用户名: 密码: 验证码:
TiO_2纳米材料的制备、改性及其光催化性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来随着纺织工业的发展和个人护理用品、杀虫剂、表面活性剂、药物等的滥用,大量的废水被排放到河流中,对人类的生存造成了严重的威胁。通常废水的处理方法包括物理处理法、化学处理法、物理化学处理法和生物处理法。半导体光催化技术处理废水是近年来兴起的新的废水处理方法,其基本原理是用半导体作光催化材料,当用具有一定能量的光线照射时,光敏半导体材料被光激发出电子-空穴对,而吸附在半导体表面的水以及污染物的分子接受光生电子-空穴对,从而发生一系列的氧化还原反应,使有毒、有色的污染物降解为无毒或者毒性较小的物质的一种处理方法。在众多的催化剂中,TiO2因其化学稳定性高、耐光腐蚀、氧化能力强、光催化反应驱动力大、光催化活性高,可使一些吸热的化学反应在被光辐射的TiO2表面得到实现和加速,加之无毒、成本低,所以TiO2的光催化研究最为活跃。但TiO2较大的禁带宽度和较高电子空穴复合几率限制了其的光催化效率。要克服这些缺点需要对TiO2纳米材料进行改性。围绕该方向,我们的主要开展了以下工作:
     (1)采用阳极氧化法在水和丙三醇的混合电解液中制备出了排列有序的TiO2纳米管阵列,考察了不同的制备参数(电解液组成、阳极氧化时间和阳极氧化电压)对TiO2纳米管阵列形貌的影响。对于制备过程中形成的竹节状TiO2纳米管阵列,通过考察不同制备参数对竹节形貌的影响,提出了竹节状TiO2纳米管阵列的形成机理。对于在不同的阳极氧化时间和阳极氧化电压下制备出的不同管长和管径的TiO2纳米管阵列,通过光催化降解茜素红的实验考察了不同形貌TiO2纳米管阵列的光催化性能,并通过不同的热处理条件,考察了不同晶型TiO2纳米管阵列的光催化性能。
     (2)利用电化学沉积法制备出了Zr掺杂TiO2纳米管阵列。通过考察不同沉积电压和电解液浓度找出最优的沉积条件;通过UV-Vis漫反射光谱考察了Zr掺杂TiO2纳米管阵列的光吸收性能;通过在紫外光下光催化降解茜素红溶液考察了Zr掺杂TiO2纳米管阵列的光催化性能。
     (3)对TiO2纳米管阵列进行半导体复合,通过热处理法和连续化学沉积法制备出TiO2/ZnO/CdS纳米复合材料。通过考察不同沉积次数找出最优的复合层数;通过UV-Vis漫反射光谱考察了纳米复合材料的光吸收性能;通过在紫外光下光催化降解茜素红溶液考察了纳米复合材料的光催化性能。
     (4)通过两相水热合成法制备出直径在5nm左右、具有荧光性能的TiO2纳米颗粒。在此基础上,在C纳米颗粒的溶液中制备出碳杂化的TiO2纳米颗粒。通过UV-Vis吸收光谱考察了C-TiO2纳米颗粒的光吸收性能;通过荧光光谱考察了C-TiO2纳米颗粒的光致发光性能;通过X-射线光电子能谱考察了C-TiO2纳米颗粒的表面元素种类、化学状态和电荷分布;通过在紫外光下光催化降解亚甲基蓝溶液考察了C-TiO2纳米颗粒的光催化性能。C-TiO2的X-射线光电子能谱和荧光光谱表明,与TiO2纳米颗粒相比,碳与TiO2之间有电子相互作用,这一特性导致了C-TiO2纳米复合材料在光催化降解亚甲基蓝的过程中催化活性的显著提高。
     (5)将两种带不同配体的Ru纳米颗粒通过两相水热合成法与TiO2纳米颗粒反应,得到Ru-TiO2纳米颗粒。通过UV-Vis吸收光谱考察了Ru-TiO2纳米颗粒的光吸收性能;通过X-射线光电子能谱考察了Ru-TiO2纳米颗粒的表面元素种类、化学状态和电荷分布;通过在紫外光下光催化降解亚甲基蓝溶液考察了Ru-TiO2纳米颗粒的光催化性能。
     (6)将前面制备的TiO2纳米颗粒与HAuCl4进行水热合成反应,然后用抗坏血酸还原,得到Au-TiO2纳米复合材料。通过调节HAuCl4的量得到不同Au负载量的Au-TiO2纳米复合材料;通过X射线光电子能谱计算得到每个样品的Au含量;通过循环伏安法对Au-TiO2纳米复合材料在氧还原反应中的电催化活性进行了测试;通过在紫外光下光催化降解亚甲基蓝溶液考察了Au-TiO2纳米复合材料的光催化性能。
     (7)通过水热法制备出TiO2纳米薄片。将得到的纳米薄片用NaOH溶液进行清洗,通过清洗前后TiO2纳米薄片在紫外光下对甲基橙溶液、亚甲基蓝溶液、罗丹明溶液和甲基紫溶液的光催化降解情况,比较了表面含F与无F的TiO2纳米薄片对不同染料的光催化活性。
To date, with the development of textile industry and the abuse of personal careproducts, pesticide, surface active agent and drugs, a large amount of wastewater hasbeen discharged into rivers, causing serious threat to human survival. The common usedmethods for wastewater treatment includs physical process, chemical treatment, physicaland chemical treatment and biological treatment. Semiconductor photocatalytictechnology is an emerging approach for wastewater treatmen in recent years. The basicprinciple is to use semiconductor photocatalytic materials, combined with certain energyof light, electron-hole pairs were inspired, and the water and pollutant moleculesadsorbed on the surface of semiconductor accept the electronic-hole pair inspired by thelight, causing a serious of oxidation-reduction reaction, degrading the toxic and coloredpollutants into non-toxic or low toxicity products. Among various catalysts, TiO2photocatalyst is the most active studied due to its high chemical stability, resistance tocorrosion, strong oxidation, light catalytic reaction driving force, high photocatalyticactivity, non-toxic and low cost, which can realize and accelerate the endothermicchemical reaction on the surface of TiO2under irradiation. Unfortunately, the largebandgap and high electron hole recombination limit the photocatalytic efficiency. Toovercome these shortcomings, the modification of TiO2nanomaterials is of greatimportant. Surrounding the direction, our mainly works are listed below:
     (1) Well-ordered TiO2nanotubes array was prepared by anodic oxidation method inthe mixture electrolyte of water and glycerol. The influence of synthesis parameters (suchas electrolyte composition, anodic oxidation time and voltage etc.) on the morphology ofTiO2nanotubes array was discussed. For the bamboo-type TiO2nanotubes array appearedin the experiment, we investigated the influence of synthesis parameters and proposed thepossible formation mechanism of bamboo-like TiO2nanotubes array. For the TiO2nanotubes array prepared under different anodic oxidation time and voltage with differentnanotube length and diameter, we investigated the photocatalytic performance of TiO2nanotubes array with different morphology by photocatalytic degradation of alizarin red. Besides, the influence of different crystal type on the photocatalytic performance of TiO2nanotubes array was also investigated by photocatalytic degradation of alizarin red.
     (2) Zr doped TiO2nanotubes array were prepared by electrochemical depositionmethod. The optimal deposition conditions were found out by investigating differentdeposition voltage and electrolyte concentration; the optical absorption property of Zrdoping TiO2nanotubes array was investigated by UV-vis diffuse reflectance spectrum;the photocatalytic performance was investigated by photocatalytic degradation of alizarinred under UV light irradiation.
     (3) TiO2/ZnO/CdS nanocomposite was prepared by heat treatment method andsuccession chemical deposition method. The optimal deposition layer was found out byinvestigating different deposition times; the optical absorption property was investigatedby UV-vis diffuse reflectance spectrum; the photocatalytic performance was investigatedby photocatalytic degradation of alizarin red under UV light irradiation.
     (4) TiO2nanoparticles with the diameter of5nm and also fluorescence propertywere prepared by two phase hydrothermal synthesis method. On this basis, carbonhybridization TiO2nanoparticles were prepared in carbon nanoparticle solution. The XPSand PL tests indicated that there are electrons interactions exist between C and TiO2in C-TiO2nanomaterial, causing the great improvement in photocatalytic activity.
     (5) Ru-TiO2nanoparticles were prepared with the reaction of Ru nanoparticles andTiO2nanoparticles by two phase hydrothermal synthesis method. The optical absorptionproperty of Ru-TiO2nanoparticles were investigated by UV-vis diffuse reflectancespectrum; the photocatalytic performance was investigated by photocatalytic degradationof methylene blue under UV light irradiation.
     (6) Au-TiO2nanocomposite was prepared by reacting TiO2nanoparticles withHAuCl4through hydrothermal synthesis method following by reduction with ascorbicacid. The loading amount of Au was adjusted by changing the amount of HAuCl4and theamount of Au loading was calculated by x-ray photoelectron spectroscopy; the electro-catalytic property during the oxygen reduction reaction was tested by cyclic voltammetrymethod; the photocatalytic performance was investigated by photocatalytic degradationof methylene blue under UV light irradiation.
     (7) TiO2nanosheets were prepared by hydrothermal method. The TiO2nanosheetswere washed with NaOH solution. The photocatalytic performance of TiO2nanosheetsbefore and after washed with NaOH solution was investigated by photocatalyticdegradation of methyl orange, methylene blue, rhodamine and methyl violet under UVlight irradiation. The photocatalytic activity of F on the TiO2nanosheets surface todifferent dyes was studied.
引文
1. Yu, Z.; Chuang, S. S. C., The effect of Pt on the photocatalytic degradationpathway of methylene blue over TiO2under ambient conditions. Applied Catalysis B:Environmental2008,83(3-4),277-285.
    2. Mart?nez-Huitle, C. A.; Ferro, S., Electrochemical oxidation of organic pollutantsfor the wastewater treatment: direct and indirect processes. Chemical Society Reviews2006,35(12),1324.
    3. Kato, S.; Masuo, F., Titanium dioxide-photocatalyzed oxidation. I. Titaniumdioxide-photocatalyzed liquid phase oxidation of tetralin. Kogyo Kagaku Zasshi1964,67,42–50.
    4. MCLINTOCK, I. S.; ITCHIE, M., Reactions on Titanium Dioxide; Photo-adsorption and Oxidation of Ethylene and Propylene. Trans Faraday Soc1965,61,1007–1016.
    5. Fujishima, A.; Honda, K., Electrochemical Photolysis of Water at a SmiconductorElectrode. Nature1972,238,37-38.
    6. N, F. S.; J., B. A., Heterogeneous photocatalytic oxidation of cyanide ion inaqueous solutions at titanium dioxide powder. J Am Chem Soc1977,99,303–304.
    7. Schrauzer, G. N.; Guth, T. D., Photolysis of Water and Photoreduction ofNitrogen on Titanium Dioxide. Journal of the American Chemical Society1977,99,7189-7193.
