用户名: 密码: 验证码:
光纤氧、乙炔气体敏感材料及其传感器性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
气态氧和溶解氧的测定在医学、工业分析、环境监测等领域中具有重要的意义。由于光纤氧传感器具有本质安全、灵敏度高、检测精度高、响应时间快、不受电磁干扰等优点,并可对危险环境中的气态氧和溶解氧进行远程、连续和在线监控,近年来,其研究受到了人们的极大关注。本文以聚氯乙烯(PVC)和聚苯乙烯(PS)为基质材料分别固定钌(Ⅱ)—邻菲咯啉(Ru(phen)_3Cl_2)和钌(Ⅱ)—二氮杂菲(Ru(bathophen)_3Cl_2)为荧光指示剂,制备出光纤氧敏感膜。采用锁相放大技术,这些膜在对气态氧和溶解氧进行测定时具有响应时间快、重复性和稳定性好等特点。
     对乙炔气体的在线检测在电力工业、石化等领域中十分重要。本文研制的吸收型光纤乙炔传感器是利用乙炔气体的特征吸收峰来在线检测乙炔气体的含量的,且整个过程利用的是光波导,因此它有本质防爆功能。在检测乙炔时该传感器响应快、重复性好。
     本论文内容主要包括以下两个主要方面:荧光指示剂合成和氧传感膜的制备及其性能研究与应用;吸收型光纤乙炔传感器的设计及其对乙炔气体的在线检测。
     (1) 以PVC为基质材料,采用高分子膜法将荧光指示剂Ru(bpy)_3Cl_2和Ru(phen)_3Cl_2固定于其中制备出荧光性能优良的氧PVC敏感膜。实验证明了包埋Ru(phen)_3Cl_2的PVC敏感膜性能相对较好,该敏感膜对气态氧的响应时间小于30s,检测下限为5ppm,检测精度为0.5%,具有较好的重复性和稳定性。
     (2) 采用水合三氯化钌和4,7—二苯基—1,10—邻菲咯啉合成荧光指示剂——钌(Ⅱ)-二氮杂菲(Ru(bathophen)_3Cl_2),通过红外光谱、荧光光谱等方法对该指示剂进行表征,得到其具有优良的荧光性能。将其固定于PS膜中制成PS敏感膜,由于该指示剂本质上不溶于水,在制备敏感膜时适当控制成膜配比,可最大限度地防止荧光指示剂的渗漏,因此该指示剂特别适合长期检测溶解氧。
     (3) 设计出一种吸收型光纤乙炔气体传感器装置。从材料学的角度对光源、气室和光探测器进行了选择和研究。结合气相色谱仪对乙炔进行测定,得到该传感器检测下限为157ppm,响应时间小于3s,能较好地用于在线检测乙炔气体的浓度。
The detection of the gaseous oxygen and the dissolved oxygen is very important in many fields such as medicine, industrial analysis and environmental monitoring. Therefore, the researches of fiber optic oxygen sensors have gotten much attention of people in recent years. Fiber optic oxygen sensor have many advantages such as intrinsic safety and high sensitivity, high detection precision, quick response, anti-disturbance of electromagnetism, and it can be used for long-distance, successive and on-line monitoring of the gaseous oxygen and the dissolved oxygen in dangerous environment. In this thesis, Ru(phen)3Cl2 and Ru(bathophen)3Cl2 are used as fluorescent indicators, which are immobilized in poly(vinyl) chloride(PVC) and polystyrene(PS) respectively, to form the fiber optic oxygen sensing membranes. Using the lock-in technology, these membranes have many advantages such as high sensitivity, fast response and good stability and reproducibility when they are used in fiber optic oxygen sensors to detect the c
    oncentration of the gaseous oxygen and the dissolved oxygen.
    It is also very important to detect the concentration of the gaseous acetylene on-line in many fields such as power industry and petrifaction. This sensor in this paper is based on the characteristic absorption spectrum of acetylene to detect acetylene content and utilizes the optical waveguide all through the process, so it has the intrinsic anti-explosion function, fast response time and good repeatability.
    Main contents of this paper include two aspects: the synthesis of fluorescent indicator and the preparation of oxygen sensing membrane and the research of their characteristics; the design of the absorptive-type fiber optic acetylene sensor and the use of it in detecting gaseous acetylene.
