用户名: 密码: 验证码:
瞬时受体电位通道和神经肽表达上调在甲醛诱导型支气管哮喘小鼠模型中的作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
甲醛是一种常见的装修型化学性室内空气污染物,也是一种全球性的环境污染物。它具有污染来源广、时间长、水平高、毒性种类多等特点。甲醛对健康的影响主要包括:呼吸道和眼部急性刺激作用、神经行为改变、生殖毒性、免疫毒性、氧化损伤、遗传毒性等诸多方面。近年来,世界各地哮喘发病率都在快速增长,但致敏原的种类和数量并未发生显著变化。非过敏原性空气污染物的大量增加被认为是原因之一,但其分子机制尚不清楚。不断有研究表明,甲醛暴露可以引起哮喘或哮喘样症状。为了探讨甲醛是否可以诱发哮喘和其可能的发病机理,本论文进行了如下体内研究:
     1.甲醛导致中枢神经系统神经源性炎症及氧化性损伤发生:对Balb/c小鼠连续甲醛气态暴露7天,每天8小时,设(a)对照组;(b)0.5mg/m3甲醛组;(c)3.0mg/m3甲醛组,在3.0mg/m3水平甲醛作用下,与对照组相比较:(1)脑组织谷胱甘肽(GSH)含量呈极显著性降低(p<0.01),脊髓组织GSH含量呈显著性降低(p<0.05);(2)脑组织丙二醛(MDA)含量呈极显著性增高(p<0.01),脊髓组织MDA含量呈显著性增高(p<0.05);(3)脑组织促炎症细胞因子白介素-IL-1β含量呈显著性增高(p<0.05),脊髓组织IL-1β含量呈极显著性增高(p<0.01);(4)脑组织速激肽物质P含量(substance P)呈极显著增高(p<0.01),脊髓组织substance P含量呈极显著性增高(p<0.01)。本实验说明甲醛可以导致中枢神经系统神经性炎症及氧化损伤发生。
     2. TRPA1介导甲醛所致气道炎症发生:对Balb/c小鼠连续甲醛气态暴露10天,每天8小时。设(a)对照组;(b)0.5mg/m3甲醛组;(c)1.0mg/m3甲醛组;(d)3.0mg,/m3甲醛组;(e)3.0mg/m3+HC-030031[瞬时受体电位通道亚型A1(TRPA1)拮抗剂]组,发现在3.0mg/m3甲醛水平作用下,与对照组相比较:(1)血清中免疫球蛋白E(1gE)水平显著上升(p<0.01);(2)小鼠肺泡灌洗液中白介素-4(IL-4)含量显著上调(p<0.01);(3)血清中超氧化物歧化酶(SOD)活力显著下降(p<0.01),MDA含量显著上升(p<0.01);对3.0mg/m3甲醛给予HC-030031(50mg/kg)处理,发现IgE水平下调(p<0.01),IL-4水平下调(p<0.01), SOD活力上升(p<0.05),MDA含量下降(p<0.05);本实验说明TRPA1可以介导甲醛所致气道炎症发生和氧化损伤作用
     3. TRPA1和TRPV1通道蛋白介导气态甲醛诱导哮喘作用:对Balb/c雄性小鼠甲醛动态式气态暴露4周,每天6小时,卵清蛋白(OVA)致敏并激发1周建立甲醛诱导哮喘模型。设(a)对照组;(b) OVA组;(c)3.0mg/m3甲醛组;(d)3.Omg/m3甲醛+OVA组;(e)3.0mg/m3甲醛+OVA+HC-030031组;(f)3.0mg/m3甲醛+OVA+capsazepine(瞬时受体电位通道亚型V1拮抗剂)组,分别测定气道高反应性、气道重塑、气道炎症相关指标。与对照组相比,甲醛组气道反应性和肺部病理学变化并不明显,但嗜酸性粒细胞计数显著增高(p<0.05),血清总IgE含量明显上调(p<0.01),IL-4含量显著升高(p<0.01), substance P表达上调(p<0.01),降钙素基因相关肽(CGRP)表达上调(p<0.05),IL-1p水平升高(p<0.01);与OVA组相比,甲醛+OVA组呈现显著气道高反应性和气道重塑现象,嗜酸性粒细胞计数显著增高(p<0.01),血清中总IgE水平显著上调(p<0.01),肺组织IL-4含量显著升高(p<0.01);substance P表达上调(p<0.01)、CGRP表达上调(p<0.01), IL-1β水平升高(p<0.01)。对FA+OVA组给予TRPA1通道拮抗剂HC-030031和TRPV1通道拮抗剂CPZ,结果显示:拮抗组与模型组相比,(1)气道高反应性显著降低:(2)肺组织病理变化明显好转;(3)小鼠肺泡灌洗液中嗜酸性粒细胞计数降低(p<0.01),肺组织IL-4含量显著降低(p<0.01),血清中IgE水平降低(p<0.01);(4)substance P表达下调(p<0.01)、CGRP表达下调(p<0.05), IL-1β水平无显著变化(p>0.05)。结果说明甲醛可以提高哮喘的发病风险,它可以直接导致神经源性气道炎症,并以免疫佐剂身份加重OVA过敏原导致气道炎症;Substance P和CGRP参与甲醛诱导哮喘的病理生理过程,TRPA1和TRPV1通道蛋白介导气态甲醛诱导哮喘作用并调控神经肽的释放。
Formaldehyde (FA), a kind of popular indoor air pollutant, and it is a global environmental pollutant. The effects of formaldehyde on human health include eyes and upper respiratory irritancy, neurotoxicity, reproductive toxicity, allery and immunological effects, oxidative damage, genotoxicity. Asthma disease rates keep on increasing all over the world, especially in western societies over last40years.Discoveryof risk factors for the rise in asthma cases is essentially important, although some studies have indicated that indoor formaldehyde might worsen allergies andbe an underlying factor for increasing incidence andseverity of asthma, the mechanism was not clear and needs to be further investigated. In order to explore whether formaldehyde could involve in asthma and its molecular mechanism in the process of asthma, experiments in vivo were employed.
     1. Balb/c mice in three experimental groups were exposed to:(a) vehicle control;(b) formaldehyde (0.5mg/m3);(c) formaldehyde (3.0mg/m3). The mice were exposed to FA for8h and7day respectively. Then evaluate the content of malonyldialdehyde (MDA), glutathione (GSH), interleukin-1β (IL-1β) and substance P in brain and spinal cord.3.0mg/m3formaldehyde exposure led to a significant increase in levels of MDA, IL-1β and substance P, decreases in GSH level in two tissues. The result showed that high concentration of gaseous formaldehyde induced neurotoxicity of central nervous system. The mechanism of it perhaps relate to oxidative damage of brain and spinal cord.
     2. Balb/c mice in five experimental groups were exposed to:(a) vehicle control;(b) formaldehyde (0.5mg/m3);(c) formaldehyde (1.0mg/m3);(d) formaldehyde (3.0mg/m3);(e) formaldehyde (3.0mg/m3)+HC-030031[antagonist of transient receptor potential ankyrin1(TRPA1)]. The mice were exposed to FA for8h and10day respectively. Then evaluate the content of MDA, superoxide dismutase (SOD) and immunoglobulin E (IgE) in serum, interleukin-4(IL-4) in bronchialveolar lavage fluid.3.0mg/m3formaldehyde exposure led to a significant increase in such biomarker and changes in the levels of biomarker could be inhibited by HC-030031. The result showed that TRPA1receptor channel mediated formaldehyde induced airway inflammation and caused oxidative damage, chronic respiratory disease induced by formaldehyde may associate with the TRPA1receptor channel.
     3. The irritant effect and immune adjuvant effect are the two possible pathways for formaldehyde to promote asthma. Balb/c mice in six experimental groups were exposed to:(a) vehicle control;(b) ovalbumin;(c) formaldehyde (3.0mg/m3);(d) ovalbumin+formaldehyde (3.0mg/m3);(e) ovalbumin+formaldehyde (3.0mg/m3)+HC-030031(antagonist of transient receptor potential ankyrin1);(f) ovalbumin+formaldehyde (3.0mg/m3)+capsazepine (antagonist of transient receptor potential vanilloid1). Experiments were conductedafter4weeks of exposure and1-week challenge with aerosolized ovalbumin. Airway hyper-responsiveness, pulmonary tissue damage, eosinophil infiltration, and increased levels of IL-4, IL-1β, IgE, substance P and calcitonin gene-related peptide (CGRP) in lung tissues werefound in the ovalbumin+formaldehyde (3.0mg/m3) group compared with the values seen in ovalbumin-only immunized mice. Except for interleukin-1β levels, other changesin the levels of biomarker could be inhibited by HC-030031and capsazepine. Formaldehyde might be one of key risk factor for the rise in asthma cases. Transient receptor potential ion channels and neuropeptides have important roles in formaldehyde promoted-asthma.
引文
1. 陈学敏,杨克敌.现代环境卫生学(第2版).北京:人民卫生出版社,2008.
    2. Hulin M, Simoni M, Viegi G, et al. Respiratory health and indoor air pollutants based on quantitative exposure assessments. Eur Respir J,2012,40:1033-1045.
    3. World Health Organization. Formaldehyde. Air Quality Guidelines. Copenhagen, Denmark: WHO Regional Office for Europe,2001.
    4. IARC. Monographs on the Evaluation of Carcinogenic Risks to Humans. Formaldehyde, 2-Butoxyethanol and l-tert-Butoxypropan-2-ol. Lyon, France:WHO International Agency for Research on Cancer,2006,88:196-280.
    5. ATSDR. Toxicological profile for formaldehyde. Atlanta, GA:Agency for Toxic Substances and Disease Registry, Division of Toxicology and Environmental Medicine,2010.
    6. NTP. Report on carcinogens background document for formaldehyde. Research Triangle Park, NC:Department of Health and Human Services, Public Health Service, National Toxicology Program,2010.
    7. Salthammer T, Mentese S, Marutzky R. Formaldehyde in the indoor environment. Chem Rev, 2010,110:2536-2572.
    8. Tang X, Bai Y, Duong A, et al. Formaldehyde in china:production, consumption, exposure levels, and health effects. Environ Inter,2009,35:1210-1224.
    9.严彦,王光学,杨旭,等.木质人造板材甲醛释放规律的研究.环境科学学报2003,23:134-137.
    10. Salthammer T. Formaldehyde in the ambient atmosphere:from an indoor pollutant to an outdoor pollutant? Angew Chem Int Ed,2013,52:3320-3327.
    11. Arts JHE, Rennen MAJ, Heer C. Inhaled formaldehyde:evaluation of sensory irritation in relation to carcinogenicity. Regul Toxicol Pharmacol,2006,44:144-160.
    12. He JL, Jin LF, Jin HY. Detection of cytogenetic effectsin peripheral lymphocytes of students exposed to formaldehyde with cytokines is blocked micronuceleus assay. Biomed Environ Sci, 1998,11:87-92.
    13. Merk O, Speit G. Significance of formaldehyde induced DNA protein crosses links for mutagenesis. Environ Mol Mutagen,1998,32:260-268
    14.国家环境保护总局科标司.室内环境与健康.北京:中国环境科学出版社,2002:28-150
    15.周建平,何建平,柯振东,等.我国居室内空气中甲醛污染现状分析及对策研究.环境科学 与技术,2005:18-20
    16.马昆林,唐湘辉,石家泉.室内环境中甲醛的产生及其主要危害.湖南工业职业技术学院学报,2009,9:25-27
    17.张威娜,白喜顺,杨彦宾,等.装修后不同时段宾馆客房内空气甲醛污染状况调查.中国卫生检验杂志,2003,13:638
    18.齐惠萍,杜银梅,王向纯,等.太原市部分居室甲醛污染状况调查.环境与健康杂志,2009,26:253
    19.董微巍,赵绪.延吉市新装修居室空气中甲醛污染调查与分析.墨龙江科技信息,2010:31
    20. Schmiedeberg L, Skene P, Deaton A, et al. A temporal threshold for formaldehyde crosslinking and fixation. PloS One,2009,4:e4636.
    21. Zhou L, Chen X, Chen Y, et al. Effect of temperature and humidity from artificial wood-based board on formaldehyde emission. Chinese Journal of Public Health, 2007,23:172-173.
    22. Fu B. Song R. Effect of temperature and humidity from artificial wood-based board on formaldehyde emission. Journal of environment and health,2006,23:436-437.
    23.鲁志松,杨旭.室内空气甲醛对人体健康的危害.中国环境卫生,2003,6:22-30.
    24. McMartin KE, Martin-Amat G, Noker PE, et al. Lack of a role for formaldehyde in methanol poisoning in the monkey. Biochem Pharmacol,1979,28:645-649
    25. Conaway CC, Whysner J, Verna L K, et al. Formaldehyde mechanistic data and risk assessment: endogenous protections from DNA adduct formation. Phramacol Ther,1996,71:29-55.
    26. Marsh GM, Youk AO, Buchanich JN, et al. Pharyngeal cancer mortality among chemical plant workers exposed to formaldehyde.Toxicol Ind Health,2002,18:257-268.
    27. Imhus H R. Clinical evaluation of patients with complaints related to formaldehy-de exposure. J Allergy Clin Immunol,1985,76:831.
    28. Priority substances list assessment Report formaldehyde. Canadian Environmental Protection Art 1999.
    29. Hong Z, Tong Z, Shi J. Effects of maldehyde on respiratory system and pulmonary function of workers. Chinese Journal of Public Health,2007,23:849-850
    30.吕静,于慧芳,李心意,等.空气中甲醛浓度与刺激症状发生率的分析.中国公共卫生,2001.17:508
    31. Feron VJ, Arts JH, Kuper CF, et al. Health risks associated with inhaled nasal toxicants. Crit Rev Toxicol,2002,31:313-347
    32. Kilburn KH. Neurobehavioral impairment and seizures from formaldehyde. Arch Environ Health,1994,49:37-44.
    33. Kilbum KH. Indoor air effects after building renovation and in manufactured homes. Am J Med Sci,2000,320:249-254.
    34.施健,童智敏,姜荣明.职业接触甲醛对工人神经行为功能的影响.环境与职业医学,2007,24:608-610.
    35.吴建国.甲醛对相关工作人员危害性调查及分析.中国高新技术企业,2009,3:142-143.
    36. Pitten FA, Kramer A, Herrmann K, et al. Formaldehyde neurotoxicity in animal experiments. Pathol Res Pract.2000,196:193-198.
    37. Malek FA, Moritz KU, Fanghanel J, et al. Effects of a single inhalative exposure to formaldehyde on the open field behavior of mice. Int J Hyg Environ Health,2004, 207:151-158.
    38.王小玲,原福胜,张志红,等.甲醛吸入对小鼠学习记忆能力的影响.环境与健康杂志,2008,25:400-402.
    39. Cassidy SL, Dix KM, Jenkins T. Evaluation of a testicular sperm head counting technique using rats exposed to dimethoxyethyl phthalate(DMEP), glycerolalpha-monochlorohydrin (GMS), epichlorohydrin(ECH), formaldehyde, or methyl methanesulphonate (MMS). Arch Toxicol,1983, 53:71-78.
    40. Majumder PK, Kumar VL. Inhibitory effects of formaldehyde on the reproductive system of male rats. Indian J Physiol Pharmacol,1995,39:80-82
    41.周党侠,邱曙东,张洁,等.甲醛对性成熟期雄性大鼠生殖毒性的作用研究.四川大学学报,2006,37:566-569.
    42. Taskinen HK, Kvvronen P, Sallmen M, et al. Reduced fertility among female wood workers exposed to formaldehyde. Am JInd Med,1999,36:206-212.
    43. Collins JI, Ness R, Tyl RW, et al. A Review of Adverse Pregnancy Outcomes and formaldehyde Exposure in Human and Animal Studies. Regul Toxicol Pharmacol,2001,34:17-34.
    44. Dulskiene V, Grazuleviciene R. Environmental risk factors and outdoor formaldehyde and risk of congenital heart malformations. Medieina,2005,41:787-795.
    45. Natarajan AT, Darroudi FC, Bussman JM, et al. Evaluation of the mutagenicity of formaldehyde in mammalian cytogenetic assays in vivo and in vitro. Mutation Res,1983,122:355-360.
    46.刘丹丹,王博.气态甲醛致雌性小鼠生殖细胞DNA-蛋白质交联的研究.生态毒理学报,2006,1:249-254.
    47.王伟,唐明德,易义珍,等.甲醛对雌性小鼠动情周期及卵巢的影响.实用预防医学,2002, 9:641-643.
    48. Dallas CE, scott MJ, ward JB, et al. Cytogenetic analysis of pulmonary lavage and bone marrow cells of rats after repeated formaldehyde inhalation[J].Appl Toxicol,1992,12:199-203
    49.童智敏,赵进顺,施健,等.甲醛对暴露工人外周血淋巴细胞的遗传损伤作用.中国预防医学杂志,2008,9:124-127.
    50.高娜娜,常青,陈莉,等.气态甲醛对小鼠外周血淋巴细胞和肝细胞微核率的影响.公共卫生与预防医学,2008,19:7-9,
    51. Casanova M, Morgan KT, Gross EA, et al. DNA-protein cross-links and cell replication at specific sites in the nose of F344 rats exposed subchronically to formaldehyde. Fundam Appl Toxicol.1994,23:525-536
    52. Shaham J, Bomstein Y, Melzer A, et al. DNA-protein crosslinks and sister chromatid exchanges as biomarkers of exposure to formaldehyde. Int. J. Occup Environ Health.1997,3:95-104.
