用户名: 密码: 验证码:
功能化石墨烯纳米复合材料的制备及其光催化产氢性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
现今,能源短缺和环境污染的日益严重,人类寻找新的可持续的清洁能源来取代常规能源显得尤为迫切。通过太阳能转化为化学能是解决全球能源问题的重要途径。利用光催化剂太阳能分解水制氢可以实现太阳能的转化。制得的氢气具有清洁、经济、环境友好等优点。对于一个高效的光催化剂,为了提高光催化反应效率,必须要有长寿命的电荷载流子,较少的电荷陷阱中心,合适的能带结构和光稳定性。在过去几十年内,人们通过各种方法来提高光催化活性。包括:催化剂结构设计,表面沉积助催化剂,掺杂、染料敏化、催化剂复合等。石墨烯材料由于其特有的二维碳结构为人们提高光催化效果提供了一个新途径。本论文制备了不同类型的功能化石墨烯纳米复合材料,研究了它们的光催化分解水产氢性能。在这些光催化体系中,石墨烯不仅可以充当电子的接受体和传递体,而且氧化石墨烯(GO)或者还原的氧化石墨烯(RGO)本身可以作为一个产氢光催化剂。本论文主要内容概括如下:
     (1) GO或者RGO是具有一定带宽的半导体,带宽大小随着石墨烯氧化程度的不同而变化。部分氧化的石墨烯材料光照条件下直接可用来光催化分解水产氢。然而GO和RGO不能充分的利用可见光,在可见光下光催化产氢活性很低。基于染料敏化半导体的思想,考虑将曙红(EY)通过非共价方式功能化石墨烯(EY-RGO)。研究发现EY与RGO表面可以通过氢键和-堆积作用结合。染料非共价功能化石墨烯具有不破坏石墨烯本身的共轭结构的优点。紫外可见吸收光谱,拉曼光谱,荧光光谱以及光电化学实验表明在RGO表面的EY分子可以作为“捕光天线”,吸收光并且将激发电子有效地传递到石墨烯。EY-RGO可以用作分解水产氢光催化剂。在30h紫外-可见光和10h可见光照射下,其在10vol%三乙醇胺水溶液中平均产氢速率分别为3.35mmol·g-1·h-1和0.40mmol·g-1·h-1,EY-RGO的光催化活性要高于RGO,GO和EY-GO。修饰了Pt纳米粒子形成的EY-Pt/RGO可进一步提高光催化活性。
     (2)通过一步沉积法合成了RuO2/TiSi2/RGO复合物,石墨烯由于超大的表面积和优良的导电性能,可以作为半导体的载体和电子接受体,而RuO2作为助催化剂。该复合物通过扫描电镜,X-射线粉末衍射,红外光谱,X射线光电子能谱,紫外-可见漫反射,光电流响应与电化学阻抗进行了表征。结果表明:石墨烯与RuO2和TiSi2颗粒有很好的相互作用,三者之间直接的物理连接有利于光生电荷多途径的传输和分离。该复合物增强了在可见区的吸收能力。当RuO2和RGO负载量都为1wt%时,RuO2/TiSi2/RGO在纯水和可见光(λ420nm)照射下的光催化产氢速率为97.5mol·h-1·g-1,高于RuO2/TiSi2(71.9mol·h-1·g-1)和纯TiSi2(56.3mol·h-1·g-1)。在半导体TiSi2中引入石墨烯与RuO2时,实现了电子多途径的传递,降低了电子空穴复合几率,增加了氢气生成的活性位点,因此提高了光催化性能。当反应体系加热到较高温度时可以释放出O2,实现全面的分解水。
     (3)以GO和尿素为原料通过固态热反应合成了N掺杂石墨烯。N掺杂量可以简单通过改变氧化石墨和尿素的比例来调节。在相对较低的比例(如wGO/wurea=0.3),N的掺杂量相对较高(~10at.%),而在相对较高的比例时(如wGO/wurea=1或者0.5),N的掺杂量相对较低(wGO/wurea=1时,N的掺杂量大约为3.2at.%;wGO/wurea=0.5时,N的掺杂量大约为6.5at.%),而且在N掺杂的同时GO发生了明显的还原效应。含氧量在相同反应温度下要低于文献报道的在H2气氛或者Ar气氛中的含氧量,表明在尿素作用下GO更容易被还原。氧化石墨中的含氧官能团和尿素中的氨基基团对形成N掺杂石墨烯晶格中的C-N键起着重要的作用。X射线光电子能谱表明了GO与尿素固态热反应制备N掺杂石墨烯的形成机理:随着热反应温度逐渐升高,N的化学结构有一个逐渐的热转变过程。即从氨基N转变到吡咯N,再到吡啶N,最终到石墨N。N掺杂石墨烯的电导率可以达到40S·cm-1,该数值高于氧化石墨烯5个数量级。在较高温度下导电率增加很快,其可能原因为:一是温度越高,石墨烯的共轭程度越高,二是通过N的掺杂减小了氧化石墨烯中存在的结构缺陷。该研究为后续N掺杂石墨烯在光催化体系应用研究提供了基础。
     (4)以N掺杂的石墨烯(NGR)为TiO2纳米粒子的载体制备了NGR/TiO2复合物。TEM图谱显示大约为8nm的TiO2纳米粒子紧密附着在NGR片层表面,而RGO/TiO2复合物中TiO2纳米粒子直径大约为20nm,表明TiO2和NGR之间形成了强烈的结合效应。NGR中的含氮基团可以成为TiO2纳米粒子的成核和连接位点。XPS图谱和拉曼图谱表明TiO2和NGR之间存在强烈的电子相互作用。光电流响应和电化学阻抗和循环伏安曲线结果表明NGR有较高的电导性,相比与RGO更有利于光生电子的传递。该复合物相比于纯TiO2,RGO/TiO2复合物显示了较高的光催化产氢活性。同时,实验结果表明Pt纳米粒子修饰的NGR/TiO2复合物(Pt/NGR/TiO2)光催化产氢的活性和稳定性也明显高于Pt/TiO2和Pt/RGO/TiO2.
Nowadays, energy shortage and environmental contamination are serious issues andthus seeking for renewable and clean energy is an urgent task. The production of chemicalfuels by solar energy conversion has been considered as one of the major strategies forsolving the global energy problem. Photocatalytic water splitting for hydrogen productionhas been considered as an ultimate solution for clean, economical, and environmentallyfriendly production of hydrogen by using solar energy. For an efficient photocatalyst,longlived charge carriers, fewer charge trapping centers, proper energy level offsets, andstability against light are highly desirable for improving the photocatalytic reactivity.During the past decade, a variety of strategies, including textural design, doping, noblemetal loading, and surface sensitization of semiconductor photocatalysts, have beenemployed to improve the photocatalytic performance of photocatalysts. The discovery ofgraphene has opened up a new way to improve photocatalytic performance owing to aunique sp2hybrid carbon network. In this dissertation, we prepared various functionalizedgraphene-based nanomaterials for photocatalytic H2generation from water. In thisphotocatalytic systems, graphene can act as an electron acceptor. In addition, grapheneoxide (GO) or reduced graphene oxide (RGO) can also act as a photocatalyst for hydrogenproduction. The main points could be summarized as follows:
     (1) RGO/GO is a semiconductor with finite bandgap which can be tuned based on thedifferent oxidation level. RGO/GO itself has ability of extraction of hydrogen from waterin the presence of light. However, RGO/GO is not effective for absorbing visible light andhas a low photocatalytic activity for H2generation under visible light irradiation. Based ona similar consideration for dye sensitization of semiconductor, RGO is functionalized by eosin Y (EY) in aqueous media to form the stable aqueous EY functionalized graphene(EY-RGO) suspension through noncovalent modification. EY molecules are built on thesurface of the RGO via hydrogen bonding and-stacking interactions without causingdamage to the electronic properties of the RGO. UV-vis, Raman, fluorescence spectra, andphotoelectrochemical measurements reveal that EY molecules attached on the surface ofthe RGO play a role of an antenna: harvesting irradiation light to give more efficientphotoinduced electron transfers from EY to RGO. The EY-RGO is photocatalytic activefor water reduction to produce hydrogen. The average production rate of H2for thephotocatalyst (wEY/wRGO=1) in a10vol%triethanolamine aqueous solution can reach3.35mmol·g-1·h-1and0.40mmol·g-1·h-1under30h UV-vis and10h visible light irradiation,respectively. The photocatalytic activity of EY-RGO is superior to that of RGO, GO, andEY-GO. Modification EY-RGO with Pt nanoparticles can further improve photocatalyticactivity.
     (2) A novel composite composed of TiSi2, graphene and RuO2nanoparticles was fabricatedby one-pot deposition method. Graphene can act as an excellent supporting matrix forsemiconductors and as the electron acceptor due to its high specific surface area andsuperior electron mobility. RuO2serves as a cocatalyst in the system. The resultingRuO2/TiSi2/RGO composite was characterized by scanning electron microscopy, X-raydiffraction, Fourier transform infrared spectra, X-ray photoelectron spectroscopy, UV-visdiffuse reflectance spectra, photoelectrical response and electrochemical impedance spectra.The results indicated three components in the composite were effectively contacted, thusfacilitating the photogenerated charges transfer and separation through multiple routes. Thecomposite enhanced the absorption ability in the visible range. The composite shows ahigher rate of H2evolution (97.5mol·h-1·g-1) than that of the composite RuO2/TiSi2(71.9mol·h-1·g-1) and pure TiSi2(56.3mol·h-1·g-1) under visible-light irradiation (420nm)when the contents of graphene and RuO2were both1wt%. Incorporation of graphene andRuO2into TiSi2diversifies the electron transfer process, increases H2evolution active siteand reduces the probability of electron–hole recombination. O2can be evolved in high temperatures for the oxidation of water by holes in the valence band of TiSi2,leading tooverall water splitting.
     (3) Nitrogen doped graphene was synthesized from graphite oxide and urea by thermalsolid-state reaction. The nitrogen content in the graphene lattice may be tuned by simplychanging the ratio of reagents GO and urea. The sample prepared at a low ratio of GO andurea (wGO/wurea=0.3) has a relative high nitrogen content (~10at.%); while the sampleprepared at a high ratio of GO and urea (wGO/wurea=1or0.5) usually has a low nitrogencontent (~3.2at.%for wGO/wurea=1;~6.5at.%for wGO/wurea=0.5). Moreover, GOannealed with urea shows an evident reduction effect. The oxygen content in our samplesis lower than those of GO annealed in H2or in Ar at the same temperature, indicating GOcan be reduced more easily in the presence of urea. Oxygen-containing functional groupsin GO and amino-groups of urea are suggested to be essential for forming C-N bonds in thegraphene lattice. XPS investigations demonstrate a forming mechanism of N-dopedgraphene prepared by thermal solid-state reaction of GO and urea: a gradual thermaltransformation of nitrogen bonding configurations from amide form nitrogen to pyrrolic,then to pyridinic, and finally to “graphitic” nitrogen in graphene sheets with increasingannealing temperature. The electrical conductivity of the sample can reach ca.40S·cm-1,which is5orders of magnitude higher than that of graphene oxide. The increase inconductivity of the sample annealed at higher temperature may be attributed to bettergraphitization of C=C π-conjugation of the graphene basal plane and the decreased defectsformed within the plane associated with incorporation of nitrogen. This research providedthe foundation for the photocatalytic application of nitrogen doped graphene.
     (4) N-doped graphene (NGR)/TiO2nanocomposites was prepared using nitrogen dopedgraphene as a supporting matrix for TiO2nanoparticles. TEM image shows TiO2nanoparticles with an average diameter of ca.8nm were fairly well attached to the NGRsheets, while the average diameter of TiO2nanoparticles is ca.20nm for RGO/TiO2composite, indicating stronger coupling between TiO2and N-doped sites on the NGR thanRGO. Nitrogen-containing groups in graphene may serve as favourable nucleation and anchor sites for TiO2nanocrystals. The XPS spectra and Raman spectra of NGR/TiO2nanocomposites indicated the strong electronic interaction exist between TiO2and NGR.Photocurrent responses, electrochemical impedance spectra and cyclic voltammogramsresults show NGR has higher conductivity and higher carrier transfer rate than RGO. TheNGR/TiO2composite shows higher photocatalytic activity for hydrogen generationcompared with pure TiO2and RGO/TiO2. Furthermore, platinum nanoparticles modifiedNGR/TiO2composites (Pt/NGR/TiO2) enhanced the photocatalytic activity and stabilitycompared with Pt/TiO2and Pt/RGO/TiO2.
引文
[1] Sherif SA, Barbir F, Veziroglu TN. Wind energy and the hydrogen economy-review ofthe technology. Sol. Energy2005;78(5):647-660.
    [2] Sahaym U, Norton M. Advances in the application of nanotechnology in enabling a‘hydrogen economy’. J. Mater. Sci.2008;43(16):5395-5429.
    [3] Ewan BCR, Allen RWK. A figure of merit assessment of the routes to hydrogen. Int. J.Hydrogen Energy2005;30(8):809-819.
    [4] Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductorelectrode. Nature1972;238(5358):37-38.
    [5] Kudo A, Miseki Y. Heterogeneous photocatalyst materials for water splitting. Chem.Soc. Rev.2009;38(1):253-278.
    [6] Navarro Yerga RM, álvarez Galván MC, del Valle F, Villoria de la Mano JA, FierroJLG. Water splitting on semiconductor catalysts under visible-light irradiation.ChemSusChem2009;2(6):471-485.
    [7] Benniston AC, Harriman A. Artificial photosynthesis. Mater. Today2008;11(12):26-34.
    [8] Bard AJ, Fox MA. Artificial photosynthesis: Solar splitting of water to hydrogen andoxygen. Acc. Chem. Chem. Res.1995;28(3):141-145.
    [9] Zhu M, Han M, Du Y, Yang P, Wang X. The synthesis, light-harvesting, andphotocatalysis of naphthylporphyrin-functionalized platinum nanocomposites. DyesPigments2010;86(1):81-86.
    [10] Zhu M, Dong Y, Du Y, Mou Z, Liu J, Yang P, et al. Photocatalytic hydrogen evolutionbased on efficient energy and electron transfers in donor–bridge–acceptormultibranched-porphyrin-functionalized platinum nanocomposites. Chem. Eur. J.2012;18(14):4367-4374.
    [11] Zhang LL, Lu YT, Du YK, Yang P, Wang XM. Synthesis and photocatalytic hydrogenevolution of meso-tetrakis(p-sulfonatophenyl)porphyrin functionalized platinumnanocomposites. J. Porphyrins Phthalocyanines2010;14(6):540-546.
    [12] Zhu M, Lu Y, Du Y, Li J, Wang X, Yang P. Photocatalytic hydrogen evolution withoutan electron mediator using a porphyrin-pyrene conjugate functionalized Ptnanocomposite as a photocatalyst. Int. J. Hydrogen Energy2011;36(7):4298-4304.
    [13] Zhu M, Li Z, Du Y, Mou Z, Yang P. Stable and efficient homogeneous photocatalyticH2evolution based on water soluble pyrenetetrasulfonic acid functionalized platinumnanocomposites. ChemCatChem2012;4(1):112-117.
    [14] Hagfeldt A, Boschloo G, Sun L, Kloo L, Pettersson H. Dye-sensitized solar cells.Chem. Rev.2010;110(11):6595-6663.
    [15] Horiuchi T, Miura H, Sumioka K, Uchida S. High efficiency of dye-sensitized solarcells based on metal-free indoline dyes. J. Am. Chem. Soc.2004;126(39):12218-12219.
    [16]Gr tzel M. Solar energy conversion by dye-sensitized photovoltaic cells. Inorg. Chem.2005;44(20):6841-6851.
    [17] Min S, Lu G. Dye-cosensitized graphene/Pt photocatalyst for high efficient visiblelight hydrogen evolution. Int. J. Hydrogen Energy2012;37(14):10564-10574.
    [18] Zhu M, Dong Y, Xiao B, Du Y, Yang P, Wang X. Enhanced photocatalytic hydrogenevolution performance based on Ru-trisdicarboxybipyridine-reduced graphene oxidehybrid. J. Mater. Chem.2012;22(45):23773-23779.
    [19] Latorre-Sánchez M, Lavorato C, Puche M, Fornés V, Molinari R, Garcia H.Visible-light photocatalytic hydrogen generation by using dye-sensitized grapheneoxide as a photocatalyst. Chem. Eur. J.2012;18(52):16774-16783.
    [20] O'Regan B, Gratzel M. A low-cost, high-efficiency solar cell based on dye-sensitizedcolloidal TiO2films. Nature1991;353:737-740.
    [21] Nazeeruddin MK, Bessho T, Cevey L, Ito S, Klein C, De Angelis F, et al. A highmolar extinction coefficient charge transfer sensitizer and its application indye-sensitized solar cell. J. Photoch. Photobio. A2007;185:331-337.
    [22] Nazeeruddin MK, De Angelis F, Fantacci S, Selloni A, Viscardi G, Liska P, et al.Combined experimental and DFT-TDDFT computational study ofphotoelectrochemical cell ruthenium sensitizers. J. Am. Chem. Soc.2005;127(48):16835-16847.
    [23] Maeda K, Eguchi M, Youngblood WJ, Mallouk TE. Niobium oxide nanoscrolls asbuilding blocks for dye-sensitized hydrogen production from water under visible lightirradiation. Chem. Mater.2008;20(21):6770-6778.
    [24] Youngblood WJ, Lee S-HA, Maeda K, Mallouk TE. Visible light water splitting usingdye-sensitized oxide semiconductors. Acc. Chem. Res.2009;42(12):1966-1973.
    [25] Maeda K, Eguchi M, Lee S-HA, Youngblood WJ, Hata H, Mallouk TE. Photocatalytichydrogen evolution from hexaniobate nanoscrolls and calcium niobate nanosheetssensitized by ruthenium(II) bipyridyl complexes. J. Phys. Chem. C2009;113(18):7962-7969.
    [26] Gurunathan K, Maruthamuthu P, Sastri MVC. Photocatalytic hydrogen production bydye-sensitized Pt/SnO2and Pt/SnO2/RuO2in aqueous methyl viologen solution. Int. J.Hydrogen Energy1997;22(1):57-62.
    [27] Ikuma Y, Bessho H. Effect of Pt concentration on the production of hydrogen by aTiO2photocatalyst. Int. J. Hydrogen Energy2007;32(14):2689-2692.
    [28] Zheng X-J, Wei L-F, Zhang Z-H, Jiang Q-J, Wei Y-J, Xie B, et al. Research onphotocatalytic H2production from acetic acid solution by Pt/TiO2nanoparticles underUV irradiation. Int. J. Hydrogen Energy2009;34(22):9033-9041.
    [29] Tian M, Shangguan W, Yuan J, Wang S, Ouyang Z. Promotion effect of nanosized Pt,RuO2and NiOx loading on visible light-driven photocatalysts K4Ce2M10O30(M=Ta,Nb) for hydrogen evolution from water decomposition. Sci. Tech. Adv. Mater.2007;8:82-88.
    [30] Yang J, Yan H, Wang X, Wen F, Wang Z, Fan D, et al. Roles of cocatalysts inPt-PdS/CdS with exceptionally high quantum efficiency for photocatalytic hydrogenproduction. J. Catal.2012;290(0):151-157.
    [31] Wang X, Maeda K, Thomas A, Takanabe K, Xin G, Carlsson JM, et al. A metal-freepolymeric photocatalyst for hydrogen production from water under visible light. NatMater.2009;8(1):76-80.
    [32] Zhang J, Wang Y, Zhang J, Lin Z, Huang F, Yu J. Enhanced photocatalytic hydrogenproduction activities of Au-loaded ZnS flowers. ACS Appl. Mater. Interfaces2013;5(3):1031-1037.
    [33] Gallo A, Marelli M, Psaro R, Gombac V, Montini T, Fornasiero P, et al. BimetallicAu-Pt/TiO2photocatalysts active under UV-A and simulated sunlight for H2production from ethanol. Green Chem.2012;14(2):330-333.
    [34] Lin H-Y, Chang Y-S. Photocatalytic water splitting for hydrogen production onAu/KTiNbO5. Int. J. Hydrogen Energy2010;35(16):8463-8471.
    [35] Hou ková V, tengl V, Bakardjieva S, Murafa N, Tyrpekl V. Photocatalytic propertiesof Ru-doped titania prepared by homogeneous hydrolysis. Cent. Eur. J. Chem.2009;7(2):259-266.
    [36] Liu Y, Fang L, Lu H, Liu L, Wang H, Hu C. Highly efficient and stable Ag/Ag3PO4plasmonic photocatalyst in visible light. Catal. Commun.2011;17:200-204.
    [37]黄徽,杜玉扣,杨平. Ag-TiO2/ACF纳米复合物的制备及其对亚甲基兰光降解作用及抗菌性能.化学研究与应用2009;21(5):618-623.
    [38] Sato J, Kobayashi H, Ikarashi K, Saito N, Nishiyama H, Inoue Y. Photocatalyticactivity for water decomposition of RuO2-Dispersed Zn2GeO4with d10configuration.J. Phys. Chem. B2004;108(14):4369-4375.
    [39] Teramura K, Maeda K, Saito T, Takata T, Saito N, Inoue Y, et al. Characterization ofruthenium oxide nanocluster as a cocatalyst with (Ga1-xZnx)(N1-xOx) for photocatalyticoverall water splitting. J. Phys. Chem. B2005;109(46):21915-21921.
    [40] Sato J, Saito N, Nishiyama H, Inoue Y. Photocatalytic water decomposition byRuO2-loaded antimonates, M2Sb2O7(M=Ca, Sr), CaSb2O6and NaSbO3, with d10configuration. J. Photoch. Photobio. A2002;148:85-89.
    [41] Torres-Martinez LM, Gomez R, Vazquez-Cuchillo O, Juarez-Ramirez I, Cruz-LopezA, Alejandre-Sandoval FJ. Enhanced photocatalytic water splitting hydrogenproduction on RuO2/La NaTaO3prepared by sol-gel method. Catal. Commun.2011;12(4):268-272.
    [42] Nishiyama H, Kobayashi H, Inoue Y. Effects of distortion of metal-oxygen octahedraon photocatalytic water-splitting performance of RuO2-loaded niobium and tantalumphosphate bronzes. Chemsuschem2011;4(2):208-215.
    [43] Lin H-Y, Chen Y-F, Chen Y-W. Water splitting reaction on NiO/InVO4under visiblelight irradiation. Int. J. Hydrogen Energy2007;32(1):86-92.
    [44] Sreethawong T, Suzuki Y, Yoshikawa S. Photocatalytic evolution of hydrogen overmesoporous TiO2supported NiO photocatalyst prepared by single-step sol-gel processwith surfactant template. Int. J. Hydrogen Energy2005;30(10):1053-1062.
    [45] Sato J, Saito N, Yamada Y, Maeda K, Takata T, Kondo JN, et al. RuO2-loadedβ-Ge3N4as a non-oxide photocatalyst for overall water splitting. J. Am. Chem. Soc.2005;127(12):4150-4151.
    [46] Maeda K, Wang X, Nishihara Y, Lu D, Antonietti M, Domen K. Photocatalyticactivities of graphitic carbon nitride powder for water reduction and oxidation undervisible light. J. Phys. Chem. C2009;113(12):4940-4947.
    [47] Meekins BH, Kamat PV. Role of Water oxidation catalyst IrO2in shuttlingphotogenerated holes across TiO2interface. J. Phys. Chem. Lett.2011;2(18):2304-2310.
    [48] Frame FA, Townsend TK, Chamousis RL, Sabio EM, Dittrich T, Browning ND, et al.Photocatalytic water oxidation with nonsensitized IrO2nanocrystals under visible andUV light. J. Am. Chem. Soc.2011;133(19):7264-7267.
    [49] Maeda K, Domen K. Photocatalytic Water Splitting: Recent Progress and FutureChallenges. J. Phys. Chem. Lett.2010;1(18):2655-2661.
    [50] Zong X, Yan H, Wu G, Ma G, Wen F, Wang L, et al. Enhancement of photocatalytic H2evolution on CdS by loading MoS2as cocatalyst under visible light irradiation. J. Am.Chem. Soc.2008;130(23):7176-7177.
    [51]温福宇,杨金辉,旭宗,艺马,倩徐,马保军等.太阳能光催化制氢研究进展.化学进展2009;21(11):2285-2302.
    [52] Kato H, Kudo A. Visible-light-response and photocatalytic activities of TiO2andSrTiO3photocatalysts codoped with antimony and chromium. J. Phys. Chem. B2002;106(19):5029-5034.
    [53] Chen X, Shen S, Guo L, Mao SS. Semiconductor-based Photocatalytic HydrogenGeneration. Chem. Rev.2010;110(11):6503-6570.
    [54] Fujishima A, Rao TN, Tryk DA. Titanium dioxide photocatalysis. J. Photoch.Photobio. C2000;1(1):1-21.
    [55] Chen X, Mao SS. Titanium Dioxide nanomaterials:synthesis, properties,modifications, and applications. Chem. Rev.2007;107(7):2891-2959.
    [56] Reyes-Garcia EA, Sun Y, Raftery D. Solid-state characterization of the nuclear andelectronic environments in a boron-fluoride co-doped TiO2visible-light photocatalyst.J. Phys. Chem. C2007;111(45):17146-17154.
    [57] Lim M, Zhou Y, Wood B, Guo Y, Wang L, Rudolph V, et al. Fluorine and carboncodoped macroporous titania microspheres: highly effective photocatalyst for thedestruction of airborne styrene under visible light. J. Phys. Chem. C2008;112(49):19655-19661.
    [58] Baker DR, Kamat PV. Photosensitization of TiO2nanostructures with CdS quantumdots: particulate versus tubular support architectures. Adv. Funct. Mater.2009;19(5):805-811.
    [59] Han L, Wang P, Dong S. Progress in graphene-based photoactive nanocomposites as apromising class of photocatalyst. Nanoscale2012;4(19):5814-5825.
    [60] Peng T, Zeng P, Ke D, Liu X, Zhang X. Hydrothermal preparation of multiwalledcarbon nanotubes (MWCNTs)/CdS nanocomposite and its efficient photocatalytichydrogen production under visible light irradiation. Energy Fuels2011;25(5):2203-2210.
    [61]敏世雄,吕功煊.新型二维碳材料-石墨烯在光催化分解水制氢中的研究进展.分子催化2011;25(2):166-179.
    [62]王保伟,孙启梅.石墨烯在光催化水解制氢中的应用化工进展.2012;31(10):2245-2259.
    [63] Sun Y, Wu Q, Shi G. Graphene based new energy materials. Energ. Environ. Sci.2011;4(4):1113-1132.
    [64] Guo S, Dong S. Graphene nanosheet: synthesis, molecular engineering, thin film,hybrids, and energy and analytical applications. Chem. Soc. Rev.2011;40(5):2644-2672.
    [65] Katsnelson MI. Graphene: carbon in two dimensions. Mater. Today2007;10:20-27.
    [66] Rao CNR, Sood AK, Subrahmanyam KS, Govindaraj A. Graphene: The newtwo-dimensional nanomaterial. Angew. Chem. Int. Edit.2009;48(42):7752-7777.
    [67] Wassei JK, Kaner RB. Oh, the places you'll go with graphene. Acc. Chem. Res.2013;46(10):2244-2253.
    [68]李旭,赵卫峰,陈国华.石墨烯的制备与表征研究.材料导报2008;22(8):48-52.
    [69] Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, et al. Electricfield effect in atomically thin carbon films. Science2004;306:666-669.
    [70] Partoens B, Peeters FM. From graphene to graphite: Electronic structure around the Kpoint. Phys. Rev. B2006;74(7):075404.
    [71] Hee K. Chae DYS-Pr, Jaheon Kim, YongBok Go,, Mohamed Eddaoudi AJM, MichaelO’Keeffe, Yaghi OM. A route to high surface area, porosity and inclusion of largemolecules in crystals. Nature2004;427:523-527.
    [72] Zhang Y, Tan Y-W, Stormer HL, Kim P. Experimental observation of the quantumHall effect and Berry's phase in graphene. Nature2005;438:201-204.
    [73] Lee C, Wei X, Kysar JW, Hone J. Measurement of the elastic properties and intrinsicstrength of monolayer graphene. Science2008;321:385-388.
    [74] CastroNeto AH, Guinea F, Peres NMR, Novoselov KS, Geim AK. The electronicproperties of graphene. Rev. mod. phys.2009;81(1):109-162.
    [75] Novoselov KS, Geim AK, Morozov SV, Jiang D, Katsnelson MI, Grigorieva IV, et al.Two-dimensional gas of massless Dirac fermions in graphene. Nature2005;438:197-200.
    [76] Booth TJ, Blake P, Nair RR, Jiang D, Hill EW, Bangert U, et al. Macroscopicgraphene membranes and their extraordinary stiffness. Nano Lett.2008;8(8):2442-2446.
    [77] Liu Y, Dong X, Chen P. Biological and chemical sensors based on graphene materials.Chem. Soc. Rev.2012;41(6):2283-2307.
    [78] Wei D, Liu Y. Controllable synthesis of graphene and its applications. Adv. Mater.2010;22(30):3225-3241.
    [79] Wan X, Huang Y, Chen Y. Focusing on energy and optoelectronic applications: ajourney for graphene and graphene oxide at large scale. Acc. Chem. Res.2012;45(4):598-607.
    [80] Guo CX, Guai GH, Li CM. Graphene based materials: enhancing solar energyharvesting. Adv. Energy Mater.2011;1(3):448-452.
    [81] Chen D, Feng H, Li J. Graphene oxide: preparation, functionalization, andelectrochemical applications. Chem. Rev.2012;112(11):6027-6053.
    [82] Machado BF, Serp P. Graphene-based materials for catalysis. Catal. Sci. Technol.2012;2(1):54-75.
    [83] Huang X, Yin Z, Wu S, Qi X, He Q, Zhang Q, et al. Graphene-based materials:synthesis, characterization, properties, and applications. Small2012;7(14):1876-1902.
    [84] Kamat PV. Graphene-based nanoassemblies for energy conversion. J. Phys. Chem.Lett.2011;2(3):242-251.
    [85] An X, Yu JC. Graphene-based photocatalytic composites. RSC Adv.2011;1(8):1426-1434.
    [86]Xiang Q, Yu J, Jaroniec M. Graphene-based semiconductor photocatalysts. Chem. Soc.Rev.2012;41(2):782-796.
    [87] Sutter PW, Flege J-I, Sutter EA. Epitaxial graphene on ruthenium. Nat. Mater.2008;7(5):406-411.
    [88] Kim KS, Zhao Y, Jang H, Lee SY, Kim JM, Kim KS, et al. Large-scale pattern growthof graphene films for stretchable transparent electrodes. Nature2009;457:706-710.
    [89] Li X, Cai W, An J, Kim S, Nah J, Yang D, et al. Large-area synthesis of high-qualityand uniform graphene films on copper foils. Science2009;324:1312-1314.
    [90] Hernandez Y, Nicolosi V, Lotya M, Blighe FM, Sun Z, De S, et al. High-yieldproduction of graphene by liquid-phase exfoliation of graphite. Nat. Nano.2008;3(9):563-568.
    [91] Lotya M, Hernandez Y, King PJ, Smith RJ, Nicolosi V, Karlsson LS, et al. Liquidphase production of graphene by exfoliation of graphite in surfactant/water solutions.J. Am. Chem. Soc.2009;131(10):3611-3620.
    [92] Choucair M, Thordarson P, Stride JA. Gram-scale production of graphene based onsolvothermal synthesis and sonication. Nat. Nano.2009;4(1):30-33.
    [93] Staudenmaier L. Verfahren zur darstellung der graphitsaur. Beriehte der deutsehenchemisehen Geellschaft.1898;31:1481.
    [94] Brodie BC. On the atomic weight of graphite. Philosophieal Transaetions of the RoyalSoeiety of Londo.1859;149:249.
    [95] Hummers WS, Offeman RE. Preparation of graphitic oxide. J. Am. Chem. Soc.1958;80(6):1339.
    [96] Pei S, Cheng H-M. The reduction of graphene oxide. Carbon2012;50(9):3210-3228.
    [97] Stankovich S, Dikin DA, Piner RD, Kohlhaas KA, Kleinhammes A, Jia Y, et al.Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphiteoxide. Carbon2007;45(7):1558-1565.
    [98] Park S, An J, Potts JR, Velamakanni A, Murali S, Ruoff RS. Hydrazine-reduction ofgraphite-and graphene oxide. Carbon2011;49(9):3019-3023.
    [99] Tung VC, Allen MJ, Yang Y, Kaner RB. High-throughput solution processing oflarge-scale graphene. Nat. Nano.2009;4(1):25-29.
    [100] Shin H-J, Kim KK, Benayad A, Yoon S-M, Park HK, Jung I-S, et al. Efficientreduction of graphite oxide by sodium borohydride and its effect on electricalconductance. Adv. Funct. Mater.2009;19(12):1987-1992.
    [101] Fernández-Merino MJ, Guardia L, Paredes JI, Villar-Rodil S, Solís-Fernández P,Martínez-Alonso A, et al. Vitamin C is an ideal substitute for hydrazine in thereduction of graphene oxide suspensions. J. Phys. Chem. C2010;114(14):6426-6432.
    [102] Li X, Zhang G, Bai X, Sun X, Wang X, Wang E, et al. Highly conductinggraphene sheets and Langmuir-Blodgett films. Nat. Nano.2008;3(9):538-542.
    [103] Fan X, Peng W, Li Y, Li X, Wang S, Zhang G, et al. Deoxygenation of exfoliatedgraphite oxide under alkaline conditions: a green route to graphene preparation. Adv.Mater.2008;20(23):4490-4493.
    [104]杨全红,唐致远.新型储能材料—石墨烯的储能特性及其前景展望.电源技术2009;33(4):241-244.
    [105] Georgakilas V, Otyepka M, Bourlinos AB, Chandra V, Kim N, Kemp KC, et al.Functionalization of graphene: covalent and non-covalent approaches, derivatives andapplications. Chem. Rev.2012;112(11):6156-6214.
    [106] Georgakilas V, Bourlinos AB, Zboril R, Steriotis TA, Dallas P, Stubos AK, et al.Organic functionalisation of graphenes. Chem. Commun.2010;46(10):1766-1768.
    [107] Liu Z-B, Xu Y-F, Zhang X-Y, Zhang X-L, Chen Y-S, Tian J-G. Porphyrin andfullerene covalently functionalized graphene hybrid materials with large nonlinearoptical properties. J. Phys. Chem. B2009;113(29):9681-9686.
    [108] Xu Y, Zhao L, Bai H, Hong W, Li C, Shi G. Chemically converted grapheneinduced molecular flattening of5,10,15,20-Tetrakis(1-methyl-4-pyridinio)porphyrinand its application for optical detection of cadmium(II) ions. J. Am. Chem. Soc.2009;131(37):13490-13497.
    [109] Su Q, Pang S, Alijani V, Li C, Feng X, Müllen K. Composites of graphene withlarge aromatic molecules. Adv. Mater.2009;21(31):3191-3195.
    [110] Georgakilas V, Gournis D, Tzitzios V, Pasquato L, Guldi DM, Prato M.Decorating carbon nanotubes with metal or semiconductor nanoparticles. J. Mater.Chem.2007;17(26):2679-2694.
    [111] Granatier J, Lazar P, Prucek R, afá ová K, Zbo il R, Otyepka M, et al. Interactionof graphene and arenes with noble metals. J. Phys. Chem. C2012;116(26):14151-14162.
    [112] Pasricha R, Gupta S, Srivastava AK. A facile and novel synthesis ofAg-graphene-based nanocomposites. Small2009;5(20):2253-2259.
    [113] Si Y, Samulski ET. Exfoliated graphene separated by platinum nanoparticles.Chem. Mater.2008;20(21):6792-6797.
    [114] Guo S, Dong S, Wang E. Three-dimensional Pt-on-Pd bimetallic nanodendritessupported on graphene nanosheet: facile synthesis and used as an advancednanoelectrocatalyst for methanol oxidation. ACS Nano2010;4(1):547-555.
    [115] Wang D, Kou R, Choi D, Yang Z, Nie Z, Li J, et al. Ternary self-assembly ofordered metal oxide-graphene nanocomposites for electrochemical energy storage.ACS Nano2010;4(3):1587-1595.
    [116] Li Y, Lv X, Lu J, Li J. Preparation of SnO2-nanocrystal/graphene-Nanosheetscomposites and their lithium storage ability. J. Phys. Chem. C2010;114(49):21770-21774.
    [117] Wang B, Park J, Wang C, Ahn H, Wang G. Mn3O4nanoparticles embedded intographene nanosheets: preparation, characterization, and electrochemical properties forsupercapacitors. Electrochim. Acta.2010;55(22):6812-6817.
    [118] Hou C, Zhang Q, Zhu M, Li Y, Wang H. One-step synthesis ofmagnetically-functionalized reduced graphite sheets and their use in hydrogels.Carbon2011;49(1):47-53.
    [119] Lin Y, Geng Z, Cai H, Ma L, Chen J, Zeng J, et al. Ternary Graphene–TiO2–Fe3O4nanocomposite as a recollectable photocatalyst with enhanced durability. Eur. J. Inorg.Chem.2012;2012(28):4439-4444.
    [120] Yan J, Fan Z, Wei T, Qian W, Zhang M, Wei F. Fast and reversible surface redoxreaction of graphene-MnO2composites as supercapacitor electrodes. Carbon2010;48(13):3825-3833.
    [121] Mendes RG, Bachmatiuk A, El-Gendy AA, Melkhanova S, Klingeler R, BüchnerB, et al. A facile route to coat iron oxide nanoparticles with few-layer graphene. J.Phys. Chem. C2012;116(44):23749-23756.
    [122] Singh VK, Patra MK, Manoth M, Gowd GS, Vadera SR, Kumar N. In situsynthesis of graphene oxide and its composites with iron oxide. Carbon2009;47(12):2942.
    [123] Williams G, Seger B, Kamat PV. TiO2-graphene nanocomposites. UV-assistedphotocatalytic reduction of graphene oxide. ACS Nano2008;2(7):1487-1491.
    [124] Li B, Cao H. ZnO@graphene composite with enhanced performance for theremoval of dye from water. J. Mater. Chem.2011;21(10):3346-3349.
    [125] Baby TT, Sundara R. Synthesis and transport properties of metal oxide decoratedgraphene dispersed nanofluids. J. Phys. Chem. C2011;115(17):8527-8533.
    [126] Tran PD, Batabyal SK, Pramana SS, Barber J, Wong LH, Loo SCJ. A cuprousoxide-reduced graphene oxide (Cu2O-rGO) composite photocatalyst for hydrogengeneration: employing rGO as an electron acceptor to enhance the photocatalyticactivity and stability of Cu2O. Nanoscale2012;4(13):3875-3878.
    [127] Li B, Cao H, Yin G, Lu Y, Yin J. Cu2O@reduced graphene oxide composite forremoval of contaminants from water and supercapacitors. J. Mater. Chem.2011;21(29):10645-10648.
    [128] Radich JG, Dwyer R, Kamat PV. Cu2S reduced graphene oxide composite forhigh-efficiency quantum dot solar cells. overcoming the redox limitations of S2-/Sn2-atthe counter electrode. J. Phys. Chem. Lett.2011:2453-2460.
    [129] Liang Y, Li Y, Wang H, Zhou J, Wang J, Regier T, et al. Co3O4nanocrystals ongraphene as a synergistic catalyst for oxygen reduction reaction. Nat. Mater.2011;10(10):780-786.
    [130] Sun H, Liu S, Zhou G, Ang HM, Tadé MO, Wang S. Reduced graphene oxide forcatalytic oxidation of aqueous organic pollutants. ACS Appl. Mater. Interfaces2012;4(10):5466–5471.
    [131] Cao A, Liu Z, Chu S, Wu M, Ye Z, Cai Z, et al. A facile one-step method toproduce graphene-CdS quantum dot nanocomposites as promising optoelectronicmaterials. Adv. Mater.2010;22(1):103-106.
    [132] Wang P, Jiang TF, Zhu CZ, Zhai YM, Wang DJ, Dong SJ. One-step, solvothermalsynthesis of graphene-CdS and graphene-ZnS quantum dot nanocomposites and theirinteresting photovoltaic properties. Nano Res.2010;3(11):794-799.
    [133] Xue L, Shen C, Zheng M, Lu H, Li N, Ji G, et al. Hydrothermal synthesis ofgraphene-ZnS quantum dot nanocomposites. Mater. Lett.2011;65(2):198-200.
    [134] Wang Y, Yao H-B, Wang X-H, Yu S-H. One-pot facile decoration of CdSequantum dots on graphene nanosheets: novel graphene-CdSe nanocomposites withtunable fluorescent properties. J. Mater. Chem.2011;21(2):562-566.
    [135] Akhavan O. Photocatalytic reduction of graphene oxides hybridized by ZnOnanoparticles in ethanol. Carbon2011;49(1):11-18.
    [136] Zhu M, Chen P, Liu M. Graphene oxide enwrapped Ag/AgX (X=Br, Cl)nanocomposite as a highly efficient visible-light plasmonic photocatalyst. ACS Nano2011;5(6):4529-4536.
    [137] Wu JL, Bai S, Shen XP, Jiang L. Preparation and characterization ofgraphene/CdS nanocomposites. Appl. Surf. Sci.2010;257(3):747-751.
    [138] Yan J, Wei T, Shao B, Fan Z, Qian W, Zhang M, et al. Preparation of a graphenenanosheet/polyaniline composite with high specific capacitance. Carbon2010;48(2):487-493.
    [139] Yoo E, Kim J, Hosono E, Zhou H-s, Kudo T, Honma I. Large reversible Li storageof graphene nanosheet families for use in rechargeable lithium ion batteries. NanoLett.2008:2277-2282.
    [140] Cai D, Song M, Xu C. Highly conductive carbon-nanotube/graphite-oxide hybridfilms. Adv. Mater.2008;20(9):1706-1709.
    [141] Zhang X, Huang Y, Wang Y, Ma Y, Liu Z, Chen Y. Synthesis and characterizationof a graphene-C60hybrid material. Carbon2009;47(1):334-337.
    [142] Schedin F, Geim AK, Morozov SV, Hill EW, Blake P, Katsnelson MI, et al.Detection of individual gas molecules adsorbed on graphene. Nat. Mater.2007;6(9):652-655.
    [143] Gierz I, Riedl C, Starke U, Ast CR, Kern K. Atomic hole doping of graphene.Nano Lett.2008;8(12):4603-4607.
    [144] Chen W, Chen S, Qi DC, Gao XY, Wee ATS. Surface transfer p-type doping ofepitaxial graphene. J. Am. Chem. Soc.2007;129(34):10418-10422.
    [145] Panchakarla LS, Subrahmanyam KS, Saha SK, Govindaraj A, Krishnamurthy HR,Waghmare UV, et al. Synthesis, structure, and properties of boron-andnitrogen-doped graphene. Adv. Mater.2009;21(46):4726-4730.
    [146] Liu H, Liu Y, Zhu D. Chemical doping of graphene. J. Mater. Chem.2011;21(10):3335-3345.
    [147] Wang H, Maiyalagan T, Wang X. Review on Recent progress in nitrogen-dopedgraphene: synthesis, characterization, and its potential applications. ACS Catal.2012;2(5):781-794.
    [148] Wei D, Liu Y, Wang Y, Zhang H, Huang L, Yu G. Synthesis of N-doped grapheneby chemical vapor deposition and its electrical properties. Nano Lett.2009;9(5):1752-1758.
    [149] Li X, Wang H, Robinson JT, Sanchez H, Diankov G, Dai H. Simultaneousnitrogen doping and reduction of graphene oxide. J. Am. Chem. Soc.2009;131(43):15939-15944.
    [150] Li N, Wang Z, Zhao K, Shi Z, Gu Z, Xu S. Large scale synthesis of N-dopedmulti-layered graphene sheets by simple arc-discharge method. Carbon2010;48(1):255-259.
    [151] Lin Y-C, Lin C-Y, Chiu P-W. Controllable graphene N-doping with ammoniaplasma. Appl. Phys. Lett.2010;96(13):133110.
    [152] Qian H, Negri F, Wang C, Wang Z. Fully conjugated tri(perylene bisimides): anapproach to the construction of n-type graphene nanoribbons. J. Am. Chem. Soc.2008;130(52):17970-17976.
    [153] Deng D, Pan X, Yu L, Cui Y, Jiang Y, Qi J, et al. Toward N-doped graphene viasolvothermal synthesis. Chem. Mater.2011;23(5):1188-1193.
    [154] Mousavi H, Moradian R. Nitrogen and boron doping effects on the electricalconductivity of graphene and nanotube. Solid State Sci.2011;13(8):1459-1464.
    [155] Chiou JW, Ray SC, Peng SI, Chuang CH, Wang BY, Tsai HM, et al.Nitrogen-functionalized graphene nanoflakes (GNFs:N): tunable photoluminescenceand electronic structures. J. Phys. Chem. C2012116(30):16251-16258..
    [156] Li Y, Zhao Y, Cheng H, Hu Y, Shi G, Dai L, et al. Nitrogen-doped graphenequantum dots with oxygen-rich functional groups. J. Am. Chem. Soc.2012;134(1):15-18.
    [157] Mkhoyan KA, Contryman AW, Silcox J, Stewart DA, Eda G, Mattevi C, et al.Atomic and electronic structure of graphene-oxide. Nano Lett.2009;9(3):1058-1063.
    [158] D. R.Dreyer, S Park, C. W.Bielawski, Ruoff RS. The chemistry of graphene oxide.Chem. Soc. Rev.2010;39(1):228-240.
    [159] Yeh T-F, Syu J-M, Cheng C, Chang T-H, Teng H. Graphite oxide as aphotocatalyst for hydrogen production from water. Adv. Funct. Mater.2010;20(14):2255-2262.
    [160] Yeh T-F, Chan F-F, Hsieh C-T, Teng H. Graphite oxide with different oxygenatedlevels for hydrogen and oxygen production from water under illumination: the bandpositions of graphite oxide. J. Phys. Chem. C2011;115(45):22587-22597.
    [161] Lv X-J, Fu W-F, Chang H-X, Zhang H, Cheng J-S, Zhang G-J, et al. Hydrogenevolution from water using semiconductor nanoparticle/graphene compositephotocatalysts without noble metals. J. Mater. Chem.2011;22(4):1539-1546.
    [162] Ye A, Fan W, Zhang Q, Deng W, Wang Y. CdS-graphene and CdS-CNTnanocomposites as visible-light photocatalysts for hydrogen evolution and organicdye degradation. Catal. Sci. Technol.2012;2(5):969-978.
    [163] Liao G, Chen S, Quan X, Yu H, Zhao H. Graphene oxide modified g-C3N4hybridwith enhanced photocatalytic capability under visible light irradiation. J. Mater. Chem.2012;22(6):2721-2726.
    [164] Li Y, Wang H, Xie L, Liang Y, Hong G, Dai H. MoS2nanoparticles grown ongraphene: an advanced catalyst for the hydrogen evolution reaction. J. Am. Chem. Soc.2011;133(19):7296-7299.
    [165] Xiang Q, Yu J, Jaroniec M. Preparation and enhanced visible-light photocatalyticH2-production activity of graphene/C3N4composites. J. Phys. Chem. C2011;115(15):7355-7363.
    [166] Ng YH, Iwase A, Kudo A, Amal R. Reducing graphene oxide on a visible-lightBiVO4photocatalyst for an enhanced photoelectrochemical water splitting. J. Phys.Chem. Lett.2010;1(17):2607-2612.
    [167] Xiang Q, Yu J, Jaroniec M. Synergetic effect of MoS2and graphene as cocatalystsfor enhanced photocatalytic H2production activity of TiO2nanoparticles. J. Am.Chem. Soc.2012;134(15):6575-6578.
    [168] Lightcap IV, Kosel TH, Kamat PV. Anchoring semiconductor and metalnanoparticles on a two-dimensional catalyst Mat. Storing and shuttling electrons withreduced graphene oxide. Nano Lett.2010;10(2):577-583.
    [169] Zhang X-Y, Li H-P, Cui X-L, Lin Y. Graphene/TiO2nanocomposites: synthesis,characterization and application in hydrogen evolution from water photocatalyticsplitting. J. Mater. Chem.2010;20(14):2801-2806.
    [170] Zhang X, Sun Y, Cui X, Jiang Z. A green and facile synthesis of TiO2/graphenenanocomposites and their photocatalytic activity for hydrogen evolution. Int. J.Hydrogen Energy2012;37(1):811-815.
    [171]张晓艳,李浩鹏,崔晓莉. TiO2/石墨烯复合材料的合成及光催化分解水产氢活性.无机化学学报2009;25(11):1903-1907.
    [172] Park Y, Kang S-H, Choi W. Exfoliated and reorganized graphite oxide on titaniananoparticles as an auxiliary co-catalyst for photocatalytic solar conversion. Phys.Chem. Chem. Phys.2011;13(20):9425-9431.
    [173] Li Q, Guo B, Yu J, Ran J, Zhang B, Yan H, et al. Highly efficientvisible-light-driven photocatalytic hydrogen production of CdS-cluster-decoratedgraphene nanosheets. J. Am. Chem. Soc.2011;133(28):10878-10884.
    [174] Mukherji A, Seger B, Lu GQ, Wang L. Nitrogen doped Sr2Ta2O7coupled withgraphene sheets as photocatalysts for increased photocatalytic hydrogen production.ACS Nano2011:5(5):3483-3492.
    [175] Jia L, Wang D-H, Huang Y-X, Xu A-W, Yu H-Q. Highly durable N-dopedgraphene/CdS nanocomposites with enhanced photocatalytic hydrogen evolution fromwater under visible light irradiation. J. Phys. Chem. C2011;115(23):11466-11473.
    [176] Chen P, Xiao T-Y, Li H-H, Yang J-J, Wang Z, Yao H-B, et al. Nitrogen-dopedgraphene/ZnSe nanocomposites: hydrothermal synthesis and their enhancedelectrochemical and photocatalytic activities. ACS Nano2012;6(1):712-719.
    [177] Iwase A, Ng YH, Ishiguro Y, Kudo A, Amal R. Reduced graphene oxide as asolid-state electron mediator in Z-scheme photocatalytic water splitting under visiblelight. J. Am. Chem. Soc.2011;133(29):11054-11057.
    [1] Geim AK. Graphene: status and prospects. Science2009;324:1530-1534.
    [2] Gomez-Navarro C, Weitz RT, Bittner AM, Scolari M, Mews A, Burghard M, et al.Electronic transport properties of individual chemically reduced graphene oxidesheets. Nano Lett.2007;7:3499-3503.
    [3] Yang L, Deslippe J, Park CH, Cohen ML, Louie SG. Excitonic effects on the opticalresponse of graphene and bilayer graphene. Phys. Rev. Lett.2009;103:186802.
    [4] Liu Z, He D, Wang Y, Wu H, Wang J. Solution-processable functionalized graphene indonor/acceptor-type organic photovoltaic cells. Sol. Energ. Mat. Sol. C2010;94:1196-1200.
    [5] Chen W, Yan L, Bangal PR. Preparation of graphene by the rapid and mild thermalreduction of graphene oxide induced by microwaves. Carbon2010;48:1146-1152.
    [6] Liu J, Jeong H, Liu J, Lee K, Park J-Y, Ahn YH, et al. Reduction of functionalizedgraphite oxides by trioctylphosphine in non-polar organic solvents. Carbon2010;48:2282-2289.
    [7] Nethravathi C, Rajamathi M. Chemically modified graphene sheets produced by thesolvothermal reduction of colloidal dispersions of graphite oxide. Carbon2008;46:1994-1998.
    [8] Dreyer DR, Murali S, Zhu Y, Ruoff RS, Bielawski CW. Reduction of graphite oxideusing alcohols. J. Mater. Chem.2011;21:3443-3447.
    [9] Fernández-Merino MJ, Guardia L, Paredes JI, Villar-Rodil S, Solís-Fernández P,Martínez-Alonso A, et al. Vitamin C is an ideal substitute for hydrazine in thereduction of graphene oxide suspensions. J. Phys. Chem. C2010;114:6426-6432.
    [10] Fan X, Peng W, Li Y, Li X, Wang S, Zhang G, et al. Deoxygenation of exfoliatedgraphite oxide under alkaline conditions: a green route to graphene preparation. Adv.Mater.2008;20:4490-4493.
    [11] Zhu YW, Murali S, Cai WW, Li XS, Suk JW, Potts JR, et al. Graphene and grapheneoxide: synthesis, properties, and applications. Adv. Mater.2010;22:3906-3924.
    [12] Loh KP, Bao Q, Ang PK, Yang J. The chemistry of graphene. J. Mater. Chem.2010;20:2277-2289.
    [13] Karousis N, Economopoulos SP, Sarantopoulou E, Tagmatarchis N. Porphyrin counteranion in imidazolium-modified graphene-oxide. Carbon2010;48:854-860.
    [14] Xu Y, Zhao L, Bai H, Hong W, Li C, Shi G. Chemically converted graphene inducedmolecular flattening of5,10,15,20-tetrakis(1-methyl-4-pyridinio)porphyrin and itsapplication for optical detection of cadmium(II) ions. J. Am. Chem. Soc.2009;131:13490-13497.
    [15] Geng J, Jung H-T. Porphyrin functionalized graphene sheets in aqueous suspensions:from the preparation of graphene sheets to highly conductive graphene films. J. Phys.Chem. C2010;114:8227-8234.
    [16] Bai H, Xu Y, Zhao L, Li C, Shi G. Non-covalent functionalization of graphene sheetsby sulfonated polyaniline. Chem. Commun.2009;13:1667-1669.
    [17] Lin Y, Jin J, Song M. Preparation and characterisation of covalent polymerfunctionalized graphene oxide. J. Mater. Chem.2011;21:3455-3461.
    [18] Liu Y, Zhou J, Zhang X, Liu Z, Wan X, Tian J, et al. Synthesis, characterization andoptical limiting property of covalently oligothiophene-functionalized graphenematerial. Carbon2009;47:3113-3121.
    [19] An X, Butler TW, Washington M, Nayak SK, Kar S. Optical and sensing properties of1-pyrenecarboxylic acid-functionalized graphene films laminated onpolydimethylsiloxane membranes. ACS Nano2011;5:1003-1011.
    [20] Balapanuru J, Yang J-X, Xiao S, Bao Q, Jahan M, Polavarapu L, et al. A grapheneoxide–organic dye ionic complex with DNA-sensing and optical-limiting properties.Angew. Chem. Int. Edit.2010;49:6549-6553.
    [21] Midya A, Mamidala V, Yang J-X, Ang PKL, Chen Z-K, Ji W, et al. Synthesis andsuperior optical-limiting properties of fluorene-thiophene-benzothiadazolepolymer-functionalized graphene sheets. Small2010;6:2292-2300.
    [22] Park H-L, Yi S-C, Chung Y-C. Hydrogen adsorption on Li metal in boron-substitutedgraphene: an ab initio approach. Int. J. Hydrogen Energy2010;35:3583-3587.
    [23] Arbizzani C, Righi S, Soavi F, Mastragostino M. Graphene and carbon nanotubestructures supported on mesoporous xerogel carbon as catalysts for oxygen reductionreaction in proton-exchange-membrane fuel cells. Int. J. Hydrogen Energy2011;36:5038-5046.
    [24] Sigal A, Rojas MI, Leiva EPM. Interferents for hydrogen storage on a graphene sheetdecorated with nickel: a DFT study. Int. J. Hydrogen Energy2011;36:3537-3546.
    [25] Xu Y, Liu Z, Zhang X, Wang Y, Tian J, Huang Y, et al. A graphene hybrid materialcovalently functionalized with porphyrin: synthesis and optical limiting property. Adv.Mater.2009;21:1275-1279.
    [26] Bard AJ, Fox MA. Artificial photosynthesis: solar splitting of water to hydrogen andoxygen. Acc. Chem. Res.1995;28:141-145.
    [27] Jing D, Guo L, Zhao L, Zhang X, Liu H, Li M, et al. Efficient solar hydrogenproduction by photocatalytic water splitting: from fundamental study to pilotdemonstration. Int. J. Hydrogen Energy2010;35:7087-7097.
    [28] Li Y, Guo M, Peng S, Lu G, Li S. Formation of multilayer-eosin Y-sensitized TiO2viaFe3+coupling for efficient visible-light photocatalytic hydrogen evolution. Int. J.Hydrogen Energy2009;34:5629-5636.
    [29] Chatterjee D. Effect of excited state redox properties of dye sensitizers on hydrogenproduction through photo-splitting of water over TiO2photocatalyst. Catal. Commun.2010;11:336-339.
    [30] Jin Z, Zhang X, Li Y, Li S, Lu G.5.1%Apparent quantum efficiency for stablehydrogen generation over eosin-sensitized CuO/TiO2photocatalyst under visible lightirradiation. Catal. Commun.2007;8:1267-1273.
    [31] Abe R, Hara K, Sayama K, Domen K, Arakawa H. Steady hydrogen evolution fromwater on eosin Y-fixed TiO2photocatalyst using a silane-coupling reagent undervisible light irradiation. J Photochem. Photobiol. A: Chem2000;137:63-69.
    [32] Li Y, Xie C, Peng S, Lu G, Li S. Eosin Y-sensitized nitrogen-doped TiO2for efficientvisible light photocatalytic hydrogen evolution. J. Mol. Catal. A: Chem.2008;282:117-123.
    [33] Puangpetch T, Sommakettarin P, Chavadej S, Sreethawong T. Hydrogen productionfrom water splitting over eosin Y-sensitized mesoporous-assembled perovskitetitanate nanocrystal photocatalysts under visible light irradiation. Int. J. HydrogenEnergy2010;35:12428-12442.
    [34] Ng YH, Iwase A, Kudo A, Amal R. Reducing graphene oxide on a visible-light BiVO4photocatalyst for an enhanced photoelectrochemical water splitting. J. Phys. Chem.Lett.2010;1:2607-2612.
    [35] Mkhoyan KA, Contryman AW, Silcox J, Stewart DA, Eda G, Mattevi C, et al. Atomicand electronic structure of graphene-oxide. Nano Lett.2009;9:1058-1063.
    [36] Yeh T-F, Syu J-M, Cheng C, Chang T-H, Teng H. Graphite oxide as a photocatalystfor hydrogen production from water. Adv. Funct. Mater.2010;20:2255-2262.
    [37] Zhu MS, Han M, Du YK, Yang P, Wang XM. The synthesis, light-harvesting, andphotocatalysis of naphthylporphyrin-functionalized platinum nanocomposites. DyesPigments2010;86:81-86.
    [38] Zhang LL, Lu YT, Du YK, Yang P, Wang XM. Synthesis and photocatalytic hydrogenevolution of meso-tetrakis(p-sulfonatophenyl)porphyrin functionalized platinumnanocomposites. J. Porphyr. Phthalocya.2010;14:540-546.
    [39] Zhu MS, Lu YT, Du YK, Li J, Wang XM, Yang P. Photocatalytic hydrogen evolutionwithout an electron mediator using a porphyrin-pyrene conjugate functionalized Ptnanocomposite as a photocatalyst. Int. J. Hydrogen Energy2011;36:4298-4304.
    [40] Hummers WS, Offeman RE. Preparation of graphitic oxide. J. Am. Chem. Soc.1958;80:1339.
    [41] Li XL, Du YK, Dai JT, Wang XM, Yang P. Metal nanoparticles stabilized by cubicsilsesquioxanes for catalytic hydrogenations. Catal. Lett.2007;118:151-158.
    [42] Li XL, Li BZ, Cheng MH, Du YK, Wang XM, Yang P. Catalytic hydrogenation ofphenyl aldehydes using bimetallic Pt/Pd and Pt/Au nanoparticles stabilized by cubicsilsesquioxanes. J. Mol. Catal. A: Chem.2008;284:1-7.
    [43] Yang P, Zhang W, Du YK, Wang XM. Hydrogenation of nitrobenzenes catalyzed byplatinum nanoparticle core-polyaryl ether trisacetic acid ammonium chloridedendrimer shell nanocomposite. J. Mol. Catal. A: Chem.2006;260:4-10.
    [44] Zhang W, Li L, Du YK, Wang XM, Yang P. Gold/platinum bimetallic core/shellnanoparticles stabilized by a Fréchet-type dendrimer: preparation and catalytichydrogenations of phenylaldehydes and nitrobenzenes. Catal. Lett.2009;127:429-436.
    [45] Pasricha R, Gupta S, Srivastava AK. A facile and novel synthesis ofAg-graphene-based nanocomposites. Small2009;5:2253-2259.
    [46] Park S, An J, Piner RD, Jung I, Yang D, Velamakanni A, et al. Aqueous suspensionand characterization of chemically modified graphene sheets. Chem. Mater.2008;20:6592-6594.
    [47] Wang H, Robinson JT, Li X, Dai H. Solvothermal reduction of chemically exfoliatedgraphene sheets. J. Am. Chem. Soc.2009;131:9910-9911.
    [48] Chen Y, Zhang X, Yu P, Ma YW. Stable dispersions of graphene and highlyconducting graphene films: a new approach to creating colloids of graphenemonolayers. Chem. Commun.2009:4527-4529.
    [49] Paredes JI, Villar-Rodil S, Mart′nez-Alonso A, Tascón JMD. Graphene oxidedispersions in organic solvents. Langmuir2008;24:10560-10564.
    [50] Li D, Muller MB, Gilje S, Kaner RB, Wallace GG. Processable aqueous dispersions ofgraphene nanosheets. Nat. Nanotechnol.2008;3:101-105.
    [51] Ferrari AC, Robertson J. Interpretation of Raman spectra of disordered andamorphous carbon Phys. Rev. B2000;61:14095-14107.
    [52] Stankovich S, Dikin DA, Piner RD, Kohlhaas KA, Kleinhammes A, Jia Y, et al.Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphiteoxide. Carbon2007;45:1558-1565.
    [53] Das B, Voggu R, Rout CS, Rao CNR. Changes in the electronic structure andproperties of graphene induced by molecular charge-transfer. Chem. Commun.2008;41:5155-5157.
    [54] Desiraju GR. Hydrogen bridges in crystal engineering: interactions without borders.Acc. Chem. Res.2002;35:565-573.
    [55] Zhang X, Feng Y, Tang S, Feng W. Preparation of a graphene oxide-phthalocyaninehybrid through strong-interactions. Carbon2010;48:211-216.
    [56] D'Souza F, Venukadasula GM, Yamanaka K-i, Subbaiyan NK, Zandlera ME, Ito O.Through-bond photoinduced electron transfer in a porphyrin-fullerene conjugate heldby a Hamilton type hydrogen bonding motif. Org Biomol Chem2009;7:1076-1080.
    [57] Liu Y, Liu C-y, Liu Y. Investigation on fluorescence quenching of dyes by graphiteoxide and graphene. Appl. Surf. Sci.2011;257:5513-5518.
    [58] Wojcik A, Kamat PV. Reduced graphene oxide and porphyrin. An interactive affair in2-D. ACS Nano2010;4:6697-6706.
    [59] Wang X, Maeda K, Thomas A, Takanabe K, Xin G, Carlsson JM, et al. A metal-freepolymeric photocatalyst for hydrogen production from water under visible light. Nat.Mater.2009;8:76-80.
    [60] Xiong Z, Zhang LL, Ma J, Zhao XS. Photocatalytic degradation of dyes overgraphene-gold nanocomposites under visible light irradiation. Chem. Commun.2010;46:6099-6101.
    [1] Dresselhaus MS, Thomas IL. Alternative energy technologies. Nature2001;414:332-337.
    [2] Chen X, Shen S, Guo L, Mao SS. Semiconductor-based photocatalytic hydrogengeneration. Chem. Rev.2010;110(11):6503-6570.
    [3] Maeda K, Domen K. Photocatalytic water splitting: recent progress and futurechallenges. J. Phys. Chem. Lett.2010;1(18):2655-2661.
    [4] Kudo A, Miseki Y. Heterogeneous photocatalyst materials for water splitting. Chem.Soc. Rev.2009;38(1):253-278.
    [5] Lubitz W, Reijerse EJ, Messinger J. Solar water-splitting into H2and O2: designprinciples of photosystem II and hydrogenases. Energ. Environ. Sci.2008;1(1):15-31.
    [6] Compton OC, Osterloh FE. Niobate nanosheets as catalysts for photochemical watersplitting into hydrogen and hydrogen peroxide. J. Phys. Chem. C2008;113(1):479-485.
    [7] Osterloh FE. Inorganic materials as catalysts for photochemical splitting of water.Chem. Mater.2007;20(1):35-54.
    [8] Jing D, Guo L, Zhao L, Zhang X, Liu H, Li M, et al. Efficient solar hydrogenproduction by photocatalytic water splitting: From fundamental study to pilotdemonstration. Int. J. Hydrogen Energy2010;35(13):7087-7097.
    [9] Sato J, Saito N, Yamada Y, Maeda K, Takata T, Kondo JN, et al. RuO2-loadedβ-Ge3N4as a non-oxide photocatalyst for overall water splitting. J. Am. Chem. Soc.2005;127(12):4150-4151.
    [10] Dutta PK, Vaidyalingam AS. Zeolite-supported ruthenium oxide catalysts forphotochemical reduction of water to hydrogen. Micropor. Mesopor. Mat.2003;62:107-120.
    [11] Ikuma Y, Bessho H. Effect of Pt concentration on the production of hydrogen by aTiO2photocatalyst. Int. J. Hydrogen Energy2007;32(14):2689-2692.
    [12] Rao CNR, Biswas K, Subrahmanyam KS, Govindaraj A. Graphene, the newnanocarbon. J. Mater. Chem.2009;19(17):2457-2469.
    [13] Geim AK. Graphene: status and prospects. Science2009;324:1530-1534.
    [14] Geim AK, Novoselov KS. The rise of graphene. Nat. Mater.2007;6(3):183-191.
    [15] Wang D, Kou R, Choi D, Yang Z, Nie Z, Li J, et al. Ternary self-assembly of orderedmetal oxide-graphene nanocomposites for electrochemical energy storage. ACS Nano2010;4(3):1587-1595.
    [16] Pumera M. Graphene-based nanomaterials for energy storage. Energ. Environ. Sci.2011;4(3):668-674.
    [17] Liu Y, Zhou J, Zhang X, Liu Z, Wan X, Tian J, et al. Synthesis, characterization andoptical limiting property of covalently oligothiophene-functionalized graphenematerial. Carbon2009;47(13):3113-3121.
    [18] Liu Z, Liu Q, Huang Y, Ma Y, Yin S, Zhang X, et al. Organic photovoltaic devicesbased on a novