad Dermatol Venereol,2004,18 (5):531-537.
    [55]Garcia Gavin J, Loureiro Martinez M, Fernandez-Redondo V, et al. Contact allergic dermatitis from melamine formaldehyde resins in a patient with a negative patch-test reaction to formaldehyde [J]. Dermatitis,2008,19 (2):E5-6.
    [56]Xie LQ, Zhao KX. [Synapse remodelling from functional to structural:neural mechanisms underlying amblyopia] [J]. Zhonghua Yan Ke Za Zhi,2008,44 (11):1045-1049.
    [57]Xing G, Liu F, Yao L, et al. [Changes in long-term synaptic plasticity in the spinal dorsal horn of neuropathic pain rats] [J]. Beijing Da Xue Xue Bao,2003,35 (3):226-230.
    [58]Gu Q. Involvement of nerve growth factor in visual cortex plasticity [J]. Rev Neurosci,1995,6 (4):329-351.
    [59]Jaffard R, Vouimba RM, Marighetto A, et al. Long-term potentiation and long-term depression in the lateral septum in spatial working and reference memory [J]. J Physiol Paris,1996,90 (5-6): 339-341.
    [60]Morris RG. Long-term potentiation and memory [J]. Philosophical Transactions of the Royal Society of London Series B, Biological Sciences,2003,358 (1432):643-647.
    [61]Lynch MA. Long-term potentiation and memory [J]. Physiol Rev,2004,84 (1):87-136.
    [62]Bliss TV, Collingridge GL. A synaptic model of memory:long-term potentiation in the hippocampus [J]. Nature,1993,361 (6407):31-39.
    [63]Collingridge GL, Peineau S, Howland JG, et al. Long-term depression in the CNS [J]. Nat Rev Neurosci,2010,11 (7):459-473.
    [64]Collingridge GL, Kehl SJ, Loo R, et al. Effects of kainic and other amino acids on synaptic excitation in rat hippocampal slices:1. Extracellular analysis [J]. Exp Brain Res,1983,52 (2): 170-178.
    [65]Collingridge GL, Gage PW, Robertson B. Inhibitory post-synaptic currents in rat hippocampal CA1 neurones [J]. J Physiol,1984,356:551-564.
    [66]Lee I, Jerman TS, Kesner RP. Disruption of delayed memory for a sequence of spatial locations following CA1- or CA3-lesions of the dorsal hippocampus [J]. Neurobiol Learn Mem,2005,84 (2): 138-147.
    [67]Morris RG, Garrud P, Rawlins JN, et al. Place navigation impaired in rats with hippocampal lesions [J]. Nature,1982,297 (5868):681-683.
    [68]Brandeis R, Brandys Y, Yehuda S. The use of the Morris Water Maze in the study of memory and learning [J]. Int J Neurosci,1989,48 (1-2):29-69.
    [69]D'Hooge R, De Deyn PP. Applications of the Morris water maze in the study of learning and memory [J]. Brain Res Rev,2001,36 (1):60-90.
    [70]Paxinos G, Watson C. The Rat Brain in Stereotaxic Coordinates:Hard Cover Edition [M]. Academic press,2007.
    [71]Vorhees CV, Williams MT. Morris water maze:procedures for assessing spatial and related forms of learning and memory [J]. Nat Protoc,2006,1 (2):848-858.
    [72]McNamara RK, Skelton RW. The neuropharmacological and neurochemical basis of place learning in the Morris water maze [J]. Brain Res Brain Res Rev,1993,18 (1):33-49.
    [73]Morris R. Developments of a water-maze procedure for studying spatial learning in the rat [J]. J Neurosci Methods,1984,11 (1):47-60.
    [74]de Bruin JP, Sanchez-Santed F, Heinsbroek RP, et al. A behavioural analysis of rats with damage to the medial prefrontal cortex using the Morris water maze:evidence for behavioural flexibility, but not for impaired spatial navigation [J]. Brain Res,1994,652 (2):323-333.
    [75]Jarrard LE. On the role of the hippocampus in learning and memory in the rat [J]. Behav Neural Biol,1993,60 (1):9-26.
    [76]Barnes CA. Spatial learning and memory processes:the search for their neurobiological mechanisms in the rat [J]. Trends Neurosci,1988,11 (4):163-169.
    [77]Squire LR. Memory and the hippocampus:a synthesis from findings with rats, monkeys, and humans [J]. Psychol Rev,1992,99 (2):195-231.
    [78]Morris RG, Anderson E, Lynch GS, et al. Selective impairment of learning and blockade of long-term potentiation by an N-methyl-D-aspartate receptor antagonist, AP5 [J]. Nature,1986,319 (6056):774-776.
    [79]Carroll RC, Lissin DV, von Zastrow M, et al. Rapid redistribution of glutamate receptors contributes to long-term depression in hippocampal cultures [J]. Nat Neurosci,1999,2 (5):454-460.
    [80]Morris RG. Elements of a neurobiological theory of hippocampal function:the role of synaptic plasticity, synaptic tagging and schemas [J]. Eur J Neurosci,2006,23 (11):2829-2846.
    [81]Kemp A, Manahan-Vaughan D. Hippocampal long-term depression:master or minion in declarative memory processes? [J]. Trends Neurosci,2007,30 (3):111-118.
    [82]Wang Y, Liu F, Wei Y, et al. The effect of exogenous melamine on.rat hippocampal neurons [J]. Toxicol Ind Health,2011,27:571-576.
    [83]Mayford M, Wang J, Kandel ER, et al. CaMKII regulates the frequency-response function of hippocampal synapses for the production of both LTD and LTP [J]. Cell,1995,81 (6):891-904.
    [84]Lauri SE, Bortolotto ZA, Nistico R, et al. A role for Ca2+ stores in kainate receptor-dependent synaptic facilitation and LTP at mossy fiber synapses in the hippocampus [J]. Neuron,2003,39 (2): 327-341.
    [85]Smith SJ. Progress on LTP at hippocampal synapses:a post-synaptic Ca2+ trigger for memory storage [J]. Trends Neurosci,1987,10:142-144.
    [86]Johnston D, Christie BR, Frick A, et al. Active dendrites, potassium channels and synaptic plasticity [J]. Philos Trans R Soc Lond B Biol Sci,2003,358 (1432):667-674.
    [87]Kim J, Hoffman DA. Potassium channels:newly found players in synaptic plasticity [J]. Neuroscientist,2008,14 (3):276-286.
    [88]Kim J, Jung S-C, Clemens AM, et al. Regulation of dendritic excitability by activity-dependent trafficking of the A-type K+ channel subunit Kv4.2 in hippocampal neurons [J]. Neuron,2007,54 (6): 933.
    [89]Takagi H. Roles of ion channels in EPSP integration at neuronal dendrites [J]. Neurosci Res,2000, 37 (3):167-171.
    [90]Dobson RL, Motlagh S, Quijano M, et al. Identification and characterization of toxicity of contaminants in pet food leading to an outbreak of renal toxicity in cats and dogs [J]. Toxicol Sci,2008, 106(1):251-262.
    [91]Lam HS, Ng PC, Chu WC, et al. Renal screening in children after exposure to low dose melamine in Hong Kong:cross sectional study [J]. BMJ,2008,337:a2991.