    8. Matsunaga, T.; Tomoda, R.; Nakajima, T.; Wake, H., Photoelectrochemicalsterilization of microbial cells by semiconductor powders. FEMS Microbiol Lett1985,29,211-214.
    9.A, F.; J, O.; T, Y., Behavior of tumor cells on photoexcited semiconductor surface.Photomed Photobiol1986,8,45–46.
    10. O'Regan, B.; Gratzel, M., A low-cost,high-efficiency solar cell based ondye-sensitized colloidal TiO2films. Nature1991,353,737-740.
    11. Fujishima, A.; Rao, T. N.; Tryk, D. A., Titanium dioxide photocatalysis.Journal of Photochemistry and Photobiology C: Photochemistry Reviews2000,1,1–21.
    12. Wang, R.; Hashimoto, K.; Fujishima, A.; Chikuni, M.; Kojima, E.;Kitamura, A.; Shimohigoshi, M.; Watanabe, T., Light-induced amphiphilic surfaces.NATURE1997,388,431-432.
    13. Watson, S.; Beydoun, D.; Amal, R., Synthesis of a novel magneticphotocatalyst by direct deposition of nanosized TiO2crystals onto a magnetic core.Journal of Photochemistry and Photobiology A: Chemistry2002,148,303–313.
    14. Sonawane, R. S.; Kale, B. B.; Dongare, M. K., Preparation and photo-catalytic activity of Fe TiO2thin films prepared by sol–gel dip coating. MaterialsChemistry and Physics2004,85(1),52-57.
    15. Diamandescu, L.; Vasiliu, F.; Tarabasanu-Mihaila, D.; Feder, M.; Vlaicu,A. M.; Teodorescu, C. M.; Macovei, D.; Enculescu, I.; Parvulescu, V.; Vasile, E.,Structural and photocatalytic properties of iron-and europium-doped TiO2nanoparticlesobtained under hydrothermal conditions. Materials Chemistry and Physics2008,112(1),146-153.
    16. Lai, T.-Y.; Lee, W.-C., Killing of cancer cell line by photoexcitation offolic acid-modified titanium dioxide nanoparticles. Journal of Photochemistry andPhotobiology A: Chemistry2009,204(2-3),148-153.
    17. Mizukoshi, Y.; Ohtsu, N.; Semboshi, S.; Masahashi, N., Visible lightresponses of sulfur-doped rutile titanium dioxide photocatalysts fabricated by anodicoxidation. Applied Catalysis B: Environmental2009,91(1-2),152-156.
    18. Wang, C.; Ao, Y.; Wang, P.; Hou, J.; Qian, J., A facile method for thepreparation of titania-coated magnetic porous silica and its photocatalytic activity underUV or visible light. Colloids and Surfaces A: Physicochemical and Engineering Aspects2010,360(1-3),184-189.
    19. Leary, R.; Westwood, A., Carbonaceous nanomaterials for theenhancement of TiO2photocatalysis. Carbon2011,49(3),741-772.
    20.(a) Hernández-Alonso, M. D.; Fresno, F.; Suárez, S.; Coronado, J. M.,Development of alternative photocatalysts to TiO2: Challenges and opportunities. Energy&Environmental Science2009,2(12),1231;(b) Carp, O.; Huisman, C. L.; Reller, A.,Photoinduced reactivity of titanium dioxide. Progress in Solid State Chemistry2004,32(1-2),33-177.
    21. Gupta, S. M.; Tripathi, M., A review of TiO2nanoparticles. ChineseScience Bulletin2011,56(16),1639-1657.
    22. Hu, T.; Wu, J.; He, Q.; Yan, Q., Application of TiO2nanoparticlesphotocatalyst to wastewater treatment. Water resources protection2007,23,77-81.
    23. Tang, Y.; Hu, C.; Wang, Y., Recen t Advances in M echan ism s andKinet ics of TiO2Photocatalysis. PROGRESS IN CHEMISTRY2002,14,192-199.
    24. Xiao, N.; Li, Z.; Liu, J.; a, Y. G., Effects of calcination temperature on themorphology, structure and photocatalytic activity of titanate nanotube thin films. ThinSolid Films2010,519,541-548.
    25. Wang, X.; S, L.; Su, R.; Wendt, S.; Hald, P.; Mamakhel, A.; Yang, C.;Huang, Y.; Iversen, B. B.; Besenbacher, F., The influence of crystallite size andcrystallinity of anatase nanoparticles on the photo-degradation of phenol. Journal ofCatalysis2014,310,100-108.
    26. Zhao, Y.; Jia, Y.; Li, Y.; Hao, W.; Qian, j., Influence of pH on TiO2photocatalytic degradation of rhodamine B. University Chemistry2011,26,54-56.
    27. Cui, Q.; Feng, B.; Chen, W.; Wang, J.-X.; Lu, X.; Weng, J., Effects ofMorphology of Anatase TiO2 Nanotube Films on Photo-catalyticActivity. Journal of Inorganic Materials2010,25(9),916-920.
    28. Teh, C. M.; Mohamed, A. R., Roles of titanium dioxide and ion-dopedtitanium dioxide on photocatalytic degradation of organic pollutants (phenoliccompounds and dyes) in aqueous solutions: A review. Journal of Alloys and Compounds2011,509(5),1648-1660.
    29. Shi, J.-w.; Zheng, J.-t.; Wu, P., Preparation, characterization andphotocatalytic activities of holmium-doped titanium dioxide nanoparticles. Journal ofHazardous Materials2009,161(1),416-422.
    30. Smith, Y. R.; Kar, A.;(Ravi), V.; Subramanian, Investigation ofPhysicochemical Parameters That Influence Photocatalytic Degradation of MethylOrange over TiO2Nanotubes. Ind. Eng. Chem. Res.2009,48,10268–10276.
    31. Kumar, S. G.; Devi, L. G., Review on Modified TiO2Photocatalysis underUV/Visible Light: Selected Results and Related Mechanisms on Interfacial ChargeCarrier Transfer Dynamics. The Journal of Physical Chemistry A2011,115(46),13211-13241.
    32.(a) Zhao, L.; Jiang, Q.; Lian, J., Visible-light photocatalytic activity ofnitrogen-doped TiO2thin film prepared by pulsed laser deposition. Applied SurfaceScience2008,254(15),4620-4625;(b) Zhao, H.; Chen, Y.; Quan, X.; Ruan, X.,Preparation of Zn-doped TiO2nanotubes electrode and its application inpentachlorophenol photoelectrocatalytic degradation. Chinese Science Bulletin2007,52(11),1456-1461;(c) Xu, J.; Ao, Y.; Fu, D., A novel Ce, C-codoped TiO2nanoparticlesand its photocatalytic activity under visible light. Applied Surface Science2009,256(3),884-888;(d) Huo, Y.; Yang, X.; Zhu, J.; Li, H., Highly active and stable CdS–TiO2visible photocatalyst prepared by in situ sulfurization under supercritical conditions.Applied Catalysis B: Environmental2011;(e) Wen, P.; Tao, Z.; Ishikawa, Y.; Itoh, H.;Feng, Q., Dye-sensitized solar cells based on anatase TiO[sub2] nanocrystals exposing aspecific lattice plane on the surface. Applied Physics Letters2010,97(13),131906.
    33. Yal n, Y.; K l, M.; nar, Z., Fe+3-doped TiO2: A combinedexperimental and computational approach to the evaluation of visible light activity.Applied Catalysis B: Environmental2010,99(3-4),469-477.
    34.(a) Robert, D., Photosensitization of TiO2by MxOy and MxSynanoparticles for heterogeneous photocatalysis applications. Catalysis Today2007,122(1-2),20-26;(b) Zhang, H.; Chen, G.; Bahnemann, D. W., Photoelectrocatalytic materialsfor environmental applications. Journal of Materials Chemistry2009,19(29),5089.
    35.(a) Dunnill, C. W.; Kafizas, A.; Parkin, I. P., CVD Production of DopedTitanium Dioxide Thin Films. Chemical Vapor Deposition2012,18(4-6),89-101;(b)Gracia, F.; Holgado, J. P.; Gonza′lez-Elipe, A. n. R., Photoefficiency and Optical,Microstructural, and Structural Properties of TiO2Thin Films Used as Photoanodes.Langmuir2004,20,1688-1697.
    36.(a) tengl, V.; Bakardjieva, S.; Murafa, N., Preparation and photocatalyticactivity of rare earth doped TiO2nanoparticles. Materials Chemistry and Physics2009,114(1),217-226;(b) El-Bahy, Z. M.; Ismail, A. A.; Mohamed, R. M., Enhancement oftitania by doping rare earth for photodegradation of organic dye (Direct Blue). Journal ofHazardous Materials2009,166(1),138-143.
    37. Fan, C.; Xue, P.; Sun, Y., Preparation of Nano-TiO2Doped with Ceriumand Its Photocatalytic Activity. Journal of Rare Earths2006,24(3),309-313.
    38. Ambrus, Z.; Balázs, N.; Alapi, T.; Wittmann, G.; Sipos, P.; Dombi, A.;Mogyorósi, K., Synthesis, structure and photocatalytic properties of Fe(III)-doped TiO2prepared from TiCl3. Applied Catalysis B: Environmental2008,81(1-2),27-37.
    39. Subramanian, M.; Vijayalakshmi, S.; Venkataraj, S.; Jayavel, R., Effect ofcobalt doping on the structural and optical properties of TiO2films prepared by sol–gelprocess. Thin Solid Films2008,516(12),3776-3782.
    40. Martínez T, L. M.; Montes de Correa, C.; Odriozola, J. A.; Centeno, M. A.,Synthesis and characterization of xerogel titania modified with Pd and Ni. Journal ofMolecular Catalysis A: Chemical2006,253(1-2),252-260.
    41. Mohamed, M. M.; Othman, I.; Mohamed, R. M., Synthesis andcharacterization of MnOx/TiO2nanoparticles for photocatalytic oxidation of indigocarmine dye. Journal of Photochemistry and Photobiology A: Chemistry2007,191(2-3),153-161.
    42. Peng, Y.-H.; Huang, G.-F.; Huang, W.-Q., Visible-light absorption andphotocatalytic activity of Cr-doped TiO2nanocrystal films. Advanced PowderTechnology2012,23(1),8-12.
    43. Tsuyumoto, I.; Nawa, K., Thermochromism of vanadium–titanium oxideprepared from peroxovanadate and peroxotitanate. Journal of Materials Science2007,43(3),985-988.
    44. Li, G.; Dimitrijevic, N. M.; Chen, L.; Rajh, T.; Gray, K. A., Role ofSurface/Interfacial Cu2+Sites in the Photocatalytic Activity of Coupled CuO-TiO2Nanocomposites. J. Phys. Chem. C2008,112,19040–19044.
    45. Zhao, Y.; Li, C.; Liu, X.; Gu, F.; Du, H. L.; Shi, L., Zn-doped TiO2nanoparticles with high photocatalytic activity synthesized by hydrogen–oxygendiffusion flame. Applied Catalysis B: Environmental2008,79(3),208-215.
    46.(a) Venkatachalam, N.; Palanichamy, M.; Arabindoo, B.; Murugesan, V.,Enhanced photocatalytic degradation of4-chlorophenol by Zr4+doped nano TiO2.Journal of Molecular Catalysis A: Chemical2007,266(1-2),158-165;(b) Lippens, P. E.;Chadwick, A. V.; Weibel, A.; Bouchet, R.; Knauth§, P., Structure and Chemical Bondingin Zr-Doped Anatase TiO2Nanocrystals. J. Phys. Chem. C2008,112,43-47.
    47.(a) Zhang, Y.; Xiong, X.; Han, Y.; Zhang, X.; Shen, F.; Deng, S.; Xiao, H.;Yang, X.; Yang, G.; Peng, H., Photoelectrocatalytic degradation of recalcitrant organicpollutants using TiO2film electrodes: An overview. Chemosphere2012,88(2),145-154;(b) Zhang, D.; Zeng, F., Photocatalytic oxidation of organic dyes with visible-light-drivencodoped TiO2photocatalysts. Russian Journal of Physical Chemistry A2011,85(6),1077-1083;(c) Hsieh, C.-T.; Fan, W.-S.; Chen, W.-Y.; Lin, J.-Y., Adsorption and visible-light-derived photocatalytic kinetics of organic dye on Co-doped titania nanotubesprepared by hydrothermal synthesis. Separation and Purification Technology2009,67(3),312-318.
    48.(a) Kment, S.; Kmentova, H.; Kluson, P.; Krysa, J.; Hubicka, Z.; Cirkva,V.; Gregora, I.; Solcova, O.; Jastrabik, L., Notes on the photo-induced characteristics oftransition metal-doped and undoped titanium dioxide thin films. Journal of Colloid andInterface Science2010,348(1),198-205;(b) Paola, A. D.; Garc′a-López, E.; Ikeda, S.;Marc`, G.; Ohtani, B.; Palmisano, L., Photocatalytic degradation of organic compoundsin aqueous systems by transition metal doped polycrystalline TiO2. Catalysis Today2002,74,87-93.
    49.(a) Asahi, R., Visible-Light Photocatalysis in Nitrogen-Doped TitaniumOxides. Science2001,293(5528),269-271;(b) Diwald, O.; Thompson, T. L.; Goralski,E. G.; Walck, S. D.; John T. Yates, J., The Effect of Nitrogen Ion Implantation on thePhotoactivity of TiO2Rutile Single Crystals. J. Phys. Chem. B2004,108,52-57;(c) Ao,Y.; Xu, J.; Zhang, S.; Fu, D., A one-pot method to prepare N-doped titania hollowspheres with high photocatalytic activity under visible light. Applied Surface Science2010,256(9),2754-2758;(d) Dong, L.; Cao, G.-x.; Ma, Y.; Jia, X.-l.; Ye, G.-t.; Guan,S.-k., Enhanced photocatalytic degradation properties of nitrogen-doped titania nanotubearrays. Transactions of Nonferrous Metals Society of China2009,19(6),1583-1587;(e)Yu, J. C.; Yu, J.; Ho, W.; Jiang, Z.; Zhang, L., Effects of F-Doping on the PhotocatalyticActivity and Microstructures of Nanocrystalline TiO2Powders. Chem. Mater.2002,14,3808-3816;(f) Sakthivel, S.; Kisch, H., Daylight Photocatalysis by Carbon-ModifiedTitanium Dioxide. Angewandte Chemie International Edition2003,42(40),4908-4911.
    50. Tan, Y. N.; Wong, C. L.; Mohamed, A. R., An Overview on thePhotocatalytic Activity of Nano-Doped-TiO𝟐 in the Degradation of OrganicPollutants. ISRN Materials Science2011,2011,1-18.
    51. Ren, W.; Ai, Z.; Jia, F.; Zhang, L.; Fan, X.; Zou, Z., Low temperaturepreparation and visible light photocatalytic activity of mesoporous carbon-dopedcrystalline TiO2. Applied Catalysis B: Environmental2007,69(3-4),138-144.
    52.(a) Wang, H.; Lewis, J. P., Effects of dopant states on photoactivity incarbon-doped TiO2. Journal of Physics: Condensed Matter2005,17(21), L209-L213;(b)Liu, Y.; Liu, J.; Lin, Y.; Zhang, Y.; Wei, Y., Simple fabrication and photocatalyticactivity of S-doped TiO2under low power LED visible light irradiation. CeramicsInternational2009,35(8),3061-3065.
    53.(a) Rehman, S.; Ullah, R.; Butt, A. M.; Gohar, N. D., Strategies of makingTiO2and ZnO visible light active. Journal of Hazardous Materials2009,170(2-3),560-569;(b) Shen, M.; Wu, Z.; Huang, H.; Du, Y.; Zou, Z.; Yang, P., Carbon-doped anataseTiO2obtained from TiC for photocatalysis under visible light irradiation. MaterialsLetters2006,60(5),693-697.
    54. Wong, M.-S.; Hsu, S.-W.; Rao, K. K.; Kumar, C. P., Influence ofcrystallinity and carbon content on visible light photocatalysis of carbon doped titaniathin films. Journal of Molecular Catalysis A: Chemical2008,279(1),20-26.
    55. Asahi, R.; Morikawa, T., Nitrogen complex species and its chemicalnature in TiO2for visible-light sensitized photocatalysis. Chemical Physics2007,339(1-3),57-63.
    56. Park, J. H.; Kim, S.; Bard, A. J., Novel Carbon-Doped TiO2NanotubeArrays with High Aspect Ratios for Efficient Solar Water Splitting. NANO LETTERS2006,6,24-28.
    57. Yang, P.; Lu, C.; Hua, N.; Du, Y., Titanium dioxide nanoparticles co-doped with Fe3+and Eu3+ions for photocatalysis. Materials Letters2002,57,794–801.
    58. Vasiliu, F.; Diamandescu, L.; Macovei, D.; Teodorescu, C. M.;Tarabasanu-Mihaila, D.; Vlaicu, A. M.; Parvulescu, V., Fe-and Eu-doped TiO2Photocatalytical Materials Prepared by High Energy Ball Milling. Top Catal2009,52,544–556.
    59. Song, K.; Zhou, J.; Bao, J.; Feng, Y., Photocatalytic Activity of (Copper,Nitrogen)-Codoped Titanium Dioxide Nanoparticles. Journal of the American CeramicSociety2008,91(4),1369-1371.
    60. Shen, X.-Z.; Liu, Z.-C.; Xie, S.-M.; Guo, J., Degradation of nitrobenzeneusing titania photocatalyst co-doped with nitrogen and cerium under visible lightillumination. Journal of Hazardous Materials2009,162(2-3),1193-1198.
    61. Yang, X.; Ma, F.; Li, K.; Guo, Y.; Hu, J.; Li, W.; Huo, M.; Guo, Y.,Mixed phase titania nanocomposite codoped with metallic silver and vanadium oxide:New efficient photocatalyst for dye degradation. Journal of Hazardous Materials2010,175(1-3),429-438.
    62.(a) Wu, N., Enhanced TiO2photocatalysis by Cu in hydrogen productionfrom aqueous methanol solution. International Journal of Hydrogen Energy2004,29(15),1601-1605;(b) ADACHI, K.; OHTA, K.; MIZUNO, T., PHOTOCATALYTICREDUCTION OF CARBON DIOXIDE TO HYDROCARBON USING COPPER-LOADED TITANIUM DIOXIDE. Solar Energy Materials and Solar Cells1994,53,187-190;(c) Thampi, K. R.; Kiwi, J.; Gratzel, M., Methanation and photo-methanation ofcarbon dioxide at room temperature and atmospheric pressure. Nature1987,327,506-508;(d) Papp, J.; Shen, H.-S.; Kershaw, R.; Dwight, K.; Wold, A., Titanium(IV) OxidePhotocatalysts with Palladium. Chem. Mater.1993,5,284-288;(e) Rupa, A. V.; Divakar,D.; Sivakumar, T., Titania and Noble Metals Deposited Titania Catalysts in thePhotodegradation of Tartazine. Catalysis Letters2009,132(1-2),259-267;(f) WON, W.K.; MALATI, M. A., DOPED TiO2FOR SOLAR ENERGY APPLICATIONS. SolarEnergy Materials and Solar Cells1986,3,163-168.
    63. Turner, M.; Golovko, V. B.; Vaughan, O. P. H.; Abdulkin, P.; Berenguer-Murcia, A.; Tikhov, M. S.; Johnson, B. F. G.; Lambert, R. M., Selective oxidation withdioxygen by gold nanoparticle catalysts derived from55-atom clusters. Nature2008,454(7207),981-983.
    64. Sakthivel, S.; Shankar, M. V.; Palanichamy, M.; Arabindoo, B.;Bahnemann, D. W.; Murugesan, V., Enhancement of photocatalytic activity by metaldeposition: characterisation and photonic efficiency of Pt, Au and Pd deposited on TiO2catalyst. Water Research2004,38(13),3001-3008.
    65. GRABOWSKA, E.; REMITA, H.; ZALESKA, A., PHOTOCATALYTICACTIVITY OF TiO2LOADED WITH METAL CLUSTERS. Physicochem. Probl.Miner. Process.2010,45,29-38.
    66. Kisch, H.; Zang, L.; Lange, C.; F.Maier, W.; Antonius, C.; Meissner, D.,Modified, Amorphous TitaniaDA Hybrid Semiconductor for Detoxification and CurrentGeneration by Visible Light. Angew. Chem. Int. Ed.1998,37,3034-3036.
    67.(a) Seery, M. K.; George, R.; Floris, P.; Pillai, S. C., Silver doped titaniumdioxide nanomaterials for enhanced visible light photocatalysis. Journal ofPhotochemistry and Photobiology A: Chemistry2007,189(2-3),258-263;(b) Tomás, S.A.; Luna-Resendis, A.; Cortés-Cuautli, L. C.; Jacinto, D., Optical and morphologicalcharacterization of photocatalytic TiO2thin films doped with silver. Thin Solid Films2009,518(4),1337-1340;(c) Binitha, N. N.; Yaakob, Z.; Reshmi, M. R.; Sugunan, S.;Ambili, V. K.; Zetty, A. A., Preparation and characterization of nano silver-dopedmesoporous titania photocatalysts for dye degradation. Catalysis Today2009,147, S76-S80.
    68. Ilieva, M.; Nakova, A.; Tsakova, V., TiO2/WO3hybrid structuresproduced through a sacrificial polymer layer technique for pollutant photo-andphotoelectrooxidation under ultraviolet and visible light illumination. Journal of AppliedElectrochemistry2012,42(2),121-129.
    69. Mills, A.; Hunte, S. L., An overview of semiconductor photocatalysis.Journal of Photochemistry and Photobiology A: Chemistry1997,108,1-35.