    (1) Through the polymer membrane method, the indicators such as Ru(phen)3Cl2, Ru(phen)3Cl2 are immobilized in polyvinyl chloride, and the PVC sensing membrane is formed. For the detection of gaseous oxygen, the
    
    
    membrane has these merits: the fast respond time less than 30s, detection limit up to 5ppm and detection precision 0.5% and good repeatability and stability.
    (2) RuCl3-3H2O and the ligand, 4,7-diphenyl-l,10-phenanthroline, are used as raw materials to synthesize the new fluorescent indicator, Ru(bathophen)3Cl2, which is characterized by infrared spectroscopy(IR) and fluorescence spectroscopy(FS), and then is immobilized into PS to form the PS sensing membrane. Because of the intrinsic nonaquaeous of this indicator, the network size of PS membrane can be controlled and the leaking of the fluorescent indicator in water can also be prevented by adjusting the appropriate proportion among the matrix, solvent and the indicator.
    (3) The fiber optic acetylene sensor based on spectrum absorbing has been designed. During the development of it, the author has been mainly engaged in the task of the research of the materials such as the light resource, the air-chamber and the light detector. The sensor has a good response time less than 3s and a detecting limitation up to 157ppm by combining the chromatography of gases in detecting the gaseous acetylene. And it can be used to measure the concentration of the gaseous acetylene on-line through suitable light source and air-chamber.
引文
[1] V. Ruddy, B. MacCraith, S. McCabe. Remote flammable gas sensing using a fluoride fiber evanescent prone. Proceedings of SP1E, 1990,1267:97~104
    [2] Brain Culshaw, Emery L. Moor, Zhang Zhi-Peng. Advanced in optical fiber sensor. SPIE optical Engineering Press. 1992,161~164
    [3] S. M. Klainer. Environmental monitoring applications of fiber optic chemical sensors. Fiber optic chemical sensors, CRC press, Boca, Rtton. 1991,83~122
    [4] B. Culshaw, J. P. Dakin. Optical fiber sensors. Vols.1, Artech House, 1989
    [5] 刘崇进,郑大肪.气体传感器的发展概况与发展方向.计算机测量与控制,1999,7(2):54~56
    [6] Demas J. N, Degraff B. A, Xu W Y. Modeling of luminescence quenching-based sensors: comparison of multisite and nonlinear gas solubility models [J]. Anal. Chen, 1995,67:1377~1380.
    [7] 吕卫星,王怀兵.滞后相移法测量钌化合物氧气猝灭荧光寿命,传感器技术,1998.1:34~36
    [8] 黄俊,姜德生,王立新等.光纤气敏传感器的气敏材料及其固定条件研究.武汉工业大学学报,1999,21:11~13
    [9] 李伟,庄峙厦,王小如等.基于荧光猝灭原理的光纤化学传感器在线监测水中溶解氧[J].北京大学学报(自然科学版),2001,37(2):226~230
    [10] 洪江星,李伟,庄峙厦等.Sol-gel-derived film for oxygen sensor[J].高等学校化学学报,2000,21(12):34~37
    [11] 褚柳宁.介绍一种测量溶解氧的微星光纤氧传感器.1999,18(2):49~55
    [12] Feng Xi-yu, Chen Juan, Wei Dong-xing. CH4 gas optical fiber sensor research. Proceedings of SPIE. 1996,2895(6):80~89
    [13] 张民权,沈慧芳,杨卓等.基于荧光猝灭的氧传感器的研制(Ⅱ)——氧传感器的设计及影响其性能的因素.2001,29(2):61~69
    [14] 吕太平,陈世光,乔小蓉.光纤氧传感器的研制及溶解氧的测定.分析化学.2001,29(2):245
    [15] E. R. Carraway, J. N. Demas. Photophysics and photochemistry of oxygen sensors based on luminescent transition-metal complexes. Anal. Chem., 1991,63:337~342
    
    
    [16] Otto S. Wokfbeis, Ashutosh Sharma. Fibre-optic fluorosensor for sulphur dioxide. Analytica Chimica Acta, 1988, 208:53-58
    [17] 杨建华,侯宏,王磊.光学氧传感器氧敏感膜的光降解.传感器技术.2001,20(12):3~7
    [18] 何锐,刘光葵.氧传感器及其在汽车中的应用[J].传感器技术,1999,18(3):1~4
    [19] Xiang-Ming Li, Fu-Chang Ruan, Kwok-Yin Wong. Optical characteristics of a ruthenium(Ⅱ) complex immobilized in a silicone rubber film for oxygen measurement. Analyst, 1993, 118(3):289~292