    [92]An L, Li Z, Yang Z, et al. Cognitive deficits induced by melamine in rats [J]. Toxicology Letters, 2011,206 (3):276-280.
    [93]Kwon SH, Lee HK, Kim JA, et al. Neuroprotective effects of chlorogenic acid on scopolamine-induced amnesia via anti-acetylcholinesterase and anti-oxidative activities in mice [J]. Eur J Pharmacol,2010,649 (1-3):210-217.
    [94]Nunomura A, Tamaoki T, Tanaka K, et al. Intraneuronal amyloid beta accumulation and oxidative damage to nucleic acids in Alzheimer disease [J]. Neurobiol Dis,2010,37 (3):731-737.
    [95]Strazielle C, Jazi R, Verdier Y, et al. Regional brain metabolism with cytochrome c oxidase histochemistry in a PS1/A246E mouse model of autosomal dominant Alzheimer's disease:correlations with behavior and oxidative stress [J]. Neurochem Int,2009,55 (8):806-814.
    [96]Sas K, Robotka H, Toldi J, et al. Mitochondria, metabolic disturbances, oxidative stress and the kynurenine system, with focus on neurodegenerative disorders [J]. J Neurol Sci,2007,257 (1-2): 221-239.
    [97]Ma C, Kang H, Liu Q, et al. Insight into potential toxicity mechanisms of melamine:an in silico study [J]. Toxicology,2011,283 (2-3):96-100.
    [98]Jacobson MD. Reactive oxygen species and programmed cell death [J]. Trends in biochemical sciences,1996,21 (3):83-86.
    [99]Apel K, Hirt H. Reactive oxygen species:metabolism, oxidative stress, and signal transduction [J]. Annu Rev Plant Biol,2004,55:373-399.
    [100]Fialkow L, Wang Y, Downey GP. Reactive oxygen and nitrogen species as signaling molecules regulating neutrophil function [J]. Free Radical Biology and Medicine,2007,42 (2):153-164.
    [101]M(?)ller IM. Plant mitochondria and oxidative stress:electron transport, NADPH turnover, and metabolism of reactive oxygen species [J]. Annual review of plant biology,2001,52 (1):561-591.
    [102]Turrens JF. Mitochondrial formation of reactive oxygen species [J]. The Journal of physiology, 2003,552 (2):335-344.
    [103]Wilcox CS. Reactive oxygen species:roles in blood pressure and kidney function [J]. Current hypertension reports,2002,4 (2):160-166.
    [104]Bandyopadhyay U, Das D, Banerjee RK. Reactive oxygen species:oxidative damage and pathogenesis [J]. Current Science,1999,77 (5):658-666.
    [105]Fubini B, Hubbard A. Reactive oxygen species (ROS) and reactive nitrogen species (RNS) generation by silica in inflammation and fibrosis [J]. Free Radical Biology and Medicine,2003,34 (12):1507-1516.
    [106]Lee HB, Yu M-R, Yang Y, et al. Reactive oxygen species-regulated signaling pathways in diabetic nephropathy [J]. Journal of the American Society of Nephrology,2003,14 (suppl 3): S241-S245.
    [107]Casadesus G, Smith MA, Zhu X, et al. Alzheimer disease:evidence for a central pathogenic role of iron-mediated reactive oxygen species [J]. Journal of Alzheimer's Disease,2004,6 (2):165-169.
    [108]Griveau J, Lannou D. Reactive oxygen species and human spermatozoa:physiology and pathology [J]. International journal of andrology,1997,20 (2):61-69.
    [109]Hemnani T, Parihar M. Reactive oxygen species and oxidative DNA damage [J]. Indian journal of physiology and pharmacology,1998,42 (4):440-452.
    [110]Halliwell B. Oxidants and the central nervous system:some fundamental questions. Is oxidant damage relevant to Parkinson's disease, Alzheimer's disease, traumatic injury or stroke? [J]. Acta Neurologica Scandinavica,1989,80 (s126):23-33.
    [111]Sweeney M, Kalt W, MacKinnon S, et al. Feeding rats diets enriched in lowbush blueberries for six weeks decreases ischemia-induced brain damage [J]. Nutritional Neuroscience,2002,5 (6): 427-431.
    [112]Starkov AA, Chinopoulos C, Fiskum G. Mitochondrial calcium and oxidative stress as mediators of ischemic brain injury [J]. Cell Calcium,2004,36 (3):257-264.
    [113]Pratico D, Delanty N. Oxidative injury in diseases of the central nervous system:focus on Alzheimer's disease [J]. The American journal of medicine,2000,109 (7):577-585.
    [114]Gahtan E, Auerbach J, Groner Y, et al. Reversible impairment of long-term potentiation in transgenic Cu/Zn-SOD mice [J]. European Journal of Neuroscience,1998,10 (2):538-544.
    [115]Logue SF, Paylor R, Wehner JM. Hippocampal lesions cause learning deficits in inbred mice in the Morris water maze and conditioned-fear task [J]. Behavioral neuroscience,1997,111 (1):104.
    [116]Tsien JZ, Huerta PT, Tonegawa S. The essential role of hippocampal CA1 NMD A receptor-dependent synaptic plasticity in spatial memory [J]. Cell,1996,87 (7):1327-1338.
    [117]Packard MG, Hirsh R, White NM. Differential effects of fornix and caudate nucleus lesions on two radial maze tasks:evidence for multiple memory systems [J]. The Journal of Neuroscience,1989, 9 (5):1465-1472.
    [118]Kerr JF, Wyllie AH, Currie AR. Apoptosis:a basic biological phenomenon with wide-ranging implications in tissue kinetics [J]. Br J Cancer,1972,26 (4):239-257.
    [119]Meier P, Finch A, Evan G. Apoptosis in development [J]. Nature,2000,407 (6805):796-801.
    [120]Rich T, Allen RL, Wyllie AH. Defying death after DNA damage [J]. Nature,2000,407 (6805): 777-783.
    [121]Yuan J, Yankner BA. Apoptosis in the nervous system [J]. Nature,2000,407 (6805):802-809.
    [122]Van Soom A, Yuan Y, Peelman L, et al. Prevalence of apoptosis and inner cell allocation in bovine embryos cultured under different oxygen tensions with or without cysteine addition [J]. Theriogenology,2002,57 (5):1453-1465. [123] Breimer LH. Molecular mechanisms of oxygen radical carcinogenesis and mutagenesis:the role of DNA base damage [J]. Molecular carcinogenesis,1990,3 (4):188-197.
    [124]Lennon S, Martin S, Cotter T. Dose-dependent induction of apoptosis in human tumour cell lines by widely diverging stimuli [J]. Cell proliferation,1991,24 (2):203-214.
    [125]Ishisaka R, Utsumi K, Utsumi T. Involvement of lysosomal cysteine proteases in hydrogen peroxide-induced apoptosis in HL-60 cells [J]. Bioscience, biotechnology, and biochemistry,2002,66 (9):1865-1872.
    [126]Tittlemier SA, Lau BP, Menard C, et al. Melamine in infant formula sold in Canada:occurrence and risk assessment [J]. J Agric Food Chem,2009,57 (12):5340-5344.
    [127]Parry J. Contaminated infant formula sickens 6200 babies in China [J]. BMJ,2008,337:a1738.
    [128]Schoder D. Melamine milk powder and infant formula sold in East Africa [J]. J Food Prot,2010, 73 (9):1709-1714.
    [129]Skinner CG, Thomas JD, Osterloh JD. Melamine toxicity [J]. J Med Toxicol,2010,6 (1):50-55.
    [130]Dalal RP, Goldfarb DS. Melamine-related kidney stones and renal toxicity [J]. Nat Rev Nephrol, 2011,7 (5):267-274.
    [131]Yan W, Fei L, Yuejiao W, et al. The effect of exogenous melamine on rat hippocampal neurons [J]. Toxicol Ind Health,2011,27 (6):571-576.
    [132]Chen Q, Niu Y, Zhang R, et al. The toxic influence of paraquat on hippocampus of mice: involvement of oxidative stress [J]. Neurotoxicology,2010,31 (3):310-316.
    [133]Ercan S, Ozturk N, Celik-Ozenci C, et al. Sodium metabisulfite induces lipid peroxidation and apoptosis in rat gastric tissue [J]. Toxicol Ind Health,2010,26 (7):425-431.
    [134]Ke Y, Duan X, Wen F, et al. Association of melamine exposure with urinary stone and oxidative DNA damage in infants [J]. Arch Toxicol,2010,84 (4):301-307.
    [135]Halliwell B. Oxidative stress and neurodegeneration:where are we now? [J]. J Neurochem,2006, 97(6):1634-1658.
    [136]Miller E, Mrowicka M, Zolynski K, et al. Oxidative stress in multiple sclerosis [J]. Pol Merkur Lekarski,2009,27 (162):499-502.
    [137]Kannan K, Jain SK. Oxidative stress and apoptosis [J]. Pathophysiology,2000,7 (3):153-163.
    [138]Andreyev AY, Kushnareva YE, Starkov AA. Mitochondrial metabolism of reactive oxygen species [J]. Biochemistry (Mosc),2005,70 (2):200-214.
    [139]He ZY, Guo RX. Effects of chondroitin sulfate on alteration of actin cytoskeleton in rats with acute necrotizing pancreatitis [J]. Hepatobiliary Pancreat Dis Int,2007,6 (5):537-543.
    [140]He P, He W, Wang A, et al. PBDE-47-induced oxidative stress, DNA damage and apoptosis in primary cultured rat hippocampal neurons [J]. Neurotoxicology,2008,29 (1):124-129.
    [141]Valko M, Morris H, Cronin MT. Metals, toxicity and oxidative stress [J]. Curr Med Chem,2005, 12 (10):1161-1208.
    [142]Ortiz GG, Benitez-King GA, Rosales-Corral SA, et al. Cellular and biochemical actions of melatonin which protect against free radicals:role in neurodegenerative disorders [J]. Curr Neuropharmacol,2008,6 (3):203-214.
    [143]Irmak MK, Fadillioglu E, Sogut S, et al. Effects of caffeic acid phenethyl ester and alpha-tocopherol on reperfusion injury in rat brain [J]. Cell Biochem Funct,2003,21 (3):283-289.
    [144]Aito H, Aalto KT, Raivio KO. Adenine nucleotide metabolism and cell fate after oxidant exposure of rat cortical neurons:effects of inhibition of poly(ADP-ribose) polymerase [J]. Brain Res, 2004,1013 (1):117-124.
    [145]Teepker M, Anthes N, Fischer S, et al. Effects of oxidative challenge and calcium on ATP-levels in neuronal cells [J]. Neurotoxicology,2007,28 (1):19-26.
    [146]Wang Z, Chen L, Al-Kasir R, et al. In vitro toxicity of melamine against Tetrahymena pyriformis cells [J]. J Vet Sci,2011,12 (1):27-34.
    [147]Wang Y, Liu F, Wei Y, et al. The effect of exogenous melamine on rat hippocampal neurons [J]. Toxicol Ind Health,2011,27 (6):571-576.
    [148]Guo C, He Z, Wen L, et al. Cytoprotective effect of trolox against oxidative damage and apoptosis in the NRK-52e cells induced by melamine [J]. Cell Biol Int,2012,36 (2):183-188.
    [149]Guo C, Yuan H, He Z. Melamine causes apoptosis of rat kidney epithelial cell line (NRK-52e cells) via excessive intracellular ROS (reactive oxygen species) and the activation of p38 MAPK pathway [J]. Cell Biol Int,2012,36 (4):383-389.
    [150]An L, Li Z, Yang Z, et al. Melamine induced cognitive impairment associated with oxidative damage in rat's hippocampus [J]. Pharmacology Biochemistry Behavior,2012,102 (2):196-202.
    [151]Yang J, An L, Yao Y, et al. Melamine impairs spatial cognition and hippocampal synaptic plasticity by presynaptic inhibition of glutamatergic transmission in infant rats [J]. Toxicology,2011, 289(2-3):167-174.
    [152]An L, Yang Z, Zhang T. Melamine induced spatial cognitive deficits associated with impairments of hippocampal long-term depression and cholinergic system in Wistar rats [J]. Neurobiol Learn Mem, 2013,100:18-24.
    [153]Guney M, Ozguner F, Oral B, et al.900 MHz radiofrequency-induced histopathologic changes and oxidative stress in rat endometrium:protection by vitamins E and C [J]. Toxicol Ind Health,2007, 23 (7):411-420.
    [154]Salonen JT, Nyyssonen K, Salonen R, et al. Antioxidant Supplementation in Atherosclerosis Prevention (ASAP) study:a randomized trial of the effect of vitamins E and C on 3-year progression of carotid atherosclerosis [J]. J Intern Med,2000,248 (5):377-386.
    [155]Nash CM, Ibram F, Dringenberg HC, et al. Effects of maternal administration of vitamins C and E on ethanol neurobehavioral teratogenicity in the guinea pig [J]. Alcohol,2007,41 (8):577-586.
    [156]Fiore G, Capasso A. Effects of vitamin E and C on placental oxidative stress:an in vitro evidence for the potential therapeutic or prophylactic treatment of preeclampsia [J]. Med Chem,2008,4 (6): 526-530.
    [157]Zhang P, Omaye ST. DNA strand breakage and oxygen tension:effects of beta-carotene, alpha-tocopherol and ascorbic acid [J]. Food Chem Toxicol,2001,39 (3):239-246.
    [158]Zhang P, Omaye ST. Antioxidant and prooxidant roles for beta-carotene, alpha-tocopherol and ascorbic acid in human lung cells [J]. Toxicol In Vitro,2001,15 (1):13-24.
    [159]Tischler AS. Chromaffin cells as models of endocrine cells and neurons [J]. Ann N Y Acad Sci, 2002,971:366-370.
    [160]Pimentel L. Scurvy:historical review and current diagnostic approach [J]. The American journal of emergency medicine,2003,21 (4):328-332.
    [161]Ratanachu-Ek S, Sukswai P, Jeerathanyasakun Y, et al. Scurvy in pediatric patients:a review of 28 cases [J]. Journal of the Medical Association of Thailand= Chotmaihet thangphaet,2003,86:S734.
    [162]Ghorbani AJ, Eichler C. Scurvy [J]. Journal of the American Academy of Dermatology,1994,30 (5):881-883.
    [163]Olmedo JM, Yiannias JA, Windgassen EB, et al. Scurvy:a disease almost forgotten [J]. International journal of dermatology,2006,45 (8):909-913.
    [164]Velandia B, Centor RM, McConnell V, et al. Scurvy is still present in developed countries [J]. Journal of general internal medicine,2008,23 (8):1281-1284.
    [165]Weber P, Bendich A, Schalch W. Vitamin C and human health-a review of recent data relevant to human requirements [J]. International journal for vitamin and nutrition research,1996,66 (1):19-30.
    [166]Gosiewska A, Wilson S, Kwon D, et al. Evidence for an in vivo role of insulin-like growth factor-binding protein-1 and-2 as inhibitors of collagen gene expression in vitamin C-deficient and fasted guinea pigs [J]. Endocrinology,1994,134 (3):1329-1339.
    [167]Libby P, Aikawa M. Vitamin C, collagen, and cracks in the plaque [J]. Circulation,2002,105 (12):1396-1398.
    [168]Chojkier M, Spanheimer R, Peterkofsky B. Specifically decreased collagen biosynthesis in scurvy dissociated from an effect on proline hydroxylation and correlated with body weight loss. In vitro studies in guinea pig calvarial bones [J]. Journal of Clinical Investigation,1983,72 (3):826.
    [169]Biondi C, Pavan B, Dalpiaz A, et al. Expression and characterization of vitamin C transporter in the human trophoblast cell line HTR-8/SVneo:effect of steroids, flavonoids and NSAIDs [J]. Molecular human reproduction,2007,13 (1):77-83.
    [170]Suboticanec K, Folnegovi6-Smalc V, Korbar M, et al. Vitamin C status in chronic schizophrenia [J]. Biological psychiatry,1990,28 (11):959-966.
    [171]Mueller P. The absence of plasma free fatty acid response to epinephrine in vitamin-C-deprived guinea pigs [J]. Journal of Lipid Research,1962,3 (1):92-94.
    [172]Levine M, Dhariwal KR, Washko PW, et al. Ascorbic acid and in situ kinetics:a new approach to vitamin requirements [J]. The American journal of clinical nutrition,1991,54(6):1157S-1162S.
    [173]Bendich A, D'Apolito P, Gabriel E, et al. Interaction of dietary vitamin C and vitamin E on guinea pig immune responses to mitogens [J]. The Journal of nutrition,1984,114 (9):1588.
    [174]Wintergerst ES, Maggini S, Hornig DH. Immune-enhancing role of vitamin C and zinc and effect on clinical conditions [J]. Annals of Nutrition and Metabolism,2006,50 (2):85-94.
    [175]Leferink NG, van Duijn E, Barendregt A, et al. Galactonolactone dehydrogenase requires a redox-sensitive thiol for optimal production of vitamin C [J]. Plant physiology,2009,150 (2): 596-605.
    [176]Leuchtenberger C, Leuchtenberger R. The effects of naturally, occurring metabolites (L cysteine, vitamin C) on cultured human cells exposed to smoke of tobacco or marijuana cigarettes [J]. Cytometry,1984,5 (4):396-402.
    [177]Niki E, Noguchi N, Tsuchihashi H, et al. Interaction among vitamin C, vitamin E, and beta-carotene [J]. The American journal of clinical nutrition,1995,62 (6):1322S-1326S.
    [178]Chen L, Boissonneault G, Glauert H. Vitamin C, vitamin E and cancer (review) [J]. Anticancer research,1988,8 (4):739.
    [179]Morris MC, Beckett LA, Scherr PA, et al. Vitamin E and vitamin C supplement use and risk of incident Alzheimer disease [J]. Alzheimer Disease & Associated Disorders,1998,12 (3):121-126.
    [180]Yeom CH, Jung GC, Song KJ. Changes of terminal cancer patients'health-related quality of life after high dose vitamin C administration [J]. Journal of Korean medical science,2007,22 (1):7-11.
    [181]Packer L, Weber SU, Rimbach G. Molecular aspects of a-tocotrienol antioxidant action and cell signalling [J]. The Journal of nutrition,2001,131 (2):369S-373S.
    [182]Vogelsang A, Shute E. Effect of vitamin E in coronary heart disease [J]. Nature,1946,157:772.
    [183]Shute EV, Vogelsang A. The influence of vitamin E on vascular disease [J]. Surgery, gynecology & obstetrics,1948,86 (1):1.
    [184]Schneider C. Chemistry and biology of vitamin E [J]. Molecular nutrition & food research,2005, 49 (1):7-30.
    [185]Chan AC. Partners in defense, vitamin E and vitamin C [J]. Canadian journal of physiology and pharmacology,1993,71 (9):725-731.
    [186]Bsoul S, Terezhalmy G. Vitamin C in health and disease [J]. J Contemp Dent Pract,2004,5 (2): 1-13.
    [187]Kontush A, Mann U, Arlt S, et al. Influence of vitamin E and C supplementation on lipoprotein oxidation in patients with Alzheimer's disease [J]. Free radical biology & medicine,2001,31 (3): 345-354.
    [188]Lee WJ, Blair A, Hoppin JA, et al. Cancer incidence among pesticide applicators exposed to chlorpyrifos in the Agricultural Health Study [J]. Journal of the National Cancer Institute,2004,96 (23):1781-1789.
    [189]Greene LA, Tischler AS. Establishment of a noradrenergic clonal line of rat adrenal pheochromocytoma cells which respond to nerve growth factor [J]. Proceedings of the National Academy of Sciences,1976,73 (7):2424.
    [190]Lee HY, Naha N, Ullah N, et al. Effect of the co-administration of vitamin C and vitamin E on tyrosine hydroxylase and Nurrl expression in the prenatal rat ventral mesencephalon [J]. J Vet Med Sci,2008,70 (8):791-797.
    [191]Rees S, Inder T. Fetal and neonatal origins of altered brain development [J]. Early Hum Dev, 2005,81 (9):753-761.
    [192]Aydemir O, Naziroglu M, Celebi S, et al. Antioxidant effects of alpha-, gamma-and succinate-tocopherols in guinea pig retina during ischemia-reperfusion injury [J]. Pathophysiology, 2004,11(3):167-171.
    [193]Paradies G, Petrosillo G, Paradies V, et al. Mitochondrial dysfunction in brain aging:role of oxidative stress and cardiolipin [J]. Neurochemistry international,2011,58 (4):447-457.
    [194]Prabakaran S, Swatton J, Ryan M, et al. Mitochondrial dysfunction in schizophrenia:evidence for compromised brain metabolism and oxidative stress [J]. Molecular psychiatry,2004,9 (7): 684-697.
    [195]An L, Liu S, Yang Z, et al. Cognitive impairment in rats induced by nano-CuO and its possible mechanisms [J]. Toxicol Lett,2012,213 (2):220-227.
    [196]Wakamatsu TH, Dogru M, Tsubota K. Tearful relations:oxidative stress, inflammation and eye diseases [J]. Arq Bras Oftalmol,2008,71 (6 Suppl):72-79.
    [197]Niebroj-Dobosz I, Dziewulska D, Kwiecinski H. Oxidative damage to proteins in the spinal cord in amyotrophic lateral sclerosis (ALS) [J]. Folia Neuropathol,2004,42 (3):151-156.
    [198]Wang J, Sun P, Bao Y, et al. Vitamin E renders protection to PC12 cells against oxidative damage and apoptosis induced by single-walled carbon nanotubes [J]. Toxicol In Vitro,2012,26 (1):32-41.
    [199]Shvedova AA, Castranova V, Kisin ER, et al. Exposure to carbon nanotube material:assessment of nanotube cytotoxicity using human keratinocyte cells [J]. J Toxicol Environ Health A,2003,66 (20): 1909-1926.
    [200]Mao QQ, Zhong XM, Feng CR, et al. Protective effects of paeoniflorin against glutamate-induced neurotoxicity in PC 12 cells via antioxidant mechanisms and Ca(2+) antagonism [J]. Cell Mol Neurobiol,2010,30 (7):1059-1066.
    [201]Senthil kumar J, Banudevi S, Sharmila M, et al. Effects of Vitamin C and E on PCB (Aroclor 1254) induced oxidative stress, androgen binding protein and lactate in rat Sertoli cells [J]. Reprod Toxicol,2004,19 (2):201-208.
    [202]Chen X, Touyz RM, Park JB, et al. Antioxidant effects of vitamins C and E are associated with altered activation of vascular NADPH oxidase and superoxide dismutase in stroke-prone SHR [J]. Hypertension,2001,38 (3 Pt 2):606-611.
    [203]Xiao X, Liu J, Hu J, et al. Protective effects of protopine on hydrogen peroxide-induced oxidative injury of PC12 cells via Ca(2+) antagonism and antioxidant mechanisms [J]. Eur J Pharmacol,2008,591 (1-3):21-27.
    [204]Shite J, Qin F, Mao W, et al. Antioxidant vitamins attenuate oxidative stress and cardiac dysfunction in tachycardia-induced cardiomyopathy [J]. J Am Coll Cardiol,2001,38 (6):1734-1740.
    [205]Halliwell B. Role of free radicals in the neurodegenerative diseases:therapeutic implications for antioxidant treatment [J]. Drugs Aging,2001,18 (9):685-716.
    [206]Gao Y, Dong C, Yin J, et al. Neuroprotective Effect of Fucoidan on H 2 O 2-Induced Apoptosis in PC12 Cells Via Activation of PI3K/Akt Pathway [J]. Cellular and Molecular Neurobiology,2012: 1-7.
    [207]Satpute RM, Kashyap RS, Deopujari JY, et al. Protection of PC 12 cells from chemical ischemia induced oxidative stress by Fagonia arabica [J]. Food Chem Toxicol,2009,47 (11):2689-2695.
    [208]Li Y, Bao Y, Jiang B, et al. Catalpol protects primary cultured astrocytes from in vitro ischemia-induced damage [J]. Int J Dev Neurosci,2008,26 (3-4):309-317.
    [209]Liu CS, Chen NH, Zhang JT. Protection of PC 12 cells from hydrogen peroxide-induced cytotoxicity by salvianolic acid B, a new compound isolated from Radix Salviae miltiorrhizae [J]. Phytomedicine,2007,14 (7-8):492-497.
    [210]Filiz G, Caragounis A, Bica L, et al. Clioquinol inhibits peroxide-mediated toxicity through up-regulation of phosphoinositol-3-kinase and inhibition of p53 activity [J]. Int J Biochem Cell Biol, 2008,40(5):1030-1042.
    [211]Aly HA, Domenech O. Cytotoxicity and mitochondrial dysfunction of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) in isolated rat hepatocytes [J]. Toxicol Lett,2009,191 (1): 79-87.
    [212]Qin F, Yan C, Patel R, et al. Vitamins C and E attenuate apoptosis, beta-adrenergic receptor desensitization, and sarcoplasmic reticular Ca2+ATPase downregulation after myocardial infarction [J]. Free Radic Biol Med,2006,40 (10):1827-1842.
    [213]Gultekin F, Delibas N, Yasar S, et al. In vivo changes in antioxidant systems and protective role of melatonin and a combination of vitamin C and vitamin E on oxidative damage in erythrocytes induced by chlorpyrifos-ethyl in rats [J]. Arch Toxicol,2001,75 (2):88-96.
    [214]Ornoy A, Tsadok MA, Yaffe P, et al. The Cohen diabetic rat as a model for fetal growth restriction:vitamins C and E reduce fetal oxidative stress but do not restore normal growth [J]. Reprod Toxicol,2009,28 (4):521-529.
    [215]Lee SH, Oe T, Blair IA. Vitamin C-induced decomposition of lipid hydroperoxides to endogenous genotoxins [J]. Science,2001,292 (5524):2083-2086.
    [216]Levine M, Wang Y, Padayatty S J, et al. A new recommended dietary allowance of vitamin C for healthy young women [J]. Proceedings of the National Academy of Sciences,2001,98 (17): 9842-9846.
    [217]Hathcock J. Vitamins and minerals:efficacy and safety [J]. The American journal of clinical nutrition,1997,66 (2):427-437.
    [218]Miller ER, Pastor-Barriuso R, Dalal D, et al. Meta-analysis:high-dosage vitamin E supplementation may increase all-cause mortality [J]. Annals of internal medicine,2005,142 (1): 37-46.
    [219]Boone CW, Kelloff GJ, Malone WE. Identification of candidate cancer chemopreventive agents and their evaluation in animal models and human clinical trials:a review [J]. Cancer Research,1990, 50 (1):2-9.
    [220]Karaoz E, Gultekin F, Akdogan M, et al. Protective role of melatonin and a combination of vitamin C and vitamin E on lung toxicity induced by chlorpyrifos-ethyl in rats [J]. Exp Toxicol Pathol, 2002,54 (2):97-108.
    [221]Henchcliffe C, Beal MF. Mitochondrial biology and oxidative stress in Parkinson disease pathogenesis [J]. Nature Clinical Practice Neurology,2008,4(11):600-609.
    [222]Alexandrova ML, Bochev PG. Oxidative stress during the chronic phase after stroke [J]. Free Radical Biology and Medicine,2005,39 (3):297-316.
    [223]Nunomura A, Castellani RJ, Zhu X, et al. Involvement of oxidative stress in Alzheimer disease [J]. Journal of Neuropathology & Experimental Neurology,2006,65 (7):631-641.
    [224]Kuhad A, Chopra K. Effect of sesamol on diabetes-associated cognitive decline in rats [J]. Exp Brain Res,2008,185 (3):411-420. [225] Kuhad A, Bishnoi M, Tiwari V, et al. Suppression of NF-kappabeta signaling pathway by
    tocotrienol can prevent diabetes associated cognitive deficits [J]. Pharmacol Biochem Behav,2009,92 (2):251-259.
    [226]Saxena G, Singh SP, Pal R, et al. Gugulipid, an extract of Commiphora whighitii with lipid-lowering properties, has protective effects against streptozotocin-induced memory deficits in mice [J]. Pharmacol Biochem Behav,2007,86 (4):797-805.
    [227]Green CR, Watts LT, Kobus SM, et al. Effects of chronic prenatal ethanol exposure on mitochondrial glutathione and 8-iso-prostaglandin F2alpha concentrations in the hippocampus of the perinatal guinea pig [J]. Reprod Fertil Dev,2006,18 (5):517-524.
    [228]McGoey TN, Reynolds JN, Brien JF. Chronic prenatal ethanol exposure-induced decrease of guinea pig hippocampal CA1 pyramidal cell and cerebellar Purkinje cell density [J]. Can J Physiol Pharmacol,2003,81 (5):476-484.
    [229]Green CR, Kobus SM, Ji Y, et al. Chronic prenatal ethanol exposure increases apoptosis in the hippocampus of the term fetal guinea pig [J]. Neurotoxicol Teratol,2005,27 (6):871-881.
    [230]Ravaglia G, Forti P, Maioli F, et al. Homocysteine and folate as risk factors for dementia and Alzheimer disease [J]. The American journal of clinical nutrition,2005,82 (3):636-643.
    [231]Chao J, Leung Y, Wang M, et al. Nutraceuticals and their preventive or potential therapeutic value in Parkinson's disease [J]. Nutr Rev,2012,70 (7):373-386.
    [232]Penugonda S, Mare S, Goldstein G, et al. Effects of N-acetylcysteine amide (NACA), a novel thiol antioxidant against glutamate-induced cytotoxicity in neuronal cell line PC 12 [J]. Brain Res, 2005,1056 (2):132-138.
    [233]Penugonda S, Mare S, Lutz P, et al. Potentiation of lead-induced cell death in PC12 cells by glutamate:protection by N-acetylcysteine amide (NACA), a novel thiol antioxidant [J]. Toxicol Appl Pharmacol,2006,216 (2):197-205.
    [234]Calabrese V, Bates TE, Stella AM. NO synthase and NO-dependent signal pathways in brain aging and neurodegenerative disorders:the role of oxidant/antioxidant balance [J]. Neurochem Res, 2000,25(9-10):1315-1341.
    [235]Fukui K, Takatsu H, Shinkai T, et al. Appearance of amyloid beta-like substances and delayed-type apoptosis in rat hippocampus CA1 region through aging and oxidative stress [J]. J Alzheimers Dis,2005,8 (3):299-309.
    [236]Azad N, Iyer AKV, Manosroi A, et al. Superoxide-mediated proteasomal degradation of Bcl-2 determines cell susceptibility to Cr (Ⅵ)-induced apoptosis [J]. Carcinogenesis,2008,29 (8): 1538-1545.
    [237]Azad N, Iyer A, Vallyathan V, et al. Role of oxidative/nitrosative stress-mediated Bcl-2 regulation in apoptosis and malignant transformation [J]. Annals of the New York Academy of Sciences,2010,1203 (1):1-6. [238] Qian Y, Wang H, Yao W, et al. Aqueous extract of the Chinese medicine, Danggui-Shaoyao-San, inhibits apoptosis in hydrogen peroxide-induced PC 12 cells by preventing cytochrome c release and inactivating of caspase cascade [J]. Cell biology international,2008,32 (2):304-311. [239] Hwang DS, Kim HG, Kwon HJ, et al. Dangguijakyak-san, a medicinal herbal formula, protects dopaminergic neurons from 6-hydroxydopamine-induced neurotoxicity [J]. J Ethnopharmacol,2011, 133 (2):934-939.
    [240]Tannetta DS, Sargent IL, Linton EA, et al. Vitamins C and E inhibit apoptosis of cultured human term placenta trophoblast [J]. Placenta,2008,29 (8):680-690.
    [241]Oral B, Guney M, Demirin H, et al. Endometrial damage and apoptosis in rats induced by dichlorvos and ameliorating effect of antioxidant vitamins E and C [J]. Reprod Toxicol,2006,22 (4): 783-790.
    [242]Rivas-Arancibia S, Guevara-Guzman R, Lopez-Vidal Y, et al. Oxidative stress caused by ozone exposure induces loss of brain repair in the hippocampus of adult rats [J]. Toxicol Sci,2010,113 (1): 187-197.
    [243]Khovryakov A, Podrezova E, Kruglyakov P, et al. Involvement of the NO synthase system in stress-mediated brain reactions [J]. Neuroscience and behavioral physiology,2010,40 (3):333-337.
    [244]Choi YB, Tenneti L, Le DA, et al. Molecular basis of NMDA receptor-coupled ion channel modulation by S-nitrosylation [J]. Nat Neurosci,2000,3 (1):15-21.
    [245]Malenka RC, Nicoll RA. Long-term potentiation--a decade of progress? [J]. Science,1999,285 (5435):1870-1874.
    [246]Ott M, Gogvadze V, Orrenius S, et al. Mitochondria, oxidative stress and cell death [J]. Apoptosis,2007,12 (5):913-922.
    [247]Hu D, Cao P, Thiels E, et al. Hippocampal long-term potentiation, memory, and longevity in mice that overexpress mitochondrial superoxide dismutase [J]. Neurobiol Learn Mem,2007,87 (3): 372-384.
    [248]Thomas JD, Abou EJ, Dominguez HD. Prenatal choline supplementation mitigates the adverse effects of prenatal alcohol exposure on development in rats [J]. Neurotoxicol Teratol,2009,31 (5): 303-311.
    [249]Rasmussen C. Executive functioning and working memory in fetal alcohol spectrum disorder [J]. Alcohol Clin Exp Res,2005,29 (8):1359-1367.
    [250]Spohr HL, Willms J, Steinhausen HC. Fetal alcohol spectrum disorders in young adulthood [J]. J Pediatr,2007,150(2):175-179,179el71.
    [251]Mattson SN, Schoenfeld AM, Riley EP. Teratogenic effects of alcohol on brain and behavior [J]. Alcohol Res Health,2001,25 (3):185-191.
    [252]Riley EP, McGee CL, Sowell ER. Teratogenic effects of alcohol:a decade of brain imaging [J]. Am J Med Genet C Semin Med Genet,2004,127C (1):35-41.
    [253]Weinberg J, Sliwowska JH, Lan N, et al. Prenatal alcohol exposure:foetal programming, the hypothalamic-pituitary-adrenal axis and sex differences in outcome [J]. J Neuroendocrinol,2008,20 (4):470-488.
    [254]Choi IY, Allan AM, Cunningham LA. Moderate fetal alcohol exposure impairs the neurogenic response to an enriched environment in adult mice [J]. Alcohol Clin Exp Res,2005,29 (11): 2053-2062.
    [255]Klintsova AY, Heifer JL, Calizo LH, et al. Persistent impairment of hippocampal neurogenesis in young adult rats following early postnatal alcohol exposure [J]. Alcohol Clin Exp Res,2007,31 (12): 2073-2082.
    [256]Livy DJ, Miller EK, Maier SE, et al. Fetal alcohol exposure and temporal vulnerability:effects of binge-like alcohol exposure on the developing rat hippocampus [J]. Neurotoxicol Teratol,2003,25 (4):447-458.
    [257]Redila VA, Olson AK, Swann SE, et al. Hippocampal cell proliferation is reduced following prenatal ethanol exposure but can be rescued with voluntary exercise [J]. Hippocampus,2006,16 (3): 305-311.