    70. Ouyang, J.; Chang, M.; Li, X., CdS-sensitized ZnO nanorod arrays coatedwith TiO2layer for visible light photoelectrocatalysis. Journal of Materials Science2012,47(9),4187-4193.
    71.(a) R. Vogel, P. H.; Weller., H., Quantum-Sized PbS, CdS, AgzS, Sb&,and Bi&Particles as Sensitizers for Various Nanoporous Wide-Bandgap Semiconductors.J. Phys. Chem. B1994,98,3183-3188;(b) Gopidas, K. R.; Bohorquez, M.; Kamat, P. V.,Photophysical and Photochemical Aspects of Coupled Semiconductors. Charge-TransferProcesses In Colloidal CdS-TiO, and CdS-Ag I Systems. J. Phys. Chem.1990,94,6435-6440;(c) NAYAK, B. B.; ACHARYA, H. N.; MITRA, G. B.; MATHUR, B. K.,STRUCTURAL CHARACTERIZATION OF Bi2_xSbxS3FILMS PREPARED BYTHE DIP-DRY METHOD. Thin Solid Films1983,105,17-24;(d) Bessekhouad, Y.;Robert, D.; Weber, J. V., Bi2S3/TiO2and CdS/TiO2heterojunctions as an availableconfiguration for photocatalytic degradation of organic pollutant. Journal ofPhotochemistry and Photobiology A: Chemistry2004,163(3),569-580;(e) Song, K. Y.;Park, M. K.; Kwon, Y. T.; Lee, H. W.; Chung, W. J.; Lee, W. I., Preparation ofTransparent Particulate MoO3/TiO2and WO3/TiO2Films and Their PhotocatalyticProperties. Chem. Mater.2001,13,2349-2355;(f) Grandcolas, M.; Karkmaz-Le Du, M.;Bosc, F.; Louvet, A.; Keller, N.; Keller, V., Porogen Template Assisted TiO2RutileCoupled Nanomaterials for Improved Visible and Solar Light Photocatalytic Applications.Catalysis Letters2008,123(1-2),65-71;(g) Wang, C.; Shao, C.; Zhang, X.; Liu, Y.,SnO2Nanostructures-TiO2Nanofibers Heterostructures: Controlled Fabrication and HighPhotocatalytic Properties. Inorganic Chemistry2009,48(15),7261-7268;(h) Vinodgopal,K.; Bedja, I.; Kamat, P. V., Nanostructured Semiconductor Films for Photocatalysis.Photoelectrochemical Behavior of SnO2/TiO2Composite Systems and Its Role inPhotocatalytic Degradation of a Textile Azo Dye. Chem. Mater.1996,8,2180-2187.
    72. Xiangzhong, L.; Wei, Z.; Jincai, Z., Visible light-sensitized semiconductorphotocatalyticdegradation of2,4-dichlorophenol. SCIENCE IN CHINA2002,45,421-425.
    73. Shang, J.; Zhao, F.; Zhu, T.; Li, J., Photocatalytic degradation ofrhodamine B by dye-sensitized TiO2under visible-light irradiation. Science ChinaChemistry2011,54(1),167-172.
    74. Zwilling, V.; Darque-Ceretti, E.; Boutry-Forveille, A.; David, D.; Perrin,M. Y.; Aucouturier, M., Structure and Physicochemistry of Anodic Oxide Films onTitanium and TA6V Alloy. Surf. Interface Anal.1999,27,629-637
    75. Gong, D.; Grimes, C. A.; Varghese, O. K., Titanium oxide nanotubearrays prepared by anodic oxidation. J. Mater. Res.2001,16,3331-3334.
    76.(a) Guan, D.; Fang, H.; Lu, H.; Sun, T.; Li, F.; liu, M., Preparation andDoping of Anodic TiO2Nanotube Array. PROGRESS IN CHEMISTRY2008,20,1868-1879;(b) Lei, J.; Li, W., Research progresses of TiO2nanotube arrays fabricated byanodic oxidation on titanium substrate. power source technology2008,32,875-879;(c)Zheng, Q.; Zhou, B.; Bai, J.; Cai, W.; Liao, J., Titanium Oxide Nanotube Arrays andTheir Applications. PROGRESS IN CHEMISTRY2007,19,117-122.
    77. Qing, Z.; Baoxue, Z.; Jing, B.; Weimin, C.; Junsheng, L., Titanium OxideNanotube Arrays and Their Applications. PROGRESS IN CHEMISTRY2007,19,117-122.
    78. Sun, L.; Zhang, S.; Sun, X. W.; He, X., Effect of electric field strength onthe length of anodized titania nanotube arrays. Journal of Electroanalytical Chemistry2009,637(1-2),6-12.
    79. Wang, D.; Liu, Y.; Wang, C.; Zhou, F., TiO2Nanotube Arrays Fabricatedby Anodization. PROGRESS IN CHEMISTRY2010,22.
    80. Bao, Y.; Yang, Y.-Q.; Ma, J.-Z., Research Progress of Hollow StructuralMaterials Prepared via Templating Method. Journal of Inorganic Materials2013,28(5),459-468.
    81. He, J.; Peng, X.; Lu, H.; Zhao, J.; Shen, W., Synthesis of RutileNanoparticles by Microemulsion Method at Low Temperatuer. Chinese Journal ofInorganic Chemistry2008,24,191-194.
    82. Hu, Y.; Sun, S.; Xi, Z.; Meng, Y.; Duan, C., Preparation of TiO2ThinFilms by Liquid Phase Deposition and Their Bactericidal Capability. CHEMICALINDUSTRY AND ENGINEERING2006,23,138-141.
    83. Sun, Z.; Li, Y., Surface Structural Morphology of TiO2Nano-Films. ActaPhys.-Chim. Sin.2002,18,896-900.
    84. Xin, Y.; Ma, D.; Zhao, L., Preparation and Photocatalytic Performance ofTiO2/Ti Photoelectrodes by     85. Chen, S.; Qin, M.; Yang, L.; Ju, L.; Xie, H., Nanoscale TiO2PowdersSynthesized by Flame CVD Process and Their Photodegradation of Rhodamine B.JOURNAL OF SHANGHAI SECOND POLYTECHNIC UNIVERSITY2011,28,280-286.
    86.(a) Li, D.; Xia, Y., Fabrication of Titania Nanofibers by Electrospinning.NANO LETTERS2003,3,555-560;(b) Liang, J.; Yang, J.; Huang, Y.; Liu, H.,Fabrication of TiO2Nanofibers in a Novel Solvent System Through Electrospinning.ACTA CHIMICA SINICA2010,17,1713-1718.
    87. Fujishima, A.; Kohayakawa, K.; Honda, K., Hydrogen Production underSunlight with an Electrochemical Photocell. J. Electrochem. Soc.1975,122,1487-1489.
    88. Seger, B.; Kamat, P. V., Fuel Cell Geared in Reverse: PhotocatalyticHydrogen Production Using a TiO2/Nafion/Pt Membrane Assembly with No AppliedBias. J. Phys. Chem. C2009,113,18946–18952.
    89. Yoshida, H.; Hirao, K.; Nishimoto, J.-i.; Shimura, K.; Kato, S.; Hattori, H.I., Hydrogen Production from Methane and Water on Platinum Loaded Titanium OxidePhotocatalysts. J. Phys. Chem. C2008,112,5542-5551.
    90. Sayama, K.; Arakawa, H., Significant Effect of Carbonate Addition onStoichiometric Photodecomposition of Liquid Water into Hydrogen and Oxygen fromPlatinum-Titanium(1v) Oxide Suspension. J. CHEM. SOC., CHEM. COMMUN.1992,150-152.
    91. Sekiguchi, Y.; Yao, Y.; Ohko, Y.; Tanaka, K.; Ishido, T.; Fujishima, A.;Kubota, Y., Self-sterilizing catheters with titanium dioxide photocatalyst thin films forclean intermittent catheterization: basis and study of clinical use. International Journal ofUrology2007,14,1751-1726.
    92.(a) Dai, K.; Peng, T.; Chen, H.; Zhang, R.; Zhang, Y., PhotocatalyticDegradation and Mineralization of Commercial Methamidophos in Aqueous TitaniaSuspension. Environ. Sci. Technol.2008,42,1505–1510;(b) Vulliet, E.; Emmelin, C.;Chovelon, J.-M.; Guillard, C.; Herrmann, J.-M., Photocatalytic degradation ofsulfonylurea herbicides in aqueous TiO2. Applied Catalysis B: Environmental2002,38,127–137;(c) Parra, S.; Olivero, J.; Pulgarin, C., Relationships between physicochemicalproperties and photoreactivity of four biorecalcitrant phenylurea herbicides in aqueousTiO2suspension. Applied Catalysis B: Environmental2002,36,75–85;(d) Konstantinou,I. o. K.; akellarides, T. M. S.; Sakkas, V. A.; Albanis, T. A., Photocatalytic Degradationof Selected s-Triazine Herbicides and Organophosphorus Insecticides over AqueousTiO2Suspensions. Environ. Sci. Technol.2001,35,398-405;(e) Cao, Y.; Yi, L.; Huang,L.; Hou, Y.; Lu, Y., Mechanism and Pathways of Chlorfenapyr PhotocatalyticDegradation in Aqueous Suspension of TiO2. Environ. Sci. Technol.2006,40,3373-3377;(f) Dai, K.; Peng, T.; Chen, H.; Liu, J.; Zan, L., Photocatalytic Degradation ofCommercial Phoxim over La-Doped TiO2Nanoparticles in Aqueous Suspension.Environ. Sci. Technol.2009,43,1540–1545.
    93. Prairie, M. R.; Evans, L. R.; Martinez, S. L., Destruction of organics andremoval of heavy metals in water via TiO2, photocatalysis in chemical oxidation:Technology for the nineties. Second International Symposium. Lancaster: TechnomicPublishing Company1994.
    94. Lachheb, H.; Puzenat, E.; Houas, A.; Ksibi, M.; Elaloui, E.; Guillard, C.;Herrmann, J.-M., Photocatalytic degradation of various types of dyes (Alizarin S, CroceinOrange G, Methyl Red, Congo Red, Methylene Blue) in water by UV-irradiated titania.Applied Catalysis B: Environmental2002,39,75–90.
    95. Mahmoodi, N. M.; Arami, M., Degradation and toxicity reduction oftextile wastewater using immobilized titania nanophotocatalysis. J Photochem PhotobiolB.2009,94,20–24.
    96. Tayade, R. J.; Surolia, P. K.; Kulkarni, R. G.; Jasra, R. V., Photocatalyticdegradation of dyes and organic contaminants in water using nanocrystalline anatase andrutile TiO2. Science and Technology of Advanced Materials2007,8(6),455-462.
    97. Yang, W.-E.; Hsu, M.-L.; Lin, M.-C.; Chen, Z.-H.; Chen, L.-K.; Huang,H.-H., Nano/submicron-scale TiO2network on titanium surface for dental implantapplication. Journal of Alloys and Compounds2009,479(1-2),642-647.
    98. Song, M.; Pan, C.; Chen, C.; Li, J.; Wang, X.; Gu, Z., The application ofnew nanocomposites: Enhancement effect of polylactide nanofibers/nano-TiO2blends onbiorecognition of anticancer drug daunorubicin. Applied Surface Science2008,255(2),610-612.
    99. Parkin, I. P.; Palgrave, R. G., Self-cleaning coatings. Journal of MaterialsChemistry2005,15(17),1689.
    100. MILLS, A.; HODGEN, S.; LEE, S. K., Self-cleaning titania films: anoverview of direct, lateral and remote photo-oxidation processes. Res. Chem. Intermed.2005,31,295–308.
    101. Dong, R.; Liu, S.; Chen, Z.; Jin, C.; Wang, C., Self-cleaning TiO2FilmPrepared by Microemulsion-mediated Hydrothermal Method. Chinese Journal of AppliedChemistry2013,30,938-944.
    102. Wang, Z.; Tian, S.; Liu, Y.; Yan, J.; Zhang, Q.; Huang, W., Preparation ofNano-TiO2Film and Research on Its Self-cleaning Activity. Titanium Industry Progress2007,24,37-40.
    103. Toma, F.-L.; Bertrand, G.; Klein, D.; Meunier, C.; Begin, S., Developmentof Photocatalytic Active TiO2Surfaces by Thermal Spraying of Nanopowders. Journalof Nanomaterials2008,2008,1-8.
    104. Karunagaran, B.; Uthirakumar, P.; Chung, S. J.; Velumani, S.; Suh, E. K.,TiO2thin film gas sensor for monitoring ammonia. Materials Characterization2007,58(8-9),680-684.
    105. Song, W.; Zheng, J.; Chen, G.; He, F.; Liu, Z., Preparation and gas sensingcharacterization of TiO2and SnO2composite nanoparticles.332011,86-91.
    106. Saruhan, A. Y. a. B., Al-doped TiO2semiconductor gas sensor for NO2-detection at elevated temperatures. The14th International Meeting on Chemical Sensors2012,68-71.
    107. Moon, J.; Park, J.-A.; Lee, S.-J.; Zyung, T.; Kim, I.-D., Pd-doped TiO2nanofiber networks for gas sensor applications. Sensors and Actuators B: Chemical2010,149(1),301-305.
    108. Tricoli, A.; Wallerand, A. S.; Righettoni, M., Highly porous TiO2filmsfor dye sensitized solar cells. Journal of Materials Chemistry2012,22(28),14254.
    109. Liu, J.; Yang, Q.; Li, M.; Zhu, W.; Tian, H.; Song, Y., Organic dye-sensitized sponge-like TiO2photoanode for dye-sensitized solar cells. PhilosophicalTransactions of the Royal Society A: Mathematical, Physical and Engineering Sciences2013,371(2000),20120314-20120314.
    110. Xu, H.; Tao, X.; Wang, D.-T.; Zheng, Y.-Z.; Chen, J.-F., Enhancedefficiency in dye-sensitized solar cells based on TiO2nanocrystal/nanotube double-layered films. Electrochimica Acta2010,55(7),2280-2285.
    111.(a) Zlamal, M.; Macak, J.; Schmuki, P.; Krysa, J., Electrochemicallyassisted photocatalysis on self-organized TiO2nanotubes. ElectrochemistryCommunications2007,9(12),2822-2826;(b) Yoshida, H.; Lu, Y.; Nakayama, H.;Hirohashi, M., Fabrication of TiO2film by mechanical coating technique and itsphotocatalytic activity. Journal of Alloys and Compounds2009,475(1-2),383-386;(c)Liu, Z.; Zhang, X.; Nishimoto, S.; Jin, M.; Tryk, D. A.; Murakami, T.; Fujishima, A.,Highly ordered TiO2nanotube arrays with controllable length for photoelectrocatalyticdegradation of phenol. J Phys Chem C2008,112(1),253-259.
    112. Allam, N. K.; El-Sayed, M. A., Photoelectrochemical Water OxidationCharacteristics of Anodically Fabricated TiO2Nanotube Arrays: Structural and OpticalProperties. J. Phys. Chem. C2010,114,12024–12029.
    113.(a) Berger, S.; Kunze, J.; Schmuki, P.; Valota, A. T.; LeClere, D. J.;Skeldon, P.; Thompson, G. E., Influence of Water Content on the Growth of AnodicTiO[sub2] Nanotubes in Fluoride-Containing Ethylene Glycol Electrolytes. Journal ofThe Electrochemical Society2010,157(1), C18;(b) Allam, N. K.; Grimes, C. A., RoomTemperature One-Step Polyol Synthesis of Anatase TiO2Nanotube Arrays:Photoelectrochemical Properties. Langmuir2009,25(13),7234-7240;(c) Macak, J. M.;Schmuki, P., Anodic growth of self-organized anodic TiO2nanotubes in viscouselectrolytes. Electrochimica Acta2006,52(3),1258-1264.
    114. Zhang, F.; Chen, S.; Yin, Y.; Lin, C.; Xue, C., Anodic formation ofordered and bamboo-type TiO2anotubes arrays with different electrolytes. Journal ofAlloys and Compounds2010,490(1-2),247-252.
    115. Albu, S. P.; Kim, D.; Schmuki, P., Growth of Aligned TiO2Bamboo-Type Nanotubes and Highly Ordered Nanolace. Angewandte Chemie InternationalEdition2008,47(10),1916-1919.
    116.(a) Yasuda, K.; Macak, J. M.; Berger, S.; Ghicov, A.; Schmuki, P.,Mechanistic Aspects of the Self-Organization Process for Oxide Nanotube Formation onValve Metals. Journal of The Electrochemical Society2007,154(9), C472;(b) Mac k,J. M.; Tsuchiya, H.; Schmuki, P., High-Aspect-Ratio TiO2Nanotubes by Anodization ofTitanium. Angewandte Chemie International Edition2005,44(14),2100-2102.
    117.(a) Sreekantan, S.; Hazan, R.; Lockman, Z., Photoactivity of anatase–rutileTiO2nanotubes formed by anodization method. Thin Solid Films2009,518(1),16-21;(b)Kim, D.; Ghicov, A.; Albu, S. P.; Schmuki, P., Bamboo-Type TiO2Nanotubes:Improved Conversion Effciency in Dye-Sensitized Solar Cells. J. AM. CHEM. SOC.2008,130,16454–16455.
    118. Izutsu, K., Electrochemistry in Nonaqueous Solutions2002.
    119.(a) Berger, S.; Kunze, J.; Schmuki, P.; LeClere, D.; Valota, A. T.; Skeldon,P.; Thompson, G. E., A lithographic approach to determine volume expansion factorsduring anodization: Using the example of initiation and growth of TiO2-nanotubes.Electrochimica Acta2009,54(24),5942-5948;(b) Macak, J. M.; Tsuchiya, H.; Ghicov,A.; Yasuda, K.; Hahn, R.; Bauer, S.; Schmuki, P., TiO2nanotubes: Self-organizedelectrochemical formation, properties and applications. Current Opinion in Solid Stateand Materials Science2007,11(1-2),3-18.
    120. Tao, J.; Zhao, J.; Tang, C.; Kang, Y.; Li, Y., Mechanism study of self-organized TiO2nanotube arrays by anodization. New Journal of Chemistry2008,32(12),2164.
    121.(a) Yang, D.-J.; Kim, H.-G.; Cho, S.-J.; Choi, W.-Y., Thickness-conversion ratio from titanium to TiO2nanotube fabricated by anodization method.Materials Letters2008,62(4-5),775-779;(b) Cao, C.; Li, J.; Wang, X.; Song, X.; Sun,Z., Current characterization and growth mechanism of anodic titania nanotube arrays.Journal of Materials Research2011,26(03),437-442.
    122. Ghicov, A.; Schmuki, P., Self-ordering electrochemistry: a review ongrowth and functionality of TiO2nanotubes and other self-aligned MOx structures.Chemical Communications2009,(20),2791.
    123. Parkhutik, V. P.; Shershulsky, V. I., Theoretical modelling of porous oxidegrowth on aluminium. JournalofPhysicsD:Applied Physics1992,25,1258–1263.
    124.(a) Yingqiu, W.; Qiang, Y.; Hui, L., Study on the Degradation Efect of Co/TiO2Catalyst on Alizarin Red. Environmental protection and technology2010,16(2),1-5;(b) Pan, Z.; Kong, X.; Xiao, C.; Zhanf, H., Photoelectrocatalytic Degradation ofAlizarin Red on Titanium Dioxide Photo-anode. Chemist ry&Bioengineering2006,23,45-47;(c) Jun, Z.; Min, W.; Hongjuan, M.; Side, Y.; Ruiyuan, Y.; Zhongqun, S.;Changyong, P.; Jing, Z., Radiation degradation and mineralization of alizarin S inaqueous solution by γ-rays. J. Radiat. Res. Radiat. Process.2008,26(1),13-18.
    125. Chen, Y.; Wu, Y.; Wang, L.; Chen, Z., The Degradation andDecolorigation of Alizarin Red Wastewater by Electrochemistry-illumination Method.Journal of Hebei Normal University2009,33,78-82.
    126.(a) Kang, X. W.; Chen, S. W., Photocatalytic reduction of methylene blueby TiO2nanotube arrays: effects of TiO2crystalline phase. Journal of Materials Science2010,45(10),2696-2702;(b) Liang, H.; Li, X., Effects of structure of anodic TiO2nanotube arrays on photocatalytic activity for the degradation of2,3-dichlorophenol inaqueous solution. Journal of Hazardous Materials2009,162(2-3),1415-1422.
    127.(a) Demeestere, K.; Dewulf, J.; Van Langenhove, H., Heterogeneousphotocatalysis as an advanced oxidation process for the abatement of chlorinated,monocyclic aromatic and sulfurous volatile organic compounds in air: State of the art.Critical Reviews in Environmental Science and Technology2007,37(6),489-538;(b)Chen, Q.; Peng, L. M., Structure and applications of titanate and related nanostructures.International Journal of Nanotechnology2007,4(1-2),44-65.
    128. Zhuang, H.; Lin, C.; Lai, Y.; Sun, L.; Li, J., Some Critical StructureFactors of Titanium Oxide Nanotube Array in Its Photocatalytic Activity. Environ. Sci.Technol.2007,41,4735-4740.
    129. Fang, D.; Luo, Z.; Huang, K.; Lagoudas, D. C., Effect of heat treatment onmorphology, crystalline structure and photocatalysis properties of TiO2nanotubes on Tisubstrate and freestanding membrane. Applied Surface Science2011,257(15),6451-6461.