    53.吴凯,杨光涛,娄小华,等.甲醛致小鼠肺DNA蛋白质交联和DNA断裂效应的研究.公共卫生与预防医学,2006,17:15-18.
    54. Kovacic P. Role of oxidative metabolites of cocaine in toxicity and addiction:Oxidative stress and electron transfer. Med Hypotheses,2005,64:350-356.
    55.乔琰,何胡军,牛丹丹,等.甲醛吸入对小鼠不同组织器官谷胱苷肽水平的影响.公共卫生与预防医学,2004,15:12-14
    56.段丽菊,甘耀坤,李岩,等.气态甲醛对小鼠血清超氧化物歧化酶的影响.中国公共卫生,2005,21:708-709
    57.段丽菊,朱燕,胡青莲,等.甲醛吸入致小鼠蛋白质氧化损伤作用的研究.环境科学学报,2005,25.851-854
    58.崔香丽,雷玲,韩光,等.甲醛对大鼠的氧化性损伤.中国公共卫生学报,1995,14:287-289.
    59.娄小华,徐钱,王黎明,等.甲醛吸入致小鼠脑和肾组织的氧化损伤作用研究.公共卫生与预防医学,2006,17:10-13
    60. Guerl A, Coskun O. Vitamin E against oxidative damage caused by formaldehyde in frontal cortex and hippocampus:biochemical and histological studies. Chem. Neuroant,2005, 29:173-178.
    61.易建华,聂渝莉,王国伟,等。甲醛染毒大鼠脂质过氧化水平分析.工业卫生与职业病,1997,23:199-201
    62. Persoz C, Achard S, Leleu C, et al. An in vitro model to evaluate the inflammatory response after gaseous formaldehyde exposure of lung epithelial cells. Toxicol Lett,2010,195:99-105.
    63. Yin L, Jin XP, Yu XZ, et al. Flow cytometric analysis of the toxicity of nitrofen in cultured keratinocytes. Biomed Environ Sci,1999,12:88-94.
    64. Thrasher JD, Kilbum KH. Embryo toxicity and teratogenicity of formaldehyde. Arch Environ Health,2001,56:300-311.
    65. Kita T, Fujimura M, Myou S, et al. Potentiation of allergic bronchoconstricfion by repeated exposure to formaldehyde in guinea-pigs in vivo. Chin Exp Allergy,2003,33:1747-175
    66. Murphy DM, O'Byrne PM. Recent advances in the pathophysiology of asthma. Chest,2010,137: 1417-1426.
    67. Bateman ED, Hurd SS, Barnes PJ, et al. Global strategy for asthma management and prevention: GINA executive summary. Eur Respir J,2008,31:143-178.
    68. Global status report on noncommunicable diseases. World Health Organization,2011.
    69. Braman SS. The global burden of asthma. Chest,2006,130:4s-12s.
    70. Masoli M, Fabian D, Holt S, et al. The global burden of asthma:executive summary of the GINA dissemination committee report. Allergy,2004,59:469-478.
    71. National Institutes of Health. Expert panel report 3:guidelines for the diagnosis and management of asthma full report 2007. National Asthma Education and Prevention Program,2007.
    72. Joos GF. Do measures of bronchial responsiveness add information in diagnosis and monitoring of patients with asthma? Eur Respir J,2001,18:439-441.
    73. Johnston SL. An atlas of investigation and management:asthma. Clinical publishing,2007:1-9
    74. Mauad T, Bel EH, Sterk PJ. Asthma therapy and airway remodeling. J Allergy Clin Immunol 2007,120:997-1009
    75. Cohn L, Elias JA, and Chupp GL. Asthma:mechanisms of disease persistence and progression. Annu Rev Immunol,2004,22:789-815.
    76. Mukherjee AB, Zhang Z. Allergic asthma:influence of genetic and environmental factors. JBiol Chem,2011,286:32883-32889
    77. Yates AB, Richard D. Atopy and Asthma.2009, Encyclopedia of life science. Hoboken, New Jersey, USA:John Wiley & Sons. pp.1-9.
    78. Locksley RM. Asthma and allergic inflammation. Cell,2009,140:777-783.
    79. Hamid Q, Tulic M. Immunobiology of asthma. Annu Rev Physi,2009,71:489-507.
    80. Cohn L, Homer RJ, Marinov A, et al. Induction of airway mucus production by T helper 2 (Th2) cells:a critical role for interleukin 4 in cell recruitment but not mucus production. J Exp Med, 1997,186:1737-1747.
    81. Borish LC, Nelson HS, Lanz MJ, et al. Interleukin-4 receptor in moderate atopic asthma. A phase Ⅰ/Ⅱ randomized, placebo-controlled trial. Am JRespir Crit Care Med,1999,160:1816-1823.
    82. Iwamoto I, Nakajima H, Endo H, et al. Interferon regulates antigen-induced eosinophil recruitment into the mouse airways by inhibiting the infiltration of CD4+ T cells. J Exp Med, 1993,177:573-576.
    83. Coyle AJ, Tsuyuki S, Bertrand C, et al. Mice lacking the IFN-y receptor have impaired ability to resolve a lung eosinophilic inflammatory response associated with a prolonged capacity of T cells to exhibit a Th2 cytokine profile. J Immunol,1996,156:2680-2685
    84. Randolph DA, Carruthers CJ, Szabo SJ, et al. Modulation ofairway inflammation by passive transfer of allergen-specific Thl and Th2 cells in amouse model of asthma. J Immunol,1999, 162:2375-2383.
    85. Takatsu K, Takaki S, Hitoshi Y. Interleukin-5 and its receptor system:implications in the immune system and inflammation. Adv Immunol,1994,57:145-190.