    [258]Singh AK, Gupta S, Jiang Y, et al. In vitro neurogenesis from neural progenitor cells isolated from the hippocampus region of the brain of adult rats exposed to ethanol during early development through their alcohol-drinking mothers [J]. Alcohol Alcohol,2009,44 (2):185-198.
    [259]O'Reilly RC, Rudy JW. Conjunctive representations in learning and memory:principles of cortical and hippocampal function [J]. Psychol Rev,2001,108 (2):311-345.
    [260]Prendergast MA, Harris BR, Mullholland PJ, et al. Hippocampal CA1 region neurodegeneration produced by ethanol withdrawal requires activation of intrinsic polysynaptic hippocampal pathways and function of N-methyl-D-aspartate receptors [J]. Neuroscience,2004,124 (4):869-877.
    [261]Butler TR, Smith KJ, Self RL, et al. Sex differences in the neurotoxic effects of adenosine Al receptor antagonism during ethanol withdrawal:reversal with an A1 receptor agonist or an NMDA receptor antagonist [J]. Alcohol Clin Exp Res,2008,32 (7):1260-1270.
    [262]Hommer D, Momenan R, Kaiser E, et al. Evidence for a gender-related effect of alcoholism on brain volumes [J]. Am J Psychiatry,2001,158 (2):198-204.
    [263]Roux PP, Barker PA. Neurotrophin signaling through the p75 neurotrophin receptor [J]. Progress in neurobiology,2002,67 (3):203-233.
    [264]Huang EJ, Reichardt LF. Neurotrophins:roles in neuronal development and function [J]. Annu Rev Neurosci,2001,24:677-736.
    [265]Savage LM, Candon PM, Hohmann HL. Alcohol-induced brain pathology and behavioral dysfunction:using an animal model to examine sex differences [J]. Alcohol Clin Exp Res,2000,24 (4): 465-475.
    [266]Vendruscolo LF, Terenina-Rigaldie E, Raba F, et al. Evidence for a female-specific effect of a chromosome 4 locus on anxiety-related behaviors and ethanol drinking in rats [J]. Genes Brain Behav, 2006,5 (6):441-450.
    [267]Overstreet DH, Knapp DJ, Breese GR. Similar anxiety-like responses in male and female rats exposed to repeated withdrawals from ethanol [J]. Pharmacol Biochem Behav,2004,78 (3):459-464.
    [268]Becker HC, Randall CL. Effects of prenatal ethanol exposure in C57BL mice on locomotor activity and passive avoidance behavior [J]. Psychopharmacology (Berl),1989,97 (1):40-44.
    [269]Osborn JA, Kim CK, Steiger J, et al. Prenatal ethanol exposure differentially alters behavior in males and females on the elevated plus maze [J]. Alcohol Clin Exp Res,1998,22 (3):685-696.
    [270]Schwandt ML, Barr CS, Suomi SJ, et al. Age-dependent variation in behavior following acute ethanol administration in male and female adolescent rhesus macaques (Macaca mulatta) [J]. Alcohol Clin Exp Res,2007,31 (2):228-237.
    [271]Sircar R, Basak AK, Sircar D. Repeated ethanol exposure affects the acquisition of spatial memory in adolescent female rats [J]. Behav Brain Res,2009,202 (2):225-231.
    [272]Gabriel KI, Yu CL, Osborn JA, et al. Prenatal ethanol exposure alters sensitivity to the effects of corticotropin-releasing factor (CRF) on behavior in the elevated plus-maze [J]. Psychoneuroendocrinology,2006,31 (9):1046-1056.
    [273]Zhong L, Cherry T, Bies CE, et al. Neurogranin enhances synaptic strength through its interaction with calmodulin [J]. The EMBO journal,2009,28 (19):3027-3039.
    [274]Deupree DL, Bradley J, Turner DA. Age-related alterations in potentiation in the CA1 region in F344 rats [J]. Neurobiol Aging,1993,14 (3):249-258.
    [275]Jia Z, Agopyan N, Miu P, et al. Enhanced LTP in mice deficient in the AMPA receptor GluR2 [J]. Neuron,1996,17 (5):945-956.
    [276]Kaksonen M, Pavlov I, Voikar V, et al. Syndecan-3-deficient mice exhibit enhanced LTP and impaired hippocampus-dependent memory [J]. Molecular and Cellular Neuroscience,2002,21 (1): 158-172.
    [277]Ito M. Cerebellar long-term depression:characterization, signal transduction, and functional roles [J]. Physiological reviews,2001,81 (3):1143-1195.
    [278]Melzer S, Michael M, Caputi A, et al. Long-Range-Projecting GABAergic Neurons Modulate Inhibition in Hippocampus and Entorhinal Cortex [J]. Science,2012,335 (6075):1506-1510.
    [279]Butovas S, Hormuzdi SG, Monyer H, et al. Effects of electrically coupled inhibitory networks on local neuronal responses to intracortical microstimulation [J]. Journal of Neurophysiology,2006,96 (3):1227-1236.
    [280]Collingridge GL, Peineau S, Howland JG, et al. Long-term depression in the CNS [J]. Nat Rev Neurosci,2010,11 (7):459-473.
    [281]Artola A, Singer W. Long-term depression of excitatory synaptic transmission and its relationship to long-term potentiation [J]. Trends in neurosciences,1993,16 (11):480-487.
    [282]An L, Yang Z, Zhang T. Imbalanced synaptic plasticity induced spatial cognition impairment in male offspring rats treated with chronic prenatal ethanol exposure [J]. Alcoholism-Clinical and Experimental Research,2012:doi:10.1111/acer.12040.
    [283]Wolfer DP, Stagljar-Bozicevic M, Errington ML, et al. Spatial Memory and Learning in Transgenic Mice:Fact or Artifact? [J]. News Physiol Sci,1998,13:118-123.
    [284]Gillani RL, Tsai SY, Wallace DG, et al. Cognitive recovery in the aged rat after stroke and anti-Nogo-A immunotherapy [J]. Behav Brain Res,2010,208 (2):415-424.
    [285]Svoboda J, Telensky P, Blahna K, et al. Comparison of male and female rats in avoidance of a moving object:more thigmotaxis, hypolocomotion and fear-like reactions in females [J]. Physiol Res, 2012,61 (6):659-663.
    [286]Malenka RC. Synaptic plasticity in the hippocampus:LTP and LTD [J]. Cell,1994,78 (4): 535-538.
    [287]Malenka RC, Bear ME LTP and LTD:an embarrassment of riches [J]. Neuron,2004,44 (1): 5-21.
    [288]Siegelbaum SA, Kandel ER. Learning-related synaptic plasticity:LTP and LTD [J]. Curr Opin Neurobiol,1991,1 (1):113-120.
    [289]Riley EP, McGee CL. Fetal alcohol spectrum disorders:an overview with emphasis on changes in brain and behavior [J]. Exp Biol Med (Maywood),2005,230 (6):357-365.
    [290]Sokol RJ, Delaney-Black V, Nordstrom B. Fetal alcohol spectrum disorder [J]. JAMA,2003, 290 (22):2996-2999.