    130.(a) Zou, T.; Xie, C.; Liu, Y.; Zhang, S.; Zou, Z.; Zhang, S., Fullmineralization of toluene by photocatalytic degradation with porous TiO2/SiCnanocomposite film. Journal of Alloys and Compounds2013,552,504-510;(b) Zhao, L.;Chen, X.; Wang, X.; Zhang, Y.; Wei, W.; Sun, Y.; Antonietti, M.; Titirici, M.-M., One-Step Solvothermal Synthesis of a Carbon@TiO2Dyade Structure Effectively PromotingVisible-Light Photocatalysis. Advanced Materials2010,22(30),3317-3321;(c) Le, T. T.;Akhtar, M. S.; Park, D. M.; Lee, J. C.; Yang, O. B., Water splitting on Rhodamine-B dyesensitized Co-doped TiO2catalyst under visible light. Applied Catalysis B:Environmental2012,111-112,397-401;(d) Meng, H. L.; Cui, C.; Shen, H. L.; Liang, D.Y.; Xue, Y. Z.; Li, P. G.; Tang, W. H., Synthesis and photocatalytic activity ofTiO2@CdS and CdS@TiO2double-shelled hollow spheres. Journal of Alloys andCompounds2012,527,30-35;(e) Dai, G.; Yu, J.; Liu, G., Synthesis and EnhancedVisible-Light Photoelectrocatalytic Activity ofp nJunction BiOI/TiO2Nanotube Arrays.The Journal of Physical Chemistry C2011,115(15),7339-7346;(f) Xu, Z.; Yu, J.,Visible-light-induced photoelectrochemical behaviors of Fe-modified TiO2nanotubearrays. Nanoscale2011,3(8),3138.
    131. Duan, G.; Zhang, C.; Li, A.; Yang, X.; Lu, L.; Wang, X., Preparation andCharacterization of Mesoporous Zirconia Made by Using a Poly (methyl methacrylate)Template. Nanoscale Research Letters2008,3(3),118-122.
    132. Liu, G.; Zhang, F.; Xie, Y.; Yao, K.; Niu, X.; Li, H., Prepara tion ofnanoparticla te Zr/TiO2and its photoca ta lytic activ ity. Acta Scientiae Circumstantiae2006,26,846.
    133. Tang, J.; Zou, Y.; Deng, A.; Li, R., Preparation and Characterization ofZr4+-doped TiO2Photocatalyst. The Chinese Journal of Process Engineering2008,8,1026-1029.
    134. Liu, H.; Liu, G.; Zhou, Q., Preparation and characterization of Zr dopedTiO2nanotube arrays on the titanium sheet and their enhanced photocatalytic activity.Journal of Solid State Chemistry2009,182(12),3238-3242.
    135. Hao, D.; Han, P., Effects of Zr Doping on Optical Properties of AnataseTi02Thin. Journal of Qufu Normal University2013,39,55-57.
    136. Kim, H.-i.; Kim, J.; Kim, W.; Choi, W., Enhanced Photocatalytic andPhotoelectrochemical Activity in the Ternary Hybrid of CdS/TiO2/WO3through theCascadal Electron Transfer. The Journal of Physical Chemistry C2011,115(19),9797-9805.
    137.(a) Bai, J.; Li, J.; Liu, Y.; Zhou, B.; Cai, W., A new glass substratephotoelectrocatalytic electrode for efficient visible-light hydrogen production: CdSsensitized TiO2nanotube arrays. Applied Catalysis B: Environmental2010,95(3-4),408-413;(b) Janitabar-Darzi, S.; Mahjoub, A. R., Investigation of phase transformationsand photocatalytic properties of sol–gel prepared nanostructured ZnO/TiO2composites.Journal of Alloys and Compounds2009,486(1-2),805-808.
    138. Lin, C.-J.; Lu, Y.-T.; Hsieh, C.-H.; Chien, S.-H., Surface modification ofhighly ordered TiO[sub2] nanotube arrays for efficient photoelectrocatalytic watersplitting. Applied Physics Letters2009,94(11),113102.
    139. Chen, C.; Xie, Y.; Ali, G.; Yoo, S. H.; Cho, S. O., Improved conversionefficiency of CdS quantum dots-sensitized TiO2nanotube array using ZnO energy barrierlayer. Nanotechnology2011,22(1),015202.
    140. Oladejia, I. O.; Chowa, L.; Liub, J. R.; Chub, W. K.; Bustamantec, A. N.P.; Fredricksena, C.; Schulte, A. F., Comparative study of CdS thin lms deposited bysingle, continuous, and multiple dip chemical processes. Thin Solid Films2000,359,154-159.
    141. Du, B.; Gao, L.; Lian, X.; Jiao, Y., The Synthesis and Characterization ofCore-Shell Quantum Dots via Three-Phase System. J. Chem. Pharm. Res.2012,4(5),2712-2719.
    142. Siebert, M.; Albrecht, K.; Spiertz, R.; Keul, H.; M ller, M., Reactiveamphiphilic block copolymers for the preparation of hybrid organic/inorganic materialswith covalent interactions. Soft Matter2011,7(2),587.
    143. Seong, J. W.; Kim, K. H.; Beag, Y. W.; Koh, S. K.; Yoon, K. H., Effect oflow substrate deposition temperature on the optical and electrical properties of Al[sub2]O[sub3] doped ZnO films fabricated by ion beam sputter deposition. Journal ofVacuum Science&Technology A: Vacuum, Surfaces, and Films2004,22(4),1139.
    144. Islam, A. K. M. M.; Mukherjee, M., Application of differential charging inXPS for structural study of Langmuir–Blodgett films. Journal of Physics: CondensedMatter2011,23(43),435005.
    145.(a) Pelaez, M.; Nolan, N. T.; Pillai, S. C.; Seery, M. K.; Falaras, P.;Kontos, A. G.; Dunlop, P. S. M.; Hamilton, J. W. J.; Byrne, J. A.; O'Shea, K.; Entezari,M. H.; Dionysiou, D. D., A review on the visible light active titanium dioxidephotocatalysts for environmental applications. Applied Catalysis B: Environmental2012,125,331-349;(b) Carey, M. J.; Burlakov, V. M.; Henry, B. M.; Kirov, K. R.; Webster, G.R.; Assender, H. E.; Briggs, G. A. D.; Burn, P. L.; Grovenor, C. R. M., Nanocompositetitanium dioxide/polymer photovoltaic cells: effects of TiO2microstructure, time andillumination power. Proceedings of SPIE: Organic Photovoltaics IV2004,5215,32-40.
    146. Lin, C. J.; Yu, Y. H.; Liou, Y. H., Free-standing TiO2nanotube arrayfilms sensitized with CdS as highly active solar light-driven photocatalysts. AppliedCatalysis B: Environmental2009,93(1-2),119-125.
    147. Wang, L.; Zang, L.; Zhao, J.; Wang, C., Green synthesis of shape-definedanatase TiO2nanocrystals wholly exposed with {001} and {100} facets. ChemicalCommunications2012,48(96),11736.
    148. Li, G.; Boerio-Goates, J.; Woodfield, B. F.; Li, L., Evidence of linearlattice expansion and covalency enhancement in rutile TiO[sub2] nanocrystals. AppliedPhysics Letters2004,85(11),2059.
    149. Xu, H.; Chen, X.; Ouyang, S.; Kako, T.; Ye, J., Size-Dependent Mie’sScattering Effect on TiO2Spheres for the Superior Photoactivity of H2Evolution. TheJournal of Physical Chemistry C2012,116(5),3833-3839.
    150. Wang, J.; Liu, Z.; He, Z.; Cai, R., Preparation of Nanosized Anatase TiO2and Its Composites at Low Temperature. PROGRESS IN CHEMISTRY2007,19,1495-1502.
    151. Li, G. S.; Boerio-Goates, J.; Woodfield, B. F.; Li, L. P., Evidence of linearlattice expansion and covalency enhancement in rutile TiO2nanocrystals. Appl Phys Lett2004,85(11),2059-2061.
    152.(a) Niederberger, M.; Bartl, M. H.; Stucky, G. D., Benzyl alcohol andtitanium tetrachloride-A versatile reaction system for the nonaqueous and low-temperature preparation of crystalline and luminescent titania nanoparticles. Chem Mater2002,14(10),4364-4370;(b) Ramakrishna, G.; Ghosh, H. N., Optical andphotochemical properties of sodium dodecylbenzenesulfonate (DBS)-capped TiO2nanoparticles dispersed in nonaqueous solvents. Langmuir2003,19(3),505-508;(c) Zhu,Y. C.; Ding, C. X., Investigation on the surface state of TiO2ultrafine particles byluminescence. J Solid State Chem1999,145(2),711-715;(d) Tang, H.; Prasad, K.;Sanjines, R.; Schmid, P. E.; Levy, F., Electrical and Optical-Properties of Tio2AnataseThin-Films. J Appl Phys1994,75(4),2042-2047;(e) Pankove, J. I., Optical processes insemiconductors. Prentice-Hall: Englewood Cliffs, N.J.,1971; p xvii,422.
    153. Pradhan, S.; Ghosh, D.; Chen, S. W., Janus Nanostructures Based on Au-TiO2Heterodimers and Their Photocatalytic Activity in the Oxidation of Methanol. AcsAppl Mater Inter2009,1(9),2060-2065.
    154. Zhang, Y. H.; Xiao, P.; Zhou, X. Y.; Liu, D. W.; Garcia, B. B.; Cao, G. Z.,Carbon monoxide annealed TiO2nanotube array electrodes for efficient biosensorapplications. Journal of Materials Chemistry2009,19(7),948-953.
    155.(a) Kochuveedu, S. T.; Jang, Y. J.; Jang, Y. H.; Lee, W. J.; Cha, M.-A.;Shin, H.; Yoon, S.; Lee, S.-S.; Kim, S. O.; Shin, K.; Steinhart, M.; Kim, D. H., Visible-light active nanohybrid TiO2/carbon photocatalysts with programmed morphology bydirect carbonization of block copolymer templates. Green Chemistry2011,13(12),3397;(b) An, G.; Ma, W.; Sun, Z.; Liu, Z.; Han, B.; Miao, S.; Miao, Z.; Ding, K., Preparationof titania/carbon nanotube composites using supercritical ethanol and their photocatalyticactivity for phenol degradation under visible light irradiation. Carbon2007,45(9),1795-1801.
    156.(a) Wang, X.-K.; Wang, C.; Zhang, D., Sonochemical synthesis andcharacterization of Cl–N-codoped TiO2nanocrystallites. Materials Letters2012,72,12-14;(b) Hang, R.; Huang, X.; Tian, L.; He, Z.; Tang, B., Preparation, characterization,corrosion behavior and bioactivity of Ni2O3-doped TiO2nanotubes on NiTi alloy.Electrochimica Acta2012,70,382-393;(c) Fang, J.; Bi, X.; Si, D.; Jiang, Z.; Huang, W.,Spectroscopic studies of interfacial structures of CeO2–TiO2mixed oxides. AppliedSurface Science2007,253(22),8952-8961;(d) Stefanov, P.; Shipochka, M.; Stefchev, P.;Raicheva, Z.; Lazarova, V.; Spassov, L., XPS characterization of TiO2layers depositedon quartz plates. Journal of Physics: Conference Series2008,100(1),012039;(e) Rath,C.; Mohanty, P.; Pandey, A. C.; Mishra, N. C., Oxygen vacancy induced structural phasetransformation in TiO2nanoparticles. Journal of Physics D: Applied Physics2009,42(20),205101.