    86. Rothenberg ME, Hogan SP. The eosinophil. Annu Rev Immunol,2006; 24:147-174.
    87. Flood PP, Menzies GA, Phipps S, et al. Anti-IL-5 treatment reduces deposition of ECM proteins in the bronchial subepithelial basement membrane of mild atopic asthmatics. J Clin Invest,2003, 112:1029-1036.
    88. Foster PS, Hogan SP, Ramsay AJ, Matthaei I, Young IG. Interleukin 5 deficiency abolishes osinophilia, airways hyperreactivity, and lung damage in a mouse asthma model.J Exp Med, 1996,183:195-201.
    89. Wills KM. Interleukin-13 in asthma pathogenesis. Immunol Rev,2004,202:175-190.
    90. Grunig G, Warnock M, Wakil AE, et al. Requirement for IL-13 independently of IL-4 in experimental asthma. Science,1998,282:2261-2263
    91. Venkatesha RT, Berla Thangam E, Zaidi AK, Ali H. Distinct regulation of C3a-induced MCP-1/CCL2 and RANTES/CCL5 production in human mast cells by extracellular signal regulated kinase and PI3 kinase. Mol Immunol,2005,42:581-587.
    92. Hart PH. Regulation of the inflammatory response in asthma by mast cell products. Immunol Cell Biol,2001,79:149-153.
    93. Humbert M, Ying S, Corrigan C, et al. Bronchial mucosal expression of the genes encoding chemokines RANTES and MCP-3 in symptomatic atopic and nonatopic asthmatics:relationship to the eosinophil-active cytokines interleukin (IL)-5, granulocyte macrophage-colony-stimulating factor, and IL-3. Am JRespir Cell Mol Biol,1997,16:1-8.
    94. Kay AB, Klion AD. Anti-interleukin-5 therapy for asthma and hypereosinophili syndrome. Immunol Allergy Clin North Am,2004,24:645-666.
    95. Humbles AA, Lloyd CM, McMillan SJ, Friend DS, Xanthou G, McKenna EE, et al. A critical role for eosinophils in allergic airways remodeling. Science,2004,305:1776-1779.
    96. Prussin C, Metcalfe DD. IgE, mast cells, basophils, and eosinophils. J Allergy Clin Immunol, 2006,117:S450-456.
    97. Rosenwasser LJ. New immunopharmacologic approaches to asthma:role of cytokine antagonism. J Allergy Clin Immunol,2000,105:S586-592.
    98. Thepen T, Van Rooijen N, Kraal G. Alveolar macrophage elimination in vivo is associated with an increase in pulmonary immune response in mice. JExp Med,1989,170:499-509.
    99. Gibson PG, Simpson JL, Saltos N. Heterogeneity of airway inflammation in persistent asthma: evidence of neutrophilic inflammation and increased sputum interleukin-8. Chest,2001,119: 1329-1336.
    100. Sampson AP. The role of eosinophils and neutrophils in inflammation. Clin Exp Allergy,2000, 30:22-27.
    101. Richardson JD, Vasko MR. Cellular mechanisms of neurogenic inflammation. J Pharmacol Exp Ther,2002,302:839-845
    102. Geppetti P, Nassini R, Materazzi S, et al. The concept of neurogenic inflammation.2008, BJU Int,101:2-6.
    103. Barnes PJ.Asthma as an axon reflex. Lancet,1986,1:242-245.
    104. Barnes PJ. Pathophysiology of asthma. Eur Respir Mon,2003,23:84-113
    105. Barnes PJ. Neurogenic inflammation in the airways. Resp Physiol,2001,125:145-154.
    106. Belvisi MG. Overview of the innervation of the lung. Curr Opin Pharmacol,2002,2:211-215.
    107. Giovanna P, Dario O, Alfredo C. The airway neurogenic inflammation:clinical and pharmacological implications. Inflammation & Allergy Drug Ta,2002,8:176-181.
    108. Pernow B. Substance P. Pharmacol Rev,1983,35:85-142.
    109. Brain SD. Sensory neuropeptides:their role in inflammation and wound healing. Immunopharmacology,1997,37:133-152.
    110. Otmish P, Gordon J, El-oshar S, et al. Neuroimmune interaction in inflammatory diseases. Clinical Medicine:Circulatory, Respiratory and Pulmonary Medicine,2008,2:35-44.
    111. Rosenfeld MG, Mermod JJ, Amara SG,et al. Production of a novel neuropeptide encoded by the calcitonin gene via tissue-specific RNA processing. Nature,1983,304:129-135.
    112. Breimer LH, Macintyre I. Zaidi M, et al. Peptides from the calcitonin genes:molecular genetics, structure and function. Biochem J,1988,255:377-390.
    113. Tsukiji J, Sango K, Udaka N, et al. Long-term induction of beta-CGRP mRNA in rat lungs by allergic inflammation. Life Sci,2004,76:163-177.
    114. Ichinose M, Miura M, Yamauchi H, et al. A neurokinin 1-receptor antagonist improves exercise-induced airway narrowing in asthmatic patients. Am JRespir Crit Care Med,1996,153: 936-941.
    115. Cosens DJ, Manning A. Abnormal electroretinogram from a Drosophila mutant. Nature,1969, 224:285-287.
    116. Minke B, Wu CF, Pak WL. Induction of photoreceptor voltage noise in the dark in Drosophila mutant. Nature,1975,258:84-87.
    117. Minke B. Drosophila mutant with a transducer defect. Biophys Struct Mech,1977,3:59-64.
    118. Minke B. Light-induced reduction in excitation efficiency in the trp mutant of Drosophila. J Gen Physiol,1982,79:361-385.
    119. Montell C, Rubina GM. Molecular characterization of the Drosophila trp locus:A putative integral membrane protein required for phototransduction. Neuron,1989,2:1313-1323
    120. Suss-Toby E, Selinger Z, Minke B. Lanthanum reduces the excitation efficiency in fly photoreceptors. J Gen Physiol,1991,98:849-868.
