用户名: 密码: 验证码:
微生物电化学系统生物阴极的构建及其在难降解有机废水处理中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
针对难降解有机废水B/C(生化需氧量/化学需氧量)低、生物毒性强,传统生化法处理效果差的问题,本论文提出采用微生物电化学系统(BES)中的生物阴极处理该类有机废水,以解决传统生化处理工艺的不足。论文取得了如下主要研究成果:
     以活性蓝13(RB13)和五氯苯酚(PCP)为典型难降解有机污染物,建立了一套适用于难降解有机污染物处理的电化学活性细菌(EAB)筛选与驯化方法,分别获得了高效降解RB13和PCP的EAB。利用该两种EAB启动BES,生物阴极挂膜时间大大缩短。在此基础上,考查了生物阴极对RB13和PCP的处理效果,结果显示:在优化条件下,RB13经8h处理后,脱色率达到80.24±5.51%;PCP经100h处理后,去除率达到89.66±3.66%。
     重点研究了生物阴极上EAB生物膜与电极之间的电子传递机制。结果发现生物阴极中电极到EAB存在直接电子传递途径。循环伏安法测试发现生物阴极表面生物膜在+0.2V左右有氧化还原峰,对应于细菌细胞膜上的C型细胞色素蛋白,为直接电子传递途径的存在提供了有力的证据。对EAB生物膜菌落组成进行了分析,454高通量测序结果显示Proteobacteria (45.51%)、Bacteroidetes (33.95%)、Firmicutes (15.92%)为脱氯生物阴极上三类优势菌种。
     对EAB生物膜在电极表面的形成过程及其影响因素进行了研究。论文建立了一套基于微电极的EAB生物膜厚度原位连续测试的方法。以Shewanella oneidensis MR-1为模型微生物,通过铂探针微电极对S. oneidensis MR-1生物膜厚度进行了测试,测试结果与激光共聚焦扫描显微镜测试结果基本吻合。利用该方法对S. oneidensis MR-1生物膜形成过程中的影响因子进行考查,发现较负的电极电势以及较高浓度的乳酸钠、核黄素可加速S. oneidensis MR-1生物膜的生长。无氧条件下,S. oneidensis MR-1生物膜厚度增长的限值大约为100μm到110μm。利用Capdeville生物膜增长动力学模型对观察到的生物膜生长过程进行数学模拟。拟合结果显示当乳酸钠浓度为20mM,电极电势为+100mV时,Soneidensis MR-1生物膜厚度的比增长速率为0.27h-1。
     构建了基于生物阴极的微生物燃料电池堆栈,为生物阴极在难降解有机废水处理中的工程化应用提供了设计指导。当外接电阻1000Ω时,含50mg/L RB13的模拟废水经反应器处理8h后,RB13脱色率和TOC去除率分别为85.4±2.4%和33.44-3.4%。
     本论文以难降解有机废水生物处理新工艺开发为目标,系统整合了BES和生物阴极,阐明了污染物降解过程中的电子传递机制,揭示了生物膜形成的机制和调控手段,拓宽了BES在废水处理中的应用范围。
More and more recalcitrant organic wastewater was generated with the rapid development of chemical industry recently. Due to the low B/C, poor biodegradability and high toxicity, traditional bioremediation cannot effectively treat this kind of wastewater. A bioelectrochemical system (BES) equipped with biocathode was employed for recalcitrant organic wastewater treatment in this work.
     Reactive blue13(RB13) and pentachlorophenol (PCP) were treated as typical recalcitrant organic pollutants in this paper. Firstly, a novel method for screening and acclimating electrochemically active bacteria (EAB) for the degradation of recalcitrant organic pollutions was provided. EAB for RB13degradation and EAB for PCP degradation were obtained, which can significantly reduce the time of biocathode set-up. Biocathodes used for RB13and PCP treatment were also built, and the performance of biocathodes for RB13degradation and PCP degradation were significantly improved. In the optimized conditions, the decolorination rate of RB13in BES reached80.2±5.5%during8hours operation, and the PCP removal rate in BES reached89.7±3.7%after100hours treatment.
     For understanding the degradation pathways of recalcitrant organic pollutants on biocathode, the electron transfer mechanisms of EAB on biocathode were studied. The electron transfer pathway from electrode to EAB was determined. We proved that direct electron transfer mechanism from the electrode to EAB could be involved in biocathode. A pair of oxidation-reduction peaks around+0.2V existed in the cyclic voltammograms, which could be caused by cytochrome C protein.454pyrosequencing tests showed that Proteobacteria, Bacteroidetes and Firmicutes were three predominant phyla in BES, which were three dechlorinating microorganisms.
     Given the importance of EAB biofilm in biocathode, EAB formation mechanisms were studied. A novel method for in situ determination of the EAB biofilm thickness was developed. By employing a platinum ultramicroelectrode (Pt UME) as the detector, thickness of Shewanella oneidensis MR-1biofilm was measured, and the results were also confirmed by confocal laser scanning microscope tests. According to our results, lower electrode potential, higher concentrations of sodium lactate and riboflavin could accelerate the formation of S. oneidensis MR-1biofilm on the electrode. The maximum biofilm thickness was100μm to110μm when S. oneidensis MR-1grown in the anaerobic medium. Capdeville equation was found describing the formation of EAB biofilm well. When the concentration of sodium lactate was20mM and the electrode potential was+100mV, the specific growth rate of S. oneidensis MR-1biofilm thickness was0.27h-1.
     A bipolar microbial fuel cell stack equipped with biocathode was constructed. It provided a guideline for the designation of the large scale reactor for recalcitrant organic wastewater treatment. When the external resistance was1000Ω and the initial RB13concentration was50mg/L, the RB13removal rate and the total organic carbon (TOC) removal rate in this reactor were85.4±2.4%and33.4±3.4%respectively during8hours operation.