    [20] 吕太平,Stefan Rasong,Ursular E.新亲脂性荧光指示剂的光纤氧传感器的研制.华西医大学报,1997,28(4):412~416
    [21] 钱军民,李旭祥.聚合物在生物传感器中的应用研究进展.高分子材料科学与工程[J],2002,18(2):21~23
    [22] Kerry. P. Mcnamara, Xueping Li, Angela D. Stull, et al. Fiber-optic oxygen sensor based on the fluorescence quenching of tris (5-acrylamido-1,10-phenanthroline) ruthenium chloride. Analytica Chimica Acta, 1998, 361:73~83
    [23] Bai. M, Seitz W R. A Fiber Optic Sensor for Water in Organic Solvents Based on Polymer Swelling. Talanta[J], 1994,41:993~999
    [24] 刘瑞复,史锦珊.光纤氧传感器及其应用.北京:机械工业出版社.1987
    [25] 杨荣华,王柯敏,肖丹等.基于环糊精/卟啉包络物荧光狞灭的二氧化碳光学敏感膜的研究.高等学校化学学报[J],2001,22(1):38~42
    [26] James N. Braddock, Thomas J. Meyer. Kinetics of the oxidation of Fe(H_2O)_6~(2+) by polypyridine complexes of ruthenium(Ⅱ) negative enthalpies of act activation. Journal of the American Chemical Society. 1973. 95(10):3158~3162
    [27] 刘君华.智能传感器系统.西安:西安电子科技大学出版社,1999.
    [28] F. A. Muhammad, H. S. A1-Raweshidy, J. M. Senior. Compensation for surface contamination with D-fiber sensor. Sensors and Actuators, B: Chemical. 1997,40(1):59~63
    [29] Stewart, George, A. Mencaglia, W. Philp, Jin Wei. Interferometric signals in fiber optic methane sensors with wavelength modulation of the DFB laser source. IEEE. 1998,16(1):43~53
    [30] Ashutosh Sharma, Otto S. Wolfbeis. Fiber optic oxygen sensor based on fluorescence quenching and energy transfer. Applied Spectroscopy, 1988, 42(6):1009~1011
    
    
    [31] T. H. Dubaniewicz, J. E. Chilton. Fiber optics for mine gas monitoring New Technology in Mine llealth and Safety. 1992,24:81~88
    [32] C-T. Lin, W. Bottcher, M. Chou, et al. Mechanism of the quenching of the emission of substituted polypyridineruthenium (Ⅱ) complexes by iron (Ⅲ), chromium (Ⅲ), and europium (Ⅲ) ions. Journal of the American Chemical Society, 1976, 10(13): 6536~6544
    [33] V. Kumar, D. Chandra. Fiber optic methane sensor for mines. Optical Applicata. 1997,27(4):279~290
    [34] 张建标,陈兴,黄俊等.一种可用于溶解氧测定的光纤氧传感器.传感器技术[J],2002,21(10):4~7
    [35] Desheng Jiang, Er Liu, Jun Huang. A novel fiber optic glucose biosensor based on fluorescence quenching. Proc SPIE, 2002, 4920:205~212
    [36] 刘迎春.传感器原理设计与应用.湖南:国防科技大学出版社.1996
    [37] 张民权,陈焕饮,黄国贤.光学氧传感器的研制.分析试验室.1997,16(6):10~14
    [38] R. J. Watts, G. A. Crosby. Spectroscopic characterization of complexes of ruthenium(Ⅱ) and iridium(Ⅲ) with 4,4'-diphenyl -2,2' -bipyridine. Journal of the American Chemical Society, 1971, 6, 30:3184~3188
    [39] O. Kohls, Th. scheper. Setup of a fiber optical oxygen multisensor -system and its applications in biotechnology. Sensors and Actuators B, 2000, 70:121~130
    [40] K. Seiler, W. Simon. Theoretical aspects of bulk optode membranes. Analytica Chimica Acta, 1992, 266:73~78
    [41] G. Stewart, B. Culshaw. Optical waveguide modelling and design for evanescent wave chemical sensors. Optical and quantum electronics. 1994,26:249~256
    [42] Chun-Man C, Mee-Yee C, Minquan Z. The performance of oxygen sensing films with ru-adsorbed fumed silica dispersed in silicone rubber. Analyst, 1999, 124:691
    [43] G. Stewart, W. Jin, B. Culshaw. Prospects for fiber optic evanescent field gas sensors using absorption in the near-infrared Sensors and Actuators B: Chemical. 1997,38(1):42~4730
    [44] Darryl Y. Sasaki, Seema Singh. Fluorescence detection of nitrogen dioxide with perylene/PMMA thin films [J]. Sensors and Actuators B, 2001, 72:51~55
    [45] 秦正龙,孟庆华.传感器及其在水质监测中的应用.环境导报,1998,2:9~11.