    121.Hardie RC. Whole-cell recordings of the light-inducedcurrent in Drosophila photoreceptors: evidence for feedback by calcium permeating the light sensitive channels. Proc Roy Soc Lond B, 1991,245:203-210.
    122. Hardie DC, Minke B. The trp gene is essential for a light-activated Ca2+ channel in Drosophila photoreceptors. Neuron,1992,8:643-651.
    123. Phillips AM, Bull A, Kelly LE. Identification of a Drosophila gene encoding a calmodulin-binding protein with homology to the trp phototransduction gene. Neuron,1992, 8:631-642.
    124. Leung HT. Geng C, Pak WI. Phenotypes of trpl mutants and interactions between the transient receptor potential (TRP) and TRP-like channels in Drosophila. JNeurosci,2000,20:6797-6803.
    125. Wes PD, Chevesich J, Jeromin A, et al. (1995). TRPC1, a human homolog of a Drosophila store-operated channel. Proc. Natl.Acad. Sci. USA,1995,92:9652-9656.
    126. Montell C, Birnbaumer L, Flockerzi V. The TRP channels, a remarkably functional family. Cell, 2002,108:595-598.
    127. Clapham DE. TRP channels as cellular sensors. Nature,2003,426:517-524.
    128. Ramsey IS, Delling M, Clapham DE. An introduction to TRP channels. Annu Rev Physiolo 2006, 68:619-647.
    129. Bell VM and Theodore GW. Functional and structural studies of TRP channels heterologously expressed in budding yeast. Adv Exp Med Biol,2011,704:25-40
    130. Clapham DE, Runnels LW, Strubing C. The TRP ion channel family. Nat Rev Neurosci,2001,2: 387-396.
    131. Voets T, Owsianik G. TRP channels. Biological Membrane Ion Channels,2007:400-423
    132. Vennekens R, Voets T, Bindels R G, et al. Current understanding of mammalian TRP homologues. Cell Calcium,2007,31:252-264
    133. Owsianik G, Talavera Voets T, Nilius B. Permeation and selectivity of TRP channels. Annu Rev Physio 2008,68:685-717
    134. Sten O, Boris Z, Pierluigi N. Regulation of cell death:the calcium-apoptosis link. Nat rev mol cell biol,2003,4:552-565
    135. Venkatachalam K, Montell C. TRP channels. Annu Rev Biochem,2007,76:387-417
    136. Damann N, Voets T, Nilius B. TRPs in our senses. Curr Biol,2008,18:880-889
    137. Caterina MJ, Schumacher MA, Tominaga M, et al. The capsaicin receptor:a heat-activated ion channel in the pain pathway. Nature,1997,389:816-824.
    138. Szallasi A, Blumberg PM. Vanilloid (capsaicin) receptors and mechanisms. Pharm Rev,1999,51: 159-212.
    139. Tominaga M, Tomoko T. Structure and function of TRPV1. PflugersArch,2005,451:143-150.
    140. Aneiros E, Cao L, Papakosta M, et al. The biophysical and molecular basis of TRPV1 proton gating. EMBO J,2011,30:994-1002.
    141. Xue Q, Yu Y, Trilk SL, et al. The genomic organization of the gene encoding the vanilloid receptor:evidence for multiple splice variants. Genomics,2001,76:14-20.
    142. Antonio FM, Carolina GM, Cruz MP, et al. Molecular architecture of the vanilloid receptor. Eur JBiochem 2004,271:1820-1826.
    143. Biro T, Maurer M, Modarres S, Lewin NE, Brodie C, et al. Characterization of functional vanilloid receptors expressed by mast cell. Blood,1998,91:1332-1340.
    144. Zhang D, Spielmann A, Wang L, et al. Mast-Cell degranulation induced by physical stimuli involves the activation of transient-receptor-potential channel TRPV2. Physiol Res 2012,61: 113-124.
    145. Caterina MJ, Julius D. The vanilloid receptor:a molecular gateway to the pain pathway. Annu Rev Neurosci,2001.24:487-517.
    146. Nakagawa H, Hiura A. Capsaicin, transient receptor potential protein subfamilies and the particular relationship between capsaicin receptors and small primary sensory neurons. Anat Sci Int,2006,81:135-155.
    147. Cortright DN, Szallasi A. TRP channels and pain. Curr Pharm Des,2009,15:1736-1749.
    148. Minke B, Cook B. TRP channel proteins and signal transduction. Physiol Rev,2002,82: 429-472.
    149. Szallasi A, Cruz F, Geppetti P. TRPV1:a therapeutic target for novel analgesic drugs? Trends Mol Med 2006,12:545-554.
    150. Neelima KJ, Szallasi A. TRPV1 antagonists:the challenges for therapeutic targeting. Trends Mol Med,2009,15:14-22.
    151. Nilius B, Owsianik G, Voets T. Transient receptor potential cation channels in disease. Physiol Rev,2007,87:165-217.
    152. Barnes PJ. Neurogenic inflammation in the airways. Resp Physiol,2001,125:145-154.
    153. Grace MS, Belvisi MG TRPA1 receptors in cough. Pulm Pharmacol Ther,2011,24:286-288.
    154. Anderson G P. TRPV1 and cough. Thorax 2004,59:730-731.
    155. Jia Y, McLeod RL and Hey JA. TRPV1 receptor:A target for the treatment of pain, cough, airway disease and urinary incontinence. Drug News Perspect,2005,18:165-171.
    156. Cantero RG, Gonzalez JR, Fandos C, et al. Loss of function of transient receptor potential vanilloid 1(TRPV1) genetic variant is associated with lower risk of active childhood asthma.J Biol Chem,2010,285:27532-27535.
    157. McAlexander MA, Thomas TC. The role of transient receptor potential channels in respiratory symptoms and pathophysiology.Adv Exp Med Biol,2011,704:969-986.
    158. Jaquemar, Daniel, and Thomas Schenker. An ankyrin-like protein with transmembrane domains is specifically lost after oncogenic transformation of human fibroblasts. JBiol Chem,1999,274: 7325-7333.
    159. Story GM, Peier AM, Reeve AJ, et al. ANKTM1, a TRP-like channel expressed in nociceptive neurons, is activated by cold temperatures. Cell,2003,112:819-829.
    160. Takahashi N, Mori Y. TRP channels as sensors and signal integrators of redox status changes. Front Pharmacol,2011,2:1-11.
    161. Howard J. Bechstedt S. Hypothesis:a helix of ankyrin repeats of the NOMPC-TRP ion channel is the gating spring of mechanoreceptors. Curr Biol,2004,14:224-226.
    162. Nagata K, Duggan A, Kumar G, et al. Nociceptor and hair cell transduce properties of TRPA1, a channel for pain and heating. JNeurosci,2005,25:4052-4061.
    163.Kobayashi K,Fukuoka T, Obata K, et al. Distinct expression of TRPM8, TRPA1. and TRPV1 mRNAs in rat primary afferent neurons with adelta/c-fibers and colocalization with trk receptors. J Comp Neuro,2005,493:596-606.
    164. Bautista D M, Movahed P, HinmanA, et al. Pungent products from garlic activate the sensory ion channel TRPA1. Proc Natl Acad Sci USA,2005,102:12248-12252.
    165. Stokes A, Wakano C, Murielle KH, et al. TRPA1 is a substrate for de-ubiquitination by the tumor suppressor CYLD. Cell Signal,2006,18:1584-1594.
    166. Nassenstein C, Kwong K, Taylor-Clark T, et al. Expression and function of the ion channel TRPA1 in vagal afferent nerves innervating mouse lungs. JPhysiol,2008,586:1595-1604.
    167. Karashima Y, Talavera K, Everaerts W, et al. TRPA1 acts as a cold sensor in vitro and in vivo. Proc Natl Acad Sci USA,106:1273-1278.
    168. Bandell M, Story GM, Hwang SW, et al. Noxious cold ion channel TRPA1 is activated by pungent compounds and bradykinin. Neuron,2004,41:849-857.
    169. Macpherson LJ, Geierstanger BH, Viswanath V, et al. The pungency of garlic:activation of TRPA1 and TRPV1 in response to allicin. Curr Biol,2005,15:929-934.
    170. Jordt SE, Bautista DM, Chuang HH, et al. Mustard oils and cannabinoids excite sensory nerve fibres through the TRP channel ANKTM1 Nature,2004,427:260-265.
    171.Bautista DM, Jordt SE, Nikai T, et al. TRPA1 mediates the inflammatory actions of environmental irritants and proalgesic agents. Cell,2006,124:1269-1282.
    172. Trevisani M, Siemens J, Materazzi S, et al.4-Hydroxynonenal, an endogenous aldehyde, causes pain and neurogenic inflammation through activation of the irritant receptor TRPA1. Proc Natl Acad Sci USA,2007,104(33):13519-13524.
    173. Taylor-Clark TE, Undem BJ, Macglashan DW, et al. Prostaglandin-induced activation of nociceptive neurons via direct interaction with transient receptor potential A1. Mol Pharmacol, 2008,73:274-281.
    174. Hinman A, Chuang HH, Bautista DM, et al. TRP channel activation by reversible covalent modification. Proc Natl Acad Sci USA,2006,103:19564-19568.
    175. Macpherson LJ, Dubin AE, Evans MJ, et al. Noxious compounds activate TRPA1 ion channels through covalent modificationof cysteines. Nature,2007,445:541-545.
    176. Zayats V, Samad A, Minofar B, et al. Regulation of the transient receptor potential channel TRPA1 by its n-terminal ankyrin repeat domain. J Mol Model, Doi:10.1007/s00894-012-1505-1
    177. Bautista, DM, Pellegrino M. TRPA1:A gatekeeper for inflammation. Annu Rev Physiol,2013, 75:181-200.
    178.Andrade EL, Meotti FC, and Calixto JB. TRPA1 antagonists as potential analgesic drugs. Pharma Ther,2012,133:189-204.
    179. Eid SR, Crown ED, Moore EL, et al. HC-030031, a TRPA1 selective antagonist, attenuates inflammatory-and neuropathy-induced mechanical hypersensitivity. Mol Pain,2008,4:48.
    180. Petrus M. Peier AM, Bandell M, et al. Arole of TRPA1 in mechanical hyperalgesia is revealed by pharmacological inhibition. Mol Pain,2007,3:40.
    181. Kwan KY, Allchome AJ, Vollrath MA, et al. TRPA1 contributes to cold, mechanical, and chemical nociception but is not essential for hair-cell transduction. Neuron,2006,50:277-289.
    182. Obata K, Katsura H, Mizushima T, et al. TRPA1 induced in sensory neurons contributes to cold hyperalgesia after inflammation and nerve injury. J Clin Invest,2005,115:2393-2401.
    183. Caceres AI, Brackmann M, Elia MD, et al. A sensory neuronal ion channel essential for airway inflammation and hyperreactivity in asthma. Proc Natl Acad Sci USA,2009,106:9099-9104
    184. Hendrick DJ, Lane DJ. Occupational formalin asthma. Br J Ind Med,1977,34:111-118
    185. Burge PS, Harries MG, Lam WK, et al. Occupational asthma due to formaldehyde. Thorax,1985, 40:255-260.
    186. Gorski P, Krakowiak A. Formaldehyde-induced bronchial asthma-does it really exist? Pol J Occup Med Environ Health,1991,4:317-320.
    187. Rumchev KB, Spickett JT, Bulsara MK, et al. Domestic exposure to formaldehyde significantly increases the risk of asthma in young children. Eur Respir J,2002,20:403-408.
    188. Kramps JA, Peltenburg LT, Kerklaan PR, et al. Measurement of specific IgE antibodies in individuals exposed to formaldehyde. Clin Exp Allergy,1989,19:509-514.
    189. Liden S, Scheynius A, Fischer T. Absence of specific IgE antibodies in allergic contact sensitivity to formaldehyde. Allergy,1993,48:525-529.
    190. Mendell MJ. Indoor residential chemical emissions as risk factors for respiratory and allergic effects in children:a review. Indoor air,2007,17:259-277.
    191.Nowak D, Ulrik CU, Mutius EV. Asthma and atopy:has peak prevalence been reached? Eur Respir J,2004,23:359-360.
    192.童志前,刘宏亮,严彦,等.气态甲醛染毒致小鼠气道神经源性炎症的神经受体机制,环境 与健康杂志,2004,21:215-217.
    193. Anderson ME. Determination of glutathione and glutathione disulfide in biological samples. Method Enzymol,1985,113:548-554.
    194. Janero DR. Malondialdehyde and thiobarbituric acid-reactivity as diagnostic indices of lipid peroxidation and peroxidative tissue injury. Free Radical Bio Med,1990,9:515-540.
    195. Lu Z, Li CM, Qiao Y, et al. Type II vanilloid receptor signaling system:one of the possible mechanisms for the rise in asthma cases. Front Biosci,2005,10:2527-2533.
    196.乔永康,严彦,杨继文,等.甲醛诱导获得性过敏体质致哮喘发病机理研究.中华微生物学与免疫学杂志,2007,27:298.
    197. Qiao Y, Li B, Yang G, et al. Irritant and adjuvant effects of gaseous formaldehyde on the ovalbumin-induced hyperresponsiveness and inflammation in a rat model. Inhal Toxicol,21: 1200-1207.
    198. Facchinetti F, Patacchini R. The rising role of TRPA1 in asthma. The Open Drug Discovery, 2010,2:71-80.
    199. Azzi A, Davies KJ, Kelly F. Free radical biology-terminology and critical thinking. FEBS Letters,2004,558:3-6.
    200. McNamara CR, Mandel BJ, Bautista DM, et al. TRPA1 mediates formalin-induced pain. Proc Nati Acad Sci USA,2007,104:13525-13530.
    201. Tong Z, Luo W, Wang Y, et al. Tumor tissue-derived formaldehyde and acidic microenvironment synergistically induce bone cancer pain. PLoS ONE,2010,5:e10234.
    202. Han Y, Li Y, Xiao X, et al. Formaldehyde up-regulates TRPV1 through MAPK and PI3K signaling pathways in a rat model of bone cancer pain. Neurosci Bull,2012,28:165-172.
    203. Apgar JM, Juarranz A, Espada J, et al. Fluorescence microscopy of rat embryo sections stained with haematoxylin-eosin and Masson's trichrome method. JMicrosc,1998,191:20-27
    204. Bangle R, Alford WC. The chemical basis of the periodic acid-Schiff reaction of collagen fibers with reference to periodate consumption by collagen and by insulin.J Histochem Cytochem, 1954,2:62-76.
    205. Pauwels RA, Brusselle GJ, Kips JC. Cytokine manipulation in animal models of asthma Am J Respir Crit Care Med,1997,156:S78-81.
    206. Karol MH. Animal models of occupational asthma. Eur Respir J,1994; 7:555-568
    207. Pauluhn J. Overview of testing methods used in inhalation toxicity:from facts to artifacts. Toxicol Lett,2003,8:183-93.
    208. MOH. ChineseNational Standard:hygienic standards for thedesign of industrial enterprises (TJ36-79). Ministry of Health:1979.
    209. Kips JC, Anderson GP, Fredberg JJ, et al. Murine models of asthma. Eur Respir J,2003,22: 374-382.
    210. Han B, Guo J, Abrahaley T, et al. Adverse effect of nano-silicon dioxide on lung function of rats with or without ovalbumin immunization. PLoS ONE,2011,6:e17236.
    211. Colsoul B, Nilius B, Vennekens R. On the putative role of transient receptor potential cation channels in asthma. Clin Exp Allergy,2009,39:1456-1466.
    212. Bessac BF, Jordt SE. Breathtaking TRP channels:TRPA1 and TRPV1 in airway chemosensation and reflex control. Physiology,2008,23:360-370.
    213. Banner KH, Igney F, Poll C. TRP Channels:Emerging Targets for Respiratory Disease. Pharmacol Ther,2011,130:371-384.
    214. Drazen JM, Finn PW, De Sanctis GT. Mouse models of airway responsiveness:physiological basis of observed outcomes and analysis of selected examples using these outcome indicators. Anna Rev Physiol,1999,61:593-625.
    215. Busse WM, Lemanske RF. Asthma. NEngl JMed,2001,44:350-362
    216. White, JPM, Urban L, Nagy I. TRPV1 function in health and disease. Curr Pharm Biotechnol, 2011,12:130-144.
    217. Fernandes ES, Fernandes MA, Keeble JE. The functions of TRPA1 and TRPV1:moving away from sensory nerves. Br J Pharmacol,2012,166:510-521.
    218. Vries A, Engels F, Henricks PA, et al. Airway hyper-responsiveness in allergic asthma in guinea-pigs is mediated by nerve growth factor via the induction of substance P:a potential role for trkA. Clin Exp Allergy,2006,36:1192-1200.
    219. O'Connor TM, O'Connell J, O'Brien DI, et al. The role of substance P in inflammatory disease. J Cell Physiolo,2004,201:167-180.
    220. Sousa AR, Lane SJ, Nakhosteen JA, et al. Expression of interleukin-lb (IL-1b) and interleukin-1 receptor antagonist (IL-1ra) on asthmatic bronchial epithelium. Am J Respir Crit Care Med, 1996,154:1061-1066.
    221. Nambu A, Susumu N. IL-1 and Allergy. Allergol Int,2010,59:125-135.
    222. Veres TZ, Rochlitzer S, Braun A. The role of neuro-immune cross-talk in the regulation of inflammation and remodelling in asthma. Pharmacol Ther,2009,122:203-214.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700