     This work focused on the development of a novel technology for recalcitrant organic wastewater treatment. By employing biocathode in a BES, recalcitrant organic pollutants were degraded effectively. Furthermore, the electron transfer mechanisms during the progress of pollutants degradation and the formation mechanisms of EAB biofilm were determined. This work extended the application of BES in wastewater treatment.
引文
[1]VALLACK H W, BAKKER D J, BRANDT I, et al. Controlling persistent organic pollutants-what next? [J]. Environmental Toxicology and Pharmacology,1998,6(3):143-175.
    [2]刘征涛.持久性有机污染物的主要特征和研究进展[J].环境科学研究,2005,18(3):10.
    [3]沈平.《斯德哥尔摩公约》与持久性有机污染物(POPs) [J].化学教育,2005,6:6-10.
    [4]中华人民共和国环境保护部.2012年环境统计年报——废水[EB/OL]. (2013-12-25) [2014-04-25]. http://zlsmepgovcn/hjtj/nb/2012tjnb/201312/t2013 1225 265553htm.
    [5]MIKESELL M D, BOYD S A. Complete reductive dechlorination and mineralization of pentachlorophenol by anaerobic microorganisms [J]. Applied and Environmental Microbiology,1986,52(4):861-865.
    [6]SIMARRO R, GONZALEZ N, BAUTISTA L F, et al. Biodegradation of high-molecular-weight polycyclic aromatic hydrocarbons by a wood-degrading consortium at low temperatures [J]. Ferns Microbiology Ecology,2013,83(2): 438-449.
    [7]TAKAGI K, KATAOKA R, YAMAZAKI K. Recent technology on bio-remediation of POPs and persistent pesticides [J]. Jarq-Japan Agricultural Research Quarterly,2011,45(2):129-136.
    [8]LIN J, ZHANG X W, LI Z J, et al. Biodegradation of Reactive blue 13 in a two-stage anaerobic/aerobic fluidized beds system with a Pseudomonas sp isolate [J]. Bioresource Technology,2010,101(1):34-40.
    [9]WU H F, WANG S H. Impacts of operating parameters on oxidation-reduction potential and pretreatment efficacy in the pretreatment of printing and dyeing wastewater by Fenton process [J]. Journal of Hazardous Materials,2012,243: 86-94.
    [10]ZAHARIA C, SUTEU D. Coal fly ash as adsorptive material for treatment of a real textile effluent:operating parameters and treatment efficiency [J]. Environmental Science and Pollution Research,2013,20(4):2226-2235.
    [11]LOGAN B E, RABAEY K. Conversion of wastes into bioelectricity and chemicals by using microbial electrochemical technologies [J]. Science,2012, 337(6095):686-690.
    [12]BABAUTA J, RENSLOW R, LEWANDOWSKI Z, et al. Electrochemically active biofilms:facts and fiction. A review [J]. Biofouling,2012,28(8):789-812.
    [13]HOU B, SUN J, HU Y Y. Effect of enrichment procedures on performance and microbial diversity of microbial fuel cell for Congo red decolorization and electricity generation [J]. Applied Microbiology and Biotechnology,2011, 90(4):1563-1572.
    [14]SUN J A, BI Z, HOU B, et al. Further treatment of decolorization liquid of azo dye coupled with increased power production using microbial fuel cell equipped with an aerobic biocathode [J]. Water Research,2011,45(1):283-291.
    [15]CAI P J, XIAO X, HE Y R, et al. Involvement of c-type cytochrome CymA in the electron transfer of anaerobic nitrobenzene reduction by Shewanella oneidensis MR-1 [J]. Biochemical Engineering Journal,2012,68:227-230.
    [16]MALVANKAR N S, TUOMINEN M T, LOVLEY D R. Lack of cytochrome involvement in long-range electron transport through conductive biofilms and nanowires of Geobacter sulfurreducens [J]. Energy & Environmental Science, 2012,5(9):8651-8659.
    [17]BRUTINEL E D, GRALNICK J A. Shuttling happens:soluble flavin mediators of extracellular electron transfer in Shewanella [J]. Applied Microbiology and Biotechnology,2012,93(1):41-48.
    [18]LIU H, GROT S, LOGAN B E. Electrochemically assisted microbial production of hydrogen from acetate [J]. Environmental Science & Technology,2005, 39(11):4317-4320.
    [19]ZHANG B G, ZHANG J, LIU Y, et al. Identification of removal principles and involved bacteria in microbial fuel cells for sulfide removal and electricity generation [J]. International Journal of Hydrogen Energy,2013,38(33):14348-14355.
    [20]HUANG L P, GAN L L, ZHAO Q L, et al. Degradation of pentachlorophenol with the presence of fermentable and non-fermentable co-substrates in a microbial fuel cell [J]. Bioresource Technology,2011,102(19):8762-8768.
    [21]MU Y, RABAEY K, ROZENDAL R A, et al. Decolorization of azo dyes in bioelectrochemical systems [J]. Environmental Science & Technology,2009, 43(13):5137-5143.
    [22]DEWAN A, BEYENAL H, LEWANDOWSKI Z. Intermittent energy harvesting improves the performance of microbial fuel cells [J]. Environmental Science & Technology,2009,43(12):4600-4605.
    [23]HE Z, WAGNER N, MINTEER S D, et al. An upflow microbial fuel cell with an interior cathode:Assessment of the internal resistance by impedance Spectroscopy [J]. Environmental Science & Technology,2006,40(17):5212-5217.
    [24]LUO H P, LIU G L, ZHANG R D, et al. Phenol degradation in microbial fuel cells [J]. Chemical Engineering Journal,2009,147(2-3):259-264.
    [25]WANG A J, CHENG H Y, LIANG B, et al. Efficient reduction of nitrobenzene to aniline with a biocatalyzed cathode [J]. Environmental Science & Technology, 2011,45(23):10186-10193.
    [26]AULENTA F, REALE P, CANOSA A, et al. Characterization of an electro-active biocathode capable of dechlorinating trichloroethene and cis-dichloroethene to ethene [J]. Biosensors & Bioelectronics,2010,25(7):1796-1802.
    [27]TANDUKAR M, HUBER S J, ONODERA T, et al. Biological chromium(Ⅵ) reduction in the cathode of a microbial fuel cell [J]. Environmental Science & Technology,2009,43(21):8159-8165.
    [28]ROSENBAUM M, AULENTA F, VILLANO M, et al. Cathodes as electron donors for microbial metabolism:Which extracellular electron transfer mechanisms are involved? [J]. Bioresource Technology,2011,102(1):324-333.
    [29]RABAEY K, GIRGUIS P, NIELSEN L K. Metabolic and practical considerations on microbial electrosynthesis [J]. Current Opinion in Biotechnology,2011,22(3):371-377.
    [30]RABAEY K, ROZENDAL R A. Microbial electrosynthesis-revisiting the electrical route for microbial production [J]. Nature Reviews Microbiology, 2010,8(10):706-716.
    [31]ZHANG J W, ZHANG E R, SCOTT K, et al. Enhanced electricity production by use of reconstituted artificial consortia of estuarine bacteria grown as biofilms [J]. Environmental Science & Technology,2012,46(5):2984-2992.
    [32]CHAE K J, CHOI M J, KIM K Y, et al. A solar-powered microbial electrolysis cell with a platinum catalyst-free cathode to produce hydrogen [J]. Environmental Science & Technology,2009,43(24):9525-9530.
    [33]AHN Y T, LOGAN B E. A multi-electrode continuous flow microbial fuel cell with separator electrode assembly design [J]. Applied Microbiology and Biotechnology,2012,93(5):2241-2248.
    [34]FENG C H, LI F B, MAI H J, et al. Bio-electro-fenton process driven by microbial fuel cell for wastewater treatment [J]. Environmental Science & Technology,2010,44(5):1875-1880.
    [35]QIAN F, BAUM M, GU Q, et al. A 1.5 mu L microbial fuel cell for on-chip bioelectricity generation [J]. Lab on a Chip,2009,9(21):3076-3081.
    [36]LI Z J, VENKATARAMAN A, ROSENBAUM M A, et al. A Laminar-flow microfluidic device for quantitative analysis of microbial electrochemical activity [J]. Chemsuschem,2012,5(6):1119-1123.
    [37]QIAN F, HE Z, THELEN M P, et al. A microfluidic microbial fuel cell fabricated by soft lithography [J]. Bioresource Technology,2011,102(10): 5836-5840.
    [38]CHENG S A, LOGAN B E. Ammonia treatment of carbon cloth anodes to enhance power generation of microbial fuel cells [J]. Electrochemistry Communications,2007,9(3):492-496.
    [39]WANG X, CHENG S A, FENG Y J, et al. Use of carbon mesh anodes and the effect of different pretreatment methods on power production in microbial fuel cells [J]. Environmental Science & Technology,2009,43(17):6870-6874.
    [40]FENG Y J, YANG Q, WANG X, et al. Treatment of carbon fiber brush anodes for improving power generation in air-cathode microbial fuel cells [J]. Journal of Power Sources,2010,195(7):1841-1844.
    [41]SCOTT K, RIMBU G A, KATURI K P, et al. Application of modified carbon anodes in microbial fuel cells [J]. Process Safety and Environmental Protection, 2007,85(B5):481-488.
    [42]ROSENBAUM M, SCHRODER U, SCHOLZ F. Investigation of the electrocatalytic oxidation of formate and ethanol at platinum black under microbial fuel cell conditions [J]. Journal of Solid State Electrochemistry,2006, 10(10):872-878.
    [43]PARK D H, ZEIKUS J G. Improved fuel cell and electrode designs for producing electricity from microbial degradation [J]. Biotechnology and Bioengineering,2003,81(3):348-355.
    [44]QIAO Y, LI C M, BAO S J, et al. Carbon nanotube/polyaniline composite as anode material for microbial fuel cells [J]. Journal of Power Sources,2007, 170(1):79-84.
    [45]ZOU Y J, XIANG C L, YANG L N, et al. A mediatorless microbial fuel cell using polypyrrole coated carbon nanotubes composite as anode material [J]. International Journal of Hydrogen Energy,2008,33(18):4856-4862.
    [46]REIMERS C E, TENDER L M, FERTIG S, et al. Harvesting energy from the marine sediment-water interface [J]. Environmental Science & Technology, 2001,35(1):192-195.
    [47]LI X, HU B X, SUIB S, et al. Manganese dioxide as a new cathode catalyst in microbial fuel cells [J]. Journal of Power Sources,2010,195(9):2586-2591.
    [48]MORRIS J M, JIN S, WANG J Q, et al. Lead dioxide as an alternative catalyst to platinum in microbial fuel cells [J]. Electrochemistry Communications,2007, 9(7):1730-1734.
    [49]ZHAO F, HARNISCH F, SCHRODER U, et al. Application of pyrolysed iron(II) phthalocyanine and CoTMPP based oxygen reduction catalysts as cathode materials in microbial fuel cells [J]. Electrochemistry Communications,2005, 7(12):1405-1410.
    [50]HAOYU E, CHENG S, SCOTT K, et al. Microbial fuel cell performance with non-Pt cathode catalysts [J]. Journal of Power Sources,2007,171(2):275-281.
    [51]ZHANG F, PANT D, LOGAN B E. Long-term performance of activated carbon air cathodes with different diffusion layer porosities in microbial fuel cells [J]. Biosensors & Bioelectronics,2011,30(1):49-55.
    [52]FENG L Y, YAN Y Y, CHEN Y G, et al. Nitrogen-doped carbon nanotubes as efficient and durable metal-free cathodic catalysts for oxygen reduction in microbial fuel cells [J]. Energy & Environmental Science,2011,4(5):1892-1899.
    [53]KATURI K P, RENGARAJ S, KAVANAGH P, et al. Charge transport through Geobacter sulfurreducens biofilms grown on graphite rods [J]. Langmuir,2012, 28(20):7904-7913.