    [291]Fryer SL, McGee CL, Matt GE, et al. Evaluation of psychopathological conditions in children with heavy prenatal alcohol exposure [J]. Pediatrics,2007,119 (3):e733-741.
    [292]Augustyniak A, Michalak K, Skrzydlewska E. The action of oxidative stress induced by ethanol on the central nervous system (CNS) [J]. Postepy Hig Med Dosw (Online),2005,59:464-471.
    [293]Kesmodel U, Wisborg K, Olsen SF, et al. Moderate alcohol intake in pregnancy and the risk of spontaneous abortion [J]. Alcohol Alcohol,2002,37 (1):87-92.
    [294]Henriksen TB, Hjollund NH, Jensen TK, et al. Alcohol consumption at the time of conception and spontaneous abortion [J]. Am J Epidemiol,2004,160 (7):661-667.
    [295]Cebral E, Rettori V, de Gimeno MA. Impact of chronic low-dose ethanol ingestion during sexual maturation of female mice on in-vitro and in-vivo embryo development [J]. Reprod Toxicol,2001,15 (2):123-129.
    [296]Ghimire SR, Dhungel S, Rai D, et al. Effect of prenatal exposure of alcohol in the morphology of developing rat embryo [J]. Nepal Med Coll J,2008,10 (1):38-40.
    [297]Wozniak JR, Mueller BA, Chang PN, et al. Diffusion tensor imaging in children with fetal alcohol spectrum disorders [J]. Alcohol Clin Exp Res,2006,30 (10):1799-1806.
    [298]Popovic M, Caballero-Bleda M, Guerri C. Adult rat's offspring of alcoholic mothers are impaired on spatial learning and object recognition in the Can test [J].Behav Brain Res,2006,174(1):101-111.
    [299]Vaglenova J, Pandiella N, Wijayawardhane N, et al. Aniracetam reversed learning and memory deficits following prenatal ethanol exposure by modulating functions of synaptic AMPA receptors [J]. Neuropsychopharmacology,2008,33 (5):1071-1083.
    [300]Christie BR, Swann SE, Fox CJ, et al. Voluntary exercise rescues deficits in spatial memory and long-term potentiation in prenatal ethanol-exposed male rats [J]. Eur J Neurosci,2005,21 (6): 1719-1726.
    [301]Wilcoxon JS, Kuo AG, Disterhoft JF, et al. Behavioral deficits associated with fetal alcohol exposure are reversed by prenatal thyroid hormone treatment:a role for maternal thyroid hormone deficiency in FAE [J]. Mol Psychiatry,2005,10 (10):961-971.
    [302]Ho YJ, Eichendorff J, Schwarting RK. Individual response profiles of male Wistar rats in animal models for anxiety and depression [J]. Behav Brain Res,2002,136 (1):1-12.
    [303]Vaglenova J, Birru S, Pandiella NM, et al. An assessment of the long-term developmental and behavioral teratogenicity of prenatal nicotine exposure [J]. Behav Brain Res,2004,150 (1-2): 159-170.
    [304]Kucuk A, Golgeli A, Saraymen R, et al. Effects of age and anxiety on learning and memory [J]. Behav Brain Res,2008,195 (1):147-152.
    [305]Kanari K, Kikusui T, Takeuchi Y, et al. Multidimensional structure of anxiety-related behavior in early-weaned rats [J]. Behav Brain Res,2005,156 (1):45-52.
    [306]Ramos A, Correia EC, Izidio GS, et al. Genetic selection of two new rat lines displaying different levels of anxiety-related behaviors [J]. Behav Genet,2003,33 (6):657-668.
    [307]Slone JL, Redei EE. Maternal alcohol and adrenalectomy:asynchrony of stress response and forced swim behavior [J]. Neurotoxicol Teratol,2002,24 (2):173-178.
    [308]Hellemans KG, Verma P, Yoon E, et al. Prenatal alcohol exposure and chronic mild stress differentially alter depressive-and anxiety-like behaviors in male and female offspring [J]. Alcohol Clin Exp Res,2010,34 (4):633-645.
    [309]Carneiro LM, Diogenes JP, Vasconcelos SM, et al. Behavioral and neurochemical effects on rat offspring after prenatal exposure to ethanol [J]. Neurotoxicol Teratol,2005,27 (4):585-592.
    [310]Choi IY, Lee S, Rivier C. Novel role of adrenergic neurons in the brain stem in mediating the hypothalamic-pituitary axis hyperactivity caused by prenatal alcohol exposure [J]. Neuroscience,2008, 155 (3):888-901.
    [311]Doremus TL, Varlinskaya EI, Spear LP. Age-related differences in elevated plus maze behavior between adolescent and adult rats [J]. Ann N Y Acad Sci,2004,1021:427-430.
    [312]Bernardo A, McCord M, Troen AM, et al. Impaired spatial memory in APP-overexpressing mice on a homocysteinemia-inducing diet [J].Neurobiol Aging,2007,28 (8):1195-1205.
    [313]Berman RF, Hannigan JH. Effects of prenatal alcohol exposure on the hippocampus:spatial behavior, electrophysiology, and neuroanatomy [J]. Hippocampus,2000,10 (1):94-110.
    [314]Zimmerberg B, Mattson S, Riley EP. Impaired alternation test performance in adult rats following prenatal alcohol exposure [J]. Pharmacol Biochem Behav,1989,32 (1):293-299.
    [315]Neese S, La Grange L, Trujillo E, et al. The effects of ethanol and silymarin treatment during gestation on spatial working memory [J]. BMC Complement Altem Med,2004,4:4. [316] Cronise K, Marino MD, Tran TD, et al. Critical periods for the effects of alcohol exposure on learning in rats [J]. Behav Neurosci,2001,115 (1):138-145.
    [317]Zimmerberg B, Weston HE. Postnatal stress of early weaning exacerbates behavioral outcome in prenatal alcohol-exposed juvenile rats [J]. Pharmacol Biochem Behav,2002,73 (1):45-52.
    [318]Taylor AN, Tritt SH, Tio DL, et al. Maternal adrenalectomy abrogates the effect of fetal alcohol exposure on the interleukin-lbeta-induced febrile response:gender differences [J]. Neuroendocrinology,2002,76 (3):185-192.
    [319]Wilcoxon JS, Schwartz J, Aird F, et al. Sexually dimorphic effects of maternal alcohol intake and adrenalectomy on left ventricular hypertrophy in rat offspring [J]. Am J Physiol Endocrinol Metab, 2003,285 (1):E31-39.
    [320]Richardson DP, Byrnes ML, Brien JF, et al. Impaired acquisition in the water maze and hippocampal long-term potentiation after chronic prenatal ethanol exposure in the guinea-pig [J]. Eur J Neurosci,2002,16 (8):1593-1598.
    [321]Titterness AK, Christie BR. Prenatal ethanol exposure enhances NMDAR-dependent long-term potentiation in the adolescent female dentate gyrus [J]. Hippocampus,2012,22 (1):69-81.
    [322]Hashimoto JG, Wiren KM. Neurotoxic consequences of chronic alcohol withdrawal:expression profiling reveals importance of gender over withdrawal severity [J]. Neuropsychopharmacology,2008, 33 (5):1084-1096.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700