    [46] Hartmann. Photochemically induced energy-transfer effects on the decay times of ruthenium complexes in polymers [J]. Anal.chem, 2000,72:2828~2834.
    
    
    [47] Dimarco G, Lanza M. Optical solid-state oxygen sensors using metal porphyry complexes immobilized in suitable polymeric matrices [J]. sensors and Actuators B,2000,63:42~48.
    [48] Martin M F Choi, Dan Xiao. Oxygen-sensitive reverse-phase optrode membrane using silica gel-adsorbed ruthenium(Ⅱ) complex embedded in gelatin film[J]. Analytical Chemical Acta., 1999,387:197~205.
    [49] F.Ciardelli,E.Tsachida,D.Wohrle,等编著.张志奇,张举贤译.李福绵审订.高分子金属络合物.北京:北京大学出版社,1999.112~122
    [50] Wolfang trettnak, et al. Optical in fiber bragg-grating sensor systems for medical applications. Sensors and Actuators, 1995. B29:219
    [51] 陈娟.红外吸收型光纤甲炕气体传感器的研究.吉林工学院学报,1997,(2):57~60
    [52] 任恕.膜受体与生物传感器.北京:科学出版社,1996.74~108
    [53] 文尚盛,廖常俊,范广涵等.现代MOCVD技术的发展与展望,华南师范大学学报(自然科学版).1999,(3):99
    [54] 张建标.基于荧光猝灭原理的光纤氧传感器研究:[硕士学位论文].湖北:武汉理工大学光纤中心,2003
    [55] 朱辉,马於光,刘宇等.酸催化剂浓度对钌络合物/溶胶—凝胶薄膜的发光氧气传感性能的影响,发光学报,2002.23(1):57~60
    [56] D. J. Wright, N. M. Sommerdijk. Sol-Gel Materials: Chemistry and Application. London: Gordon and Breach Science publishers, 2001
    [57] 陈国珍,黄贤智,郑朱梓等.荧光分析方法(第二版).北京:科学出版社.1990,12:134~136.
    [58] 李伟,陈坚,相乘仁等.基于荧光猝灭原理的光纤化学传感器定量分析模型的建立与应用.化学学报[J],2001,59(1):109~114
    [59] 王莉田,史锦珊,王玉田.吸收式环境气体光纤传感器.传感器技术.1996,16:28~30
    [60] 阎卫平,刘文琦,牛德芳等.光纤气体传感器的研究.传感技术学报[J],1998,9(3):22~25
    [61] 刘文琦,牛德芳.透射式光纤气体传感器的研究.仪表技术与传感器.1998,(1):4~6
    [62] 叶险峰,汤伟中.CH_4气体光纤传感器的研究.半导体光电技术.2000,6:218~220
    [63] 刘广玉,陈明,吴志鹤等.新型传感器技术及应用.北京航空航天大学,1994.
    [64] Jin. Wei, Stewart, George et al. Performance Limitation of Fiber Optic Methane Sensors Due to Interference Effects. Journal of Lightware Technology. 1996, 14(5): 760-769
    [65] 孟宗.光谱吸收式变压油中乙炔气体浓度测量仪的研究:[硕士学位论文].河北:燕山大学,2003

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700