    [54]HUANG L P, CHAI X L, CHEN G H, et al. Effect of set potential on hexavalent chromium reduction and electricity generation from biocathode microbial fuel cells [J]. Environmental Science & Technology,2011,45(11):5025-5031.
    [55]VILLANO M, DE BONIS L, ROSSETTI S, et al. Bioelectrochemical hydrogen production with hydrogenophilic dechlorinating bacteria as electrocatalytic agents [J]. Bioresource Technology,2011,102(3):3193-3199.
    [56]VILLANO M, MONACO G, AULENTA F, et al. Electrochemically assisted methane production in a biofilm reactor [J]. Journal of Power Sources,2011, 196(22):9467-9472.
    [57]OKAMOTO A, HASHIMOTO K, NAKAMURA R. Long-range electron conduction of Shewanella biofilms mediated by outer membrane C-type cytochromes [J]. Bioelectrochemistry,2012,85:61-65.
    [58]BOND D R, STRYCHARZ-GLAVEN S M, TENDER L M, et al. On electron transport through Geobacter biofilms [J]. Chemsuschem,2012,5(6):1099-1105.
    [59]ROSS D E, FLYNN J M, BARON D B, et al. Towards electrosynthesis in Shewanella:energetics of reversing the Mtr pathway for reductive metabolism [J].Plos One,2011,6(2):1-9.
    [60]BABAUTA J T, NGUYEN H D, HARRINGTON T D, et al. pH, redox potential and local biofilm potential microenvironments within Geobacter sulfurreducens biofilms and their roles in electron transfer [J]. Biotechnology and Bioengineering,2012,109(10):2651-2662.
    [61]ROLLEFSON J B, STEPHEN C S, TIEN M, et al. Identification of an extracellular polysaccharide network essential for cytochrome anchoring and biofilm formation in Geobacter sulfurreducens [J]. Journal of Bacteriology, 2011,193(5):1023-1033.
    [62]RINGEISEN B R, RAY R, LITTLE B. A miniature microbial fuel cell operating with an aerobic anode chamber [J]. Journal of Power Sources,2007,165(2): 591-597.
    [63]FENG Y J, LEE H, WANG X, et al. Continuous electricity generation by a graphite granule baffled air-cathode microbial fuel cell [J]. Bioresource Technology,2010,101(2):632-638.
    [64]OH S E, LOGAN B E. Voltage reversal during microbial fuel cell stack operation [J]. Journal of Power Sources,2007,167(1):11-17.
    [65]WANG A J, SUN D, REN N Q, et al. A rapid selection strategy for an anodophilic consortium for microbial fuel cells [J]. Bioresource Technology, 2010,101(14):5733-5735.
    [66]LOGAN B E. Exoelectrogenic bacteria that power microbial fuel cells [J]. Nature Reviews Microbiology,2009,7(5):375-381.
    [67]PANT D, VAN BOGAERT G, DIELS L, et al. A review of the substrates used in microbial fuel cells (MFCs) for sustainable energy production [J]. Bioresource Technology,2010,101(6):1533-1543.
    [68]AULENTA F, CANOSA A, MAJONE M, et al. Trichloroethene dechlorination and H(2) evolution are alternative biological pathways of electric charge utilization by a dechlorinating culture in a bioelectrochemical system [J]. Environmental Science & Technology,2008,42(16):6185-6190.
    [69]TANAKA K, VEGA C A, TAMAMUSHI R. Thionine and ferric chelate compounds as coupled mediators in microbial fuel-cells [J]. Bioelectrochemistry and Bioenergetics,1983,11(4-6):289-297.
    [70]LOVLEY D R, FRAGA J L, COATES J D, et al. Humics as an electron donor for anaerobic respiration [J]. Environmental Microbiology,1999,1(1):89-98.
    [71]AULENTA F, DI MAIO V, FERRI T, et al. The humic acid analogue antraquinone-2,6-disulfonate (AQDS) serves as an electron shuttle in the electricity-driven microbial dechlorination of trichloroethene to cis-dichloroethene [J]. Bioresource Technology,2010,101(24):9728-9733.
    [72]THRASH J C, COATES J D. Review:Direct and indirect electrical stimulation of microbial metabolism [J]. Environmental Science & Technology,2008, 42(11):3921-3931.
    [73]SCHRODER U. Anodic electron transfer mechanisms in microbial fuel cells and their energy efficiency [J]. Physical Chemistry Chemical Physics,2007, 9(21):2619-2629.
    [74]KAUSHIK A, CHETAL A. Power generation in microbial fuel cell fed with post methanation distillery effluent as a function of pH microenvironment [J]. Bioresource Technology,2013,147:77-83.
    [75]OMIDI H, SATHASIVAN A. Optimal temperature for microbes in an acetate fed microbial electrolysis cell (MEC) [J]. International Biodeterioration & Biodegradation,2013,85:688-692.
    [76]NAM J Y, KIM H W, LIM K H, et al. Effects of organic loading rates on the continuous electricity generation from fermented wastewater using a single-chamber microbial fuel cell [J]. Bioresource Technology,2010,101:S33-S37.
    [77]LOGAN B E, MURANO C, SCOTT K, et al. Electricity generation from cysteine in a microbial fuel cell [J]. Water Research,2005,39(5):942-952.
    [78]LI Z J, ZHANG X W, LIN J, et al. Azo dye treatment with simultaneous electricity production in an anaerobic-aerobic sequential reactor and microbial fuel cell coupled system [J]. Bioresource Technology,2010,101(12):4440-4445.
    [79]LIU H, CHENG S A, LOGAN B E. Production of electricity from acetate or butyrate using a single-chamber microbial fuel cell [J]. Environmental Science & Technology,2005,39(2):658-662.
    [80]LIU H, LOGAN B E. Electricity generation using an air-cathode single chamber microbial fuel cell in the presence and absence of a proton exchange membrane [J]. Environmental Science & Technology,2004,38(14):4040-4046.
    [81]ZUO Y, CHENG S, CALL D, et al. Tubular membrane cathodes for scalable power generation in microbial fuel cells [J]. Environmental Science & Technology,2007,41(9):3347-3353.
    [82]HU Z Q. Electricity generation by a baffle-chamber membraneless microbial fuel cell [J]. Journal of Power Sources,2008,179(1):27-33.
    [83]MOON H, CHANG I S, JANG J K, et al. Residence time distribution in microbial fuel cell and its influence on COD removal with electricity generation [J]. Biochemical Engineering Journal,2005,27(1):59-65.
    [84]HE Z, MINTEER S D, ANGENENT L T. Electricity generation from artificial wastewater using an upflow microbial fuel cell [J]. Environmental Science & Technology,2005,39(14):5262-5267.
    [85]DEKKER A, TER HEIJNE A, SAAKES M, et al. Analysis and improvement of a scaled-up and stacked microbial fuel cell [J]. Environmental Science & Technology,2009,43(23):9038-9042.
    [86]ZHUANG L, ZHENG Y, ZHOU S G, et al. Scalable microbial fuel cell (MFC) stack for continuous real wastewater treatment [J]. Bioresource Technology, 2012,106:82-88.
    [87]LOWY D A, TENDER L M, ZEIKUS J G, et al. Harvesting energy from the marine sediment-water interface Ⅱ-kinetic activity of anode materials [J]. Biosensors & Bioelectronics,2006,21(11):2058-2063.
    [88]LOWY D A, TENDER L M. Harvesting energy from the marine sediment-water interface III. Kinetic activity of quinone-and antimony-based anode materials [J]. Journal of Power Sources,2008,185(1):70-75.
    [89]LOGAN B E, HAMELERS B, ROZENDAL R A, et al. Microbial fuel cells: methodology and technology [J]. Environmental Science & Technology,2006, 40(17):5181-5192.
    [90]RABAEY K, CLAUWAERT P, AELTERMAN P, et al. Tubular microbial fuel cells for efficient electricity generation [J]. Environmental Science & Technology,2005,39(20):8077-8082.
    [91]AELTERMAN P, RABAEY K, PHAM H T, et al. Continuous electricity generation at high voltages and currents using stacked microbial fuel cells [J]. Environmental Science & Technology,2006,40(10):3388-3394.
    [92]ARUGULA M A, SHROFF N, KATZ E, et al. Molecular AND logic gate based on bacterial anaerobic respiration [J]. Chemical Communications,2012,48(82): 10174-10176.
    [93]LI Z J, ROSENBAUM M A, VENKATARAMAN A, et al. Bacteria-based AND logic gate:a decision-making and self-powered biosensor [J]. Chemical Communications,2011,47(11):3060-3062.
    [94]KAUR A, KIM J R, MICHIE I, et al. Microbial fuel cell type biosensor for specific volatile fatty acids using acclimated bacterial communities [J]. Biosensors & Bioelectronics,2013,47:50-55.
    [95]WANG X, FENG Y J, REN N Q, et al. Accelerated start-up of two-chambered microbial fuel cells:Effect of anodic positive poised potential [J]. Electrochimica Acta,2009,54(3):1109-1114.
    [96]FENG Y, WANG X, LOGAN B E, et al. Brewery wastewater treatment using air-cathode microbial fuel cells [J]. Applied Microbiology and Biotechnology, 2008,78(5):873-880.
    [97]PATIL S A, SURAKASI V P, KOUL S, et al. Electricity generation using chocolate industry wastewater and its treatment in activated sludge based microbial fuel cell and analysis of developed microbial community in the anode chamber [J]. Bioresource Technology,2009,100(21):5132-5139.
    [98]HUANG L P, ANGELIDAKI I. Effect of humic acids on electricity generation integrated with xylose degradation in microbial fuel cells [J]. Biotechnology and Bioengineering,2008,100(3):413-422.
    [99]ZHANG G D, ZHAO Q L, JIAO Y, et al. Biocathode microbial fuel cell for efficient electricity recovery from dairy manure [J]. Biosensors & Bioelectronics,2012,31(1):537-543.
    [100]LI Y, LU A H, DING H R, et al. Cr(VI) reduction at rutile-catalyzed cathode in microbial fuel cells [J]. Electrochemistry Communications,2009,11(7):1496-1499.
    [101]TER HEIJNE A, LIU F, VAN DER WEIJDEN R, et al. Copper recovery combined with electricity production in a microbial fuel cell [J]. Environmental Science & Technology,2010,44(11):4376-4381.
    [102]JEREMIASSE A W, HAMELERS E V M, BUISMAN C J N. Microbial electrolysis cell with a microbial biocathode [J]. Bioelectrochemistry,2010, 78(1):39-43.
    [103]CHENG S A, XING D F, CALL D F, et al. Direct biological conversion of electrical current into methane by electromethanogenesis [J]. Environmental Science & Technology,2009,43(10):3953-3958.
    [104]STRYCHARZ-GLAVEN S M, GLAVEN R H, WANG Z, et al. Electrochemical investigation of a microbial solar cell reveals a nonphotosynthetic biocathode catalyst [J]. Applied and Environmental Microbiology,2013,79(13):3933-3942.
    [105]FU Q, KOBAYASHI H, KURAMOCHI Y, et al. Bioelectrochemical analyses of a thermophilic biocathode catalyzing sustainable hydrogen production [J]. International Journal of Hydrogen Energy,2013,38(35):15638-15645.
    [106]VILLANO M, SCARDALA S, AULENTA F, et al. Carbon and nitrogen removal and enhanced methane production in a microbial electrolysis cell [J]. Bioresource Technology,2013,130:366-371.
    [107]ISHIZAKI A, TANAKA K. Production of poly-beta-hydroxybutyric acid from carbon-dioxide by Alcaligenes-Eutrophus Atcc 17697t [J]. Journal of Fermentation and Bioengineering,1991,71(4):254-257.
    [108]CAO X X, HUANG X, LIANG P, et al. A completely anoxic microbial fuel cell using a photo-biocathode for cathodic carbon dioxide reduction [J]. Energy & Environmental Science,2009,2(5):498-501.
    [109]STEINBUSCH K J J, HAMELERS H V M, SCHAAP J D, et al. Bioelectrochemical ethanol production through mediated acetate reduction by mixed cultures [J]. Environmental Science & Technology,2010,44(1):513-517.
    [110]SHIN H S, JAIN M K, CHARTRAIN M, et al. Evaluation of an electrochemical bioreactor system in the biotransformation of 6-bromo-2-tetralone to 6-bromo-2-tetralol [J]. Applied Microbiology and Biotechnology,2001,57(4):506-510.
    [111]LEFEBVRE O, AL-MAMUN A, OOI W K, et al. An insight into cathode options for microbial fuel cells [J]. Water Science and Technology,2008,57(12): 2031-2037.
    [112]HE Z, ANGENENT L T. Application of bacterial biocathodes in microbial fuel cells [J]. Electroanalysis,2006,18(19-20):2009-2015.
    [113]AULENTA F, CANOSA A, REALE P, et al. Microbial reductive dechlorination of trichloroethene to ethene with electrodes serving as electron donors without the external addition of redox mediators [J]. Biotechnology and Bioengineering, 2009,103(1):85-91.
    [114]CAO X X, HUANG X, LIANG P, et al. A new method for water desalination using microbial desalination cells [J]. Environmental Science & Technology, 2009,43(18):7148-7152.
    [115]CHEN X, LIANG P, WEI Z M, et al. Sustainable water desalination and electricity generation in a separator coupled stacked microbial desalination cell with buffer free electrolyte circulation [J]. Bioresource Technology,2012,119: 88-93.
    [116]KIM Y, LOGAN B E. Series assembly of Microbial desalination cells containing stacked electrodialysis cells for partial or complete seawater desalination [J]. Environmental Science & Technology,2011,45(13):5840-5845.
    [117]HAMELERS H V M, TER HEIJNE A, SLEUTELS T H J A, et al. New applications and performance of bioelectrochemical systems [J]. Applied Microbiology and Biotechnology,2010,85(6):1673-1685.
    [118]JEON B Y, JUNG I L, PARK D H. Enrichment of CO2-fixing bacteria in cylinder-type electrochemical bioreactor with built-in anode compartment [J]. Journal of Microbiology and Biotechnology,2011,21(6):590-598.
    [119]ROZENDAL R A, JEREMIASSE A W, HAMELERS H V M, et al. Hydrogen production with a microbial biocathode [J]. Environmental Science & Technology,2008,42(2):629-634.
    [120]LOURO R O, PAQUETE C M. The quest to achieve the detailed structural and functional characterization of CymA [J]. Biochemical Society Transactions, 2012,40:1291-1294.
    [121]MITCHELL A C, PETERSON L, REARDON C L, et al. Role of outer membrane c-type cytochromes MtrC and OmcA in Shewanella oneidensis MR-1 cell production, accumulation, and detachment during respiration on hematite [J]. Geobiology,2012,10(4):355-370.
    [122]SHI L, ROSSO K M, ZACHARA J M, et al. Mtr extracellular electron-transfer pathways in Fe(III)-reducing or Fe(Ⅱ)-oxidizing bacteria:a genomic perspective [J]. Biochemical Society Transactions,2012,40:1261-1267.
    [123]VON CANSTEIN H, OGAWA J, SHIMIZU S, et al. Secretion of flavins by Shewanella species and their role in extracellular electron transfer [J]. Applied and Environmental Microbiology,2008,74(3):615-623.
    [124]MARSILI E, BARON D B, SHIKHARE I D, et al. Shewanella secretes flavins that mediate extracellular electron transfer [J]. Proceedings of the National Academy of Sciences of the United States of America,2008,105(10):3968-3973.
    [125]JIANG X C, HU J S, FITZGERALD L A, et al. Probing electron transfer mechanisms in Shewanella oneidensis MR-1 using a nanoelectrode platform and single-cell imaging [J]. Proceedings of the National Academy of Sciences of the United States of America,2010,107(39):16806-16810.
    [126]NGUYEN H D, RENSLOW R, BABAUTA J, et al. A voltammetric flavin microelectrode for use in biofilms [J]. Sensors and Actuators B-Chemical,2012, 161(1):929-937.
    [127]METHE B A, NELSON K E, EISEN J A, et al. Genome of Geobacter sulfurreducens:metal reduction in subsurface environments [J]. Science,2003, 302(5652):1967-1969.
    [128]LOVLEY D R, HOLMES D E, NEVIN K P. Dissimilatory Fe(Ⅲ) and Mn(Ⅳ) reduction [M].//POOLE R K. Advances in Microbial Physiology, Vol 49. London:Academic Press Ltd-Elsevier Science Ltd,2004:219-286.
    [129]QIAN X L, REGUERA G, MESTER T, et al. Evidence that OmcB and OmpB of Geobacter sulfurreducens are outer membrane surface proteins [J]. Fems Microbiology Letters,2007,277(1):21-27.
    [130]INOUE K, LEANG C, FRANKS A E, et al. Specific localization of the c-type cytochrome OmcZ at the anode surface in current-producing biofilms of Geobacter sulfurreducens [J]. Environmental Microbiology Reports,2011,3(2): 211-217.
    [131]PIRBADIAN S, EL-NAGGAR M Y. Multistep hopping and extracellular charge transfer in microbial redox chains [J]. Physical Chemistry Chemical Physics,2012,14(40):13802-13808.
    [132]EL-NAGGAR M Y, WANGER G, LEUNG K M, et al. Electrical transport along bacterial nanowires from Shewanella oneidensis MR-1 [J]. Proceedings of the National Academy of Sciences of the United States of America,2010, 107(42):18127-18131.