    157. Suprabha, T.; Roy, H. G.; Thomas, J.; Praveen Kumar, K.; Mathew, S.,Microwave-Assisted Synthesis of Titania Nanocubes, Nanospheres and Nanorods forPhotocatalytic Dye Degradation. Nanoscale Research Letters2008,4(2),144-152.
    158. Bensaha, R.; Bensouy, H., Synthesis, Characterization and Properties ofZirconium Oxide (ZrO2)-Doped Titanium Oxide (TiO2) Thin Films Obtained via Sol-Gel Process.2012.
    159.(a)白爱民;王作特;杨水金,二氧化钛负载磷钨钼杂多酸催化合成丁醛乙二醇缩醛.湖北师范学院学报(自然科学版)2007,27,67-7-;(b) K.Balachandaran;Dr.R.Venckatesh; Sivaraj, D. R., SYNTHESIS OF NANO TiO2-SiO2COMPOSITEUSING SOL-GEL METHOD: EFFECT ON SIZE, SURFACE MORPHOLOGY ANDTHERMAL STABILITY. International Journal of Engineering Science and Technology2010,2,3695-3700.
    160. Li, Y.; Liu, L.; Jin, K.; Wang, W.; Zhao, N., Melting Synthesis of2-Aryloxymethylbenzimidazoles Chinese Journal of Organic Chemistry2009,11,1825~1828
    161. Yan, M.; Chen, F.; Zhang, J.; Anpo, M., Preparation of ControllableCrystalline Titania and Study on the Photocatalytic Properties. J. Phys. Chem. B2005,1098673-8678.
    162.刘炜涛;刘学文;沈,朱., pH敏感水凝胶聚甲基丙烯酸的超声合成.化学学报2012,70,272-276.
    163.董维维;易英,改性纳米TiO2用于提高醇酸树脂基涂料性能的研究.试验研究与应用2013,16,1-4.
    164. Yamauchi, S.; Suzuki, H.; Akutsu, R., Plasma-Assisted Chemical VaporDeposition of Titanium Oxide Layer at Room-Temperature. Journal of CrystallizationProcess and Technology2014,04(01),20-26.
    165.(a) Dong, C.; Xian, A.; Han, E. H.; Shang, J., C-doped TiO2with VisibleLight Photocatalytic Activity. Solid State Phenomena2007,121,939-942;(b) Chu, D.;Yuan, X.; Qin, G.; Xu, M.; Zheng, P.; Lu, J.; Zha, L., Efficient carbon-dopednanostructured TiO2(anatase) film for photoelectrochemical solar cells. Journal ofNanoparticle Research2007,10(2),357-363;(c) Park, Y.; Kim, W.; Park, H.;Tachikawa, T.; Majima, T.; Choi, W., Carbon-doped TiO2photocatalyst synthesizedwithout using an external carbon precursor and the visible light activity. AppliedCatalysis B: Environmental2009,91(1-2),355-361;(d) Wang, X.; Meng, S.; Zhang, X.;Wang, H.; Zhong, W.; Du, Q., Multi-type carbon doping of TiO2photocatalyst.Chemical Physics Letters2007,444(4-6),292-296;(e) Wu, Z.; Dong, F.; Zhao, W.;Wang, H.; Liu, Y.; Guan, B., The fabrication and characterization of novel carbon dopedTiO2nanotubes, nanowires and nanorods with high visible light photocatalytic activity.Nanotechnology2009,20(23),235701.
    166.(a) Mozia, S.; Toyoda, M.; Tsumura, T.; Inagaki, M.; Morawski, A. W.,Comparison of effectiveness of methylene blue decomposition using pristine and carbon-coated TiO2in a photocatalytic membrane reactor. Desalination2007,212(1-3),141-151;(b) Shanmugam, S.; Gedanken, A., Carbon-Coated Anatase TiO2Nanocomposite asa High-Performance Electrocatalyst Support. Small2007,3(7),1189-1193;(c) Tryba, B.;Morawski, A. W.; Tsumura, T.; Toyoda, M.; Inagaki, M., Hybridization of adsorptivitywith photocatalytic activity—carbon-coated anatase. Journal of Photochemistry andPhotobiology A: Chemistry2004,167(2-3),127-135;(d) Tsumura, T.; Kojitani, N.;Izumi, I.; Iwashita, N.; Toyoda, M.; Inagaki, M., Carbon coating of anatase-type TiO2and photoactivity. Journal of Materials Chemistry2002,12(5),1391-1396.
    167.(a) Tryba, B.; Morawski, A. W.; Inagaki, M., A new route for preparationof TiO2-mounted activated carbon. Applied Catalysis B: Environmental2003,46(1),203-208;(b) Tryba, B.; Morawski, A. W.; Inagaki, M., Application of TiO2-mountedactivated carbon to the removal of phenol from water. Applied Catalysis B:Environmental2003,41(4),427-433;(c) Xu, D.; Huang, Z.-H.; Kang, F.; Inagaki, M.;Ko, T. H., Effect of heat treatment on adsorption performance and photocatalytic activityof TiO2-mounted activated carbon cloths. Catalysis Today2008,139(1-2),64-68.
    168. Li, Y.; Hwang, D.-S.; Lee, N. H.; Kim, S.-J., Synthesis andcharacterization of carbon-doped titania as an artificial solar light sensitive photocatalyst.Chemical Physics Letters2005,404(1-3),25-29.
    169. Tian, L.; Ghosh, D.; Chen, W.; Pradhan, S.; Chang, X.; Chen, S.,Nanosized Carbon Particles From Natural Gas Soot. Chemistry of Materials2009,21(13),2803-2809.
    170. Song, Y.; Kang, X.; Zuckerman, N. B.; Phebus, B.; Konopelski, J. P.;Chen, S., Ferrocene-functionalized carbon nanoparticles. Nanoscale2011,3(5),1984.
    171. Tian, L.; Song, Y.; Chang, X.; Chen, S., Hydrothermally enhancedphotoluminescence of carbon nanoparticles. Scripta Materialia2010,62(11),883-886.
    172. Song, D.; Hrbek, J.; Osgood, R., Formation of TiO2nanoparticles byreactive-layer-assisted deposition and characterization by XPS and STM. Nano Lett2005,5(7),1327-1332.
    173. Kochuveedu, S. T.; Jang, Y. J.; Jang, Y. H.; Lee, W. J.; Cha, M. A.; Shin,H.; Yoon, S.; Lee, S. S.; Kim, S. O.; Shin, K.; Steinhart, M.; Kim, D. H., Visible-lightactive nanohybrid TiO2/carbon photocatalysts with programmed morphology by directcarbonization of block copolymer templates. Green Chem2011,13(12),3397-3405.
    174. Adolphi, B.; J hne, E.; Busch, G.; Cai, X., Characterization of theadsorption of?-(thiophene-3-yl alkyl) phosphonic acid on metal oxides with AR-XPS.Analytical and Bioanalytical Chemistry2004,379(4).
    175. Gautrot, J. E.; Hodge, P.; Helliwell, M.; Raftery, J.; Cupertino, D.,Synthesis of electron-accepting polymers containing phenanthra-9,10-quinone units. JMater Chem2009,19(24),4148-4156.
    176. Loganathan, K.; Bommusamy, P.; Muthaiahpillai, P.; Velayutham, M.,The Syntheses, Characterizations, and Photocatalytic Activities of Silver, Platinum, andGold Doped TiO2Nanoparticles. Environmental Engineering Research2011,16(2),81-90.
    177. Ranjit, K. T.; Varadarajan, T. K.; Viswanathan, B., Photocatalyticreduction of nitrite and nitrate ions on Ru/TiO2catalysts. Journal of Photochemistry. andPhotobiology A: Chemistry1995,8967-68.
    178. Wetchakun, K.; Phanichphant, S., Effect of Ru on Photocatalytic Activityof TiO2Nanoparticles Journal of Microscopy Society of Thailand2008,22,11-14.
    179. Hou ková, V.; tengl, V.; Bakardjieva, S.; Murafa, N.; Tyrpekl, V.,Efficient gas phase photodecomposition of acetone by Ru-doped Titania. AppliedCatalysis B: Environmental2009,89(3-4),613-619.
    180.(a) Chen, W.; Davies, J. R.; Ghosh, D.; Tong, M. C.; Konopelski, J. P.;Chen, S., Carbene-Functionalized Ruthenium Nanoparticles. Chem. Mater.2006,18,5253-5259;(b) Kang, X.; Song, Y.; Chen, S., Nitrene-functionalized rutheniumnanoparticles. Journal of Materials Chemistry2012,22(36),19250.
    181.(a) Wang, Z.; Hou, J.; Yang, C.; Jiao, S.; Huang, K.; Zhu, H., Pivot rolesof noble metal in single-phase TaXzON (0    182.(a) Wang, X.; Xiang, Q.; Liu, B.; Wang, L.; Luo, T.; Chen, D.; Shen, G.,TiO2modified FeS Nanostructures with Enhanced Electrochemical Performance forLithium-Ion Batteries. Scientific Reports2013,3;(b) Ruan, P.; Qian, J.; Xu, Y.; Xie, H.;Shao, C.; Zhou, X., Mixed-phase TiO2nanorods assembled microsphere: crystal phasecontrol and photovoltaic application. CrystEngComm2013,15(25),5093.
    183. Meng, Z.-D.; Zhu, L.; Choi, J.-G.; Park, C.-Y.; Oh, W.-C., Preparation,characterization and photocatalytic behavior of WO3-fullerene/TiO2catalysts undervisible light. Nanoscale Research Letters2011,6(1),459.
    184.(a) Hamzah, N.; Nordin, N. M.; Nadzri, A. H. A.; Nik, Y. A.; Kassim, M.B.; Yarmo, M. A., Enhanced activity of Ru/TiO2catalyst using bisupport, bentonite-TiO2for hydrogenolysis of glycerol in aqueous media. Applied Catalysis A: General2012,419-420,133-141;(b) Wetchakun, K.; Phanichphant, S., Effect of Ru onPhotocatalytic Activity of TiO2Nanoparticles Journal of Microscopy Society of Thailand2008,22,11-14.
    185.张军丽;燕,张.;潘庆才,新型壳聚糖/DNS杂化材料的制备及对重金属Pb2+的吸附性能研究.化工新型材料2011,39,62-65.
    186. Atieh, M. A.; Bakather, O. Y.; Al-Tawbini, B.; Bukhari, A. A.; Abuilaiwi,F. A.; Fettouhi, M. B., Effect of Carboxylic Functional Group Functionalized on CarbonNanotubes Surface on the Removal of Lead from Water. Bioinorganic Chemistry andApplications2010,2010,1-9.
    187. Wang, S.; Zhou, Y.; Guan, W.; Ding, B., Preparation and Characterizationof Stimuli-Responsive Magnetic Nanoparticles. Nanoscale Research Letters2008,3(8),289-294.
    188.(a) Witham, C. K.; Chun, W.; Valdez, T. I.; Narayanan, S. R.,Performance of Direct Methanol Fuel Cells with Sputter-Deposited Anode CatalystLayers. Electrochemical and Solid-State Letters2000,3(11),497-500;(b) Hrbek, J.,Carbonaceous overlayers on Ru(001). J. Vac. Sci. Technol. A1986,4(1),86-89;(c) Pan,Y.; Zhang, H.; Shi, D.; Sun, J.; Du, S.; Liu, F.; Gao, H.-j., Highly Ordered, Millimeter-Scale, Continuous, Single-Crystalline Graphene Monolayer Formed on Ru (0001). Adv.Mater.2008,201–4.
    189.(a) Dwivedi, N.; Kumar, S.; Carey, J. D.; Malik, H. K.; Govind,Photoconductivity and characterization of nitrogen incorporated hydrogenated amorphouscarbon thin films. Journal of Applied Physics2012,112(11),113706;(b) Lin, C.; Song,Y.; Cao, L.; Chen, S., Effective photocatalysis of functional nanocomposites based oncarbon and TiO2nanoparticles. Nanoscale2013,5(11),4986.
    190.(a) Ma, H.; Cheng, X.; Ma, C.; Dong, X.; Zhang, X.; Xue, M.; Zhang, X.;Fu, Y., Synthesis, Characterization, and Photocatalytic Activity of N-Doped ZnO/ZnSComposites. International Journal of Photoenergy2013,2013,1-8;(b) Shimizu, K.;Phanopoulos, C.; Loenders, R.; Abel, M.-L.; Watts, J. F., The characterization of theinterfacial interaction between polymeric methylene diphenyl diisocyanate and aluminum:a ToF-SIMS and XPS study. Surface and Interface Analysis2010,42(8),1432-1444.
    191. Zhang, H. S.; Komvopoulos, K., Surface modification of magneticrecording media by filtered cathodic vacuum arc. Journal of Applied Physics2009,106(9),093504.
    192. Pham, T. N.; Shi, D.; Sooknoi, T.; Resasco, D. E., Aqueous-phaseketonization of acetic acid over Ru/TiO2/carbon catalysts. Journal of Catalysis2012,295,169-178.
    193. He, J.; Huang, Y.; Liu, L.; Cao, H., Controlled interface between carbonfiber and epoxy by molecular self-assembly method. Materials Chemistry and Physics2006,99(2-3),388-393.
    194. Yang, Q.; Liu, J.; Yang, J.; Kapoor, M.; Inagaki, S.; Li, C., Synthesis,characterization, and catalytic activity of sulfonic acid-functionalized periodicmesoporous organosilicas. Journal of Catalysis2004,228(2),265-272.
    195. Arabatzis, I., Characterization and photocatalytic activity of Au/TiO2thinfilms for azo-dye degradation. Journal of Catalysis2003,220(1),127-135.
    196. Sonawane, R. S.; Dongare, M. K., Sol–gel synthesis of Au/TiO2thin filmsfor photocatalytic degradation of phenol in sunlight. Journal of Molecular Catalysis A:Chemical2006,243(1),68-76.
    197. Oros-Ruiz, S.; Gómez, R.; López, R.; Hernández-Gordillo, A.; Pedraza-Avella, J. A.; Moctezuma, E.; Pérez, E., Photocatalytic reduction of methyl orange onAu/TiO2semiconductors. Catalysis Communications2012,21,72-76.
    198. Tian, B.; Zhang, J.; Tong, T.; Chen, F., Preparation of Au/TiO2catalystsfrom Au(I)–thiosulfate complex and study of their photocatalytic activity for thedegradation of methyl orange. Applied Catalysis B: Environmental2008,79(4),394-401.
    199. Wang, B., Recent development of non-platinum catalysts for oxygenreduction reaction. Journal of Power Sources2005,152,1-15.
    200.(a) Liu, Y.; Ishihara, A.; Mitsushima, S.; Kamiya, N.; Ota, K.-i.,Transition Metal Oxides as DMFC Cathodes Without Platinum. Journal of TheElectrochemical Society2007,154(7), B664;(b) Mentus, S. V., Oxygen reduction onanodically formed titanium dioxide. Electrochimica Acta2004,50(1),27-32.
    201. Reeve, R. W.; Christensen, P. A.; Hamnett, A.; Haydock, S. A.; Roy, S. C.,Methanol Tolerant Oxygen Reduction Catalysts Based on Transition Metal Sulfides. JElectrochem Soc1998,145(10),3463-3471.
    202.(a) Liu, H.; Song, C.; Tang, Y.; Zhang, J.; Zhang, J., High-surface-areaCoTMPP/C synthesized by ultrasonic spray pyrolysis for PEM fuel cell electrocatalysts.Electrochimica Acta2007,52(13),4532-4538;(b) Zhang, L.; Zhang, J.; Wilkinson, D. P.;Wang, H., Progress in preparation of non-noble electrocatalysts for PEM fuel cellreactions. Journal of Power Sources2006,156(2),171-182.
    203.(a) Poznyak, S. K.; Kokorin, A. I.; Kulak, A. I., Effect of electron and holeacceptors on the photoelectrochemical behaviour of nanocrystalline microporous TiOelectrodes. Journal of Electroanalytical Chemistry1998,44299–105;(b) Baez, V. B.;Graves, J. E.; Pletcher, D., The reduction of oxygen on titanium oxide electrodes. J.Elcctroanal. Chem.1992,340,273-286;(c) Tsujiko, A.; Itoh, H.; Kisumi, T.; Shiga, A.;Murakoshi, K.; Nakato, Y., Observation of Cathodic Photocurrents at NanocrystallineTiO2Film Electrodes, Caused by Enhanced Oxygen Reduction in Alkaline Solutions. J.Phys. Chem. B2002,106,5878-5885;(d) Choi, Y.-K.; Seo, S.-S.; Chjo, K.-H.; Choi, Q.-W.; Park, S.-M., Thin Titanium Dioxide Film Electrodes Prepared by Thermal Oxidation.J. Electrochem. Soc.1992,139,1803-1807;(e) PARKINSON, B.; DECKER, F.;JULIKO, J. F.; ABRAMOVICH, M., THE REDUCTION OF MOLECULAR OXYGENAT SINGLE CRYSTAL RUTILE ELECTRODES. Electrochimica Acta1979,25,521-525.
    204. Kim, J.-H.; Ishihara, A.; Mitsushima, S.; Kamiya, N.; Ota, K.-I., Catalyticactivity of titanium oxide for oxygen reduction reaction as a non-platinum catalyst forPEFC. Electrochimica Acta2007,52(7),2492-2497.
    205.(a) Mirkhalaf, F.; Tammeveski, K.; Schiffrin, D. J., Electrochemicalreduction of oxygen on nanoparticulate gold electrodeposited on a molecular template.Physical Chemistry Chemical Physics2009,11(18),3463;(b) Prieto, A.; Hern ndez, J.;Herrero, E.; Feliu, J. M., The role of anions in oxygen reduction in neutral and basicmedia on gold single-crystal electrodes. Journal of Solid State Electrochemistry2003,7(9),599-606;(c) Andoralov, V. M.; Tarasevich, M. R.; Tripachev, O. V., Oxygenreduction reaction on polycrystalline gold. Pathways of hydrogen peroxidetransformation in the acidic medium. Russian Journal of Electrochemistry2011,47(12),1327-1336;(d) Thorum, M. S.; Anderson, C. A.; Hatch, J. J.; Campbell, A. S.; Marshall,N. M.; Zimmerman, S. C.; Lu, Y.; Gewirth, A. A., Direct, Electrocatalytic OxygenReduction by Laccase on Anthracene-2-methanethiol-Modified Gold. The Journal ofPhysical Chemistry Letters2010,1(15),2251-2254;(e) Park, Y.; Nam, S.; Oh, Y.; Choi,H.; Park, J.; Park, B., Electrochemical Promotion of Oxygen Reduction on Gold withAluminum Phosphate Overlayer. The Journal of Physical Chemistry C2011,115(14),7092-7096.
    206.(a) Krstajic, N. V.; Vracar, L. M.; Neophytides, S. G.; Jaksic, J. M.;Murase, K.; Tunold, R.; Jaksic, M. M., Supported Interactive Electrocatalysts forHydrogen and Oxygen Electrode Reactions. Journal of New Materials forElectrochemical Systems2006,9,83-97;(b) Ja in, D.; Abu-Rabi, A.; Mentus, S.;Jovanovi, D., Oxygen reduction reaction on spontaneously and potentiodynamicallyformed Au/TiO2composite surfaces. Electrochimica Acta2007,52(13),4581-4588.
    207. Macak, J. M.; Schmidt-Stein, F.; Schmuki, P., Efficient oxygen reductionon layers of ordered TiO2nanotubes loaded with Au nanoparticles. ElectrochemistryCommunications2007,9(7),1783-1787.
    208. Zhou, Z.-Y.; Kang, X.; Song, Y.; Chen, S., Enhancement of theelectrocatalytic activity of Pt nanoparticles in oxygen reduction by chlorophenylfunctionalization. Chemical Communications2012,48(28),3391.
    209. Han, X.; Kuang, Q.; Jin, M.; Xie, Z.; Zheng, L., Synthesis of TitaniaNanosheets with a High Percentage of Exposed (001) Facets and Related PhotocatalyticProperties. Journal of the American Chemical Society2009,131(9),3152-3153.
    210. Yang, H. G.; Sun, C. H.; Qiao, S. Z.; Zou, J.; Liu, G.; Smith, S. C.; Cheng,H. M.; Lu, G. Q., Anatase TiO2single crystals with a large percentage of reactive facets.Nature2008,453(7195),638-641.
    211. Luan, Y.; Jing, L.; Xie, Y.; Sun, X.; Feng, Y.; Fu, H., ExceptionalPhotocatalytic Activity of001-Facet-Exposed TiO2Mainly Depending on EnhancedAdsorbed Oxygen by Residual Hydrogen Fluoride. ACS Catalysis2013,3(6),1378-1385.
    212. Yang, X. H.; Li, Z.; Liu, G.; Xing, J.; Sun, C.; Yang, H. G.; Li, C., Ultra-thin anatase TiO2nanosheets dominated with {001} facets: thickness-controlledsynthesis, growth mechanism and water-splitting properties. CrystEngComm2011,13(5),1378.
    213. Menzel, R.; Duerrbeck, A.; Liberti, E.; Yau, H. C.; McComb, D.; Shaffer,M. S. P., Determining the Morphology and Photocatalytic Activity of Two-DimensionalAnatase Nanoplatelets Using Reagent Stoichiometry. Chemistry of Materials2013,25(10),2137-2145.
    214. Huang, R.; Li, S.; Hu, J.; Qin, G., Study on photocatalytic degradation ofmethyl orange,methylene blue and rhodanmine B. Journal of Materials and Metallurgy2012,11,303-307.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700