    [133]LOVLEY D R. Electromicrobiology [M]//GOTTESMAN S, HARWOOD C S, SCHNEEWIND O. Annual Review of Microbiology, Vol 66. Palo Alto:Annual Reviews,2012:391-409.
    [134]REGUERA G, MCCARTHY K D, MEHTA T, et al. Extracellular electron transfer via microbial nanowires [J]. Nature,2005,435(7045):1098-1101.
    [135]CHENG K Y, HO G, CORD-RUWISCH R. Anodophilic biofilm catalyzes cathodic oxygen reduction [J]. Environmental Science & Technology,2010, 44(1):518-525.
    [136]LIU H, CHENG S A, LOGAN B E. Power generation in fed-batch microbial fuel cells as a function of ionic strength, temperature, and reactor configuration [J]. Environmental Science & Technology,2005,39(14):5488-5493.
    [137]HUANG L P, CHAI X L, QUAN X, et al. Reductive dechlorination and mineralization of pentachlorophenol in biocathode microbial fuel cells [J]. Bioresource Technology,2012,111:167-174.
    [138]BABAUTA J T, NGUYEN H D, BEYENAL H. Redox and pH microenvironments within Shewanella oneidensis MR-1 biofilms reveal an electron transfer mechanism [J]. Environmental Science & Technology,2011, 45(15):6654-6660.
    [139]JEREMIASSE A W, HAMELERS H V M, CROESE E, et al. Acetate enhances startup of a H2-producing microbial biocathode [J]. Biotechnology and Bioengineering,2012,109(3):657-664.
    [140]CAO Y Q, HU Y Y, SUN J A, et al. Explore various co-substrates for simultaneous electricity generation and Congo red degradation in air-cathode single-chamber microbial fuel cell [J]. Bioelectrochemistry,2010,79(1):71-76.
    [141]LEE H S, TORRES C I, RITTMANN B E. Effects of substrate diffusion and anode potential on kinetic parameters for anode-respiring bacteria [J]. Environmental Science & Technology,2009,43(19):7571-7577.
    [142]LIANG P, FAN M Z, CAO X X, et al. Evaluation of applied cathode potential to enhance biocathode in microbial fuel cells [J]. Journal of Chemical Technology and Biotechnology,2009,84(5):794-799.
    [143]JIANG Y, SU M, LI D P. Removal of sulfide and production of methane from carbon dioxide in microbial fuel cells-microbial electrolysis cell (MFCs-MEC) coupled system [J]. Applied Biochemistry and Biotechnology,2014,172(5): 2720-2731.
    [144]RINGEISEN B R, HENDERSON E, WU P K, et al. High power density from a miniature microbial fuel cell using Shewanella oneidensis DSP 10 [J]. Environmental Science & Technology,2006,40(8):2629-2634.
    [145]KLAHRE J, FLEMMING H C. Monitoring of biofouling in papermill process waters [J]. Water Research,2000,34(14):3657-3665.
    [146]TAMACHKIAROW A, FLEMMING H C. On-line monitoring of biofilm formation in a brewery water pipeline system with a fibre optical device [J]. Water Science and Technology,2003,47(5):19-24.
    [147]CHARACKLIS W G, TURAKHIA M H. Transport and interfacial transfer phenomena [M]. New York:John Wiley & Sons,1990.
    [148]KUTNIK J, TIEN H T. Apparatus and techniques for measurement of electrical-properties of bilayer lipid-membranes (Blm) [J]. Journal of Electrophysiological Techniques,1987,14(4):211-221.
    [149]ANGELL P, ARRAGE A A, MITTELMAN M W, et al. On line, nondestructive biomass determination of bacterial biofilms by fluorometry [J]. Journal of Microbiological Methods,1993,18(4):317-327.
    [150]SAXENA I, FILES D, RAO S, et al. Autofluorescence-based bacteria detection using an optical fiber [J]. Optical Diagnostics of Living Cells V,2002,4622: 106-111.
    [151]NIVENS D E, PALMER R J, WHITE D C. Continuous nondestructive monitoring of microbial biofilms- a review of analytical techniques [J]. Journal of Industrial Microbiology,1995,15(4):263-276.
    [152]WOLF G, ALMEIDA J S, CRESPO J G, et al. Monitoring of biofilm reactors using natural fluorescence fingerprints [J]. Water Science and Technology,2003, 47(5):161-167.
    [153]AS H V, LENS P. Use of H-1 NMR to study transport processes in porous biosystems [J]. Journal of Industrial Microbiology & Biotechnology,2001, 26(1-2):43-52.
    [154]MOLLICA A, CRISTIANI P. On-line biofilm monitoring by "BIOX" electrochemical probe [J]. Water Science and Technology,2003,47(5):45-49.
    [155]GREGORY K B, LOVLEY D R. Remediation and recovery of uranium from contaminated subsurface environments with electrodes [J]. Environmental Science & Technology,2005,39(22):8943-8947.
    [156]GOEL R K, FLORA J R V. Sequential nitrification and denitrification in a divided cell attached growth bioelectrochemical reactor [J]. Environmental Engineering Science,2005,22(4):440-449.
    [157]GANESH R, ROBINSON K G, CHU L L, et al. Reductive precipitation of uranium by Desulfovibrio desulfuricans:Evaluation of cocontaminant effects and selective removal [J]. Water Research,1999,33(16):3447-3458.
    [158]BALCH W E, FOX G E, MAGRUM L J, et al. Methanogens-re-evaluation of a unique biological group [J]. Microbiological Reviews,1979,43(2):260-296.
    [159]ZEIKUS J G. The Biology of methanogenic bacteria [J]. Bacteriological Reviews,1977,41(2):514-541.
    [160]WALKER G M, WEATHERLEY L R. Biodegradation and biosorption of acid anthraquinone dye [J]. Environmental Pollution,2000,108(2):219-223.
    [161]KALYANI D C, PATIL P S, JADHAV J P, et al. Biodegradation of reactive textile dye Red BLI by an isolated bacterium Pseudomonas sp SUK1 [J]. Bioresource Technology,2008,99(11):4635-4641.
    [162]WU T N. Electrochemical removal of pentachlorophenol in a lab-scale platinum electrolyzer [J]. Water Science and Technology,2010,62(10):2313-2320.
    [163]BECHTOLD T, BURTSCHER E, TURCANU A. Cathodic decolourisation of textile waste water containing reactive dyes using a multi-cathode electrolyser [J]. Journal of Chemical Technology and Biotechnology,2001,76(3):303-311.
    [164]BARD A J, FAULKNER L R. Electrochemical methods:fundamentals and applications [M].2nd ed. New York:John Wiley & Sons,2001.
    [165]MUN C H, HE J Z, NG W J. Pentachlorophenol dechlorination by an acidogenic sludge [J]. Water Research,2008,42(14):3789-3798.
    [166]CHEN G W, CHOI S J, LEE T H, et al. Application of biocathode in microbial fuel cells:cell performance and microbial community [J]. Applied Microbiology and Biotechnology,2008,79(3):379-388.
    [167]CROESE E, PEREIRA M A, EUVERINK G J W, et al. Analysis of the microbial community of the biocathode of a hydrogen-producing microbial electrolysis cell [J]. Applied Microbiology and Biotechnology,2011,92(5): 1083-1093.
    [168]XIA X, SUN Y M, LIANG P, et al. Long-term effect of set potential on biocathodes in microbial fuel cells:Electrochemical and phylogenetic characterization [J]. Bioresource Technology,2012,120:26-33.
    [169]ZHANG G D, ZHAO Q L, JIAO Y, et al. Efficient electricity generation from sewage sludge using biocathode microbial fuel cell [J]. Water Research,2012, 46(1):43-52.
    [170]BUTLER C S, CLAUWAERT P, GREEN S J, et al. Bioelectrochemical perchlorate reduction in a microbial fuel cell [J]. Environmental Science & Technology,2010,44(12):4685-4691.
    [171]MAPELLIF, MARASCO R, RIZZI A, et al. Bacterial communities involved in soil formation and plant establishment triggered by pyrite bioweathering on arctic moraines [J]. Microbial Ecology,2011,61(2):438-447.
    [172]PANTKE C, OBST M, BENZERARA K, et al. Green rust formation during Fe(II) oxidation by the nitrate-reducing Acidovorax sp strain BoFeN1 [J]. Environmental Science & Technology,2012,46(3):1439-1446.
    [173]GU A Z, HEDLUND B P, STALEY J T, et al. Analysis and comparison of the microbial community structures of two enrichment cultures capable of reductively dechlorinating TCE and cis-DCE [J]. Environmental Microbiology, 2004,6(1):45-54.
    [174]NARIHIRO T, KAIYA S, FUTAMATA H, et al. Removal of polychlorinated dioxins by semi-aerobic fed-batch composting with biostimulation of "Dehalococcoides" [J]. J Biosci Bioeng,2010,109(3):249-256.
    [175]YOSHIDA N, YOSHIDA Y, HANDA Y, et al. Polyphasic characterization of a PCP-to-phenol dechlorinating microbial community enriched from paddy soil [J]. Science of the Total Environment,2007,381(1-3):233-242.
    [176]MCLEOD E S, MACDONALD R, BROZEL V S. Distribution of Shewanella putrefaciens and Desulfovibrio vulgaris in sulphidogenic biofilms of industrial cooling water systems determined by fluorescent in situ hybridisation [J]. Water Sa,2002,28(2):123-128.
    [177]ROBERTS W S, LONSDALE D J, GRIFFITHS J, et al. Advances in the application of scanning electrochemical microscopy to bioanalytical systems [J]. Biosensors & Bioelectronics,2007,23(3):301-318.
    [178]CHEN G H, HUANG J C. Determination of diffusion layer thickness on a biofilm [J]. Journal of Environmental Science and Health Part a-Environmental Science and Engineering & Toxic and Hazardous Substance Control,1996, 31(2):367-386.
    [179]CARMONA-MARTINEZ A A, HARNISCH F, KUHLICKE U, et al. Electron transfer and biofilm formation of Shewanella putrefaciens as function of anode potential [J]. Bioelectrochemistry,2013,93:23-29.
    [180]MCLEAN J S, ONA O N, MAJORS P D. Correlated biofilm imaging, transport and metabolism measurements via combined nuclear magnetic resonance and confocal microscopy [J]. Isme Journal,2008,2(2):121-131.
    [181]TORRENTO C, URMENETA J, EDWARDS K J, et al. Characterization of attachment and growth of thiobacillus denitrificans on pyrite surfaces [J]. Geomicrobiology Journal,2012,29(4):379-388.
    [182]BOGACHEV A V, BERTSOVA Y V, BLOCH D A, et al. Urocanate reductase: identification of a novel anaerobic respiratory pathway in Shewanella oneidensis MR-1 [J]. Molecular Microbiology,2012,86(6):1452-1463.
    [183]ROY J N, LUCKARIFT H R, LAU C, et al. A study of the flavin response by Shewanella cultures in carbon-limited environments [J]. Rsc Advances,2012, 2(26):10020-10027.
    [184]LIU Y, CAPDEVILLE B. Dynamics of nitrifying biofilm growth in biological nitrogen removal process [J]. Water Science and Technology,1994,29(7):377-380.
    [185]YU L, CAPDEVILLE B. Kinetic behaviors of nitrifying biofilm growth in waste-water nitrification process [J]. Environmental Technology,1994,15(11): 1001-1013.
    [186]ROLS J L, MAURET M, RAHMANI H, et al. Population-dynamics and nitrite-buildup in activated-sludge and biofilm processes for nitrogen removal [J]. Water Science and Technology,1994,29(7):43-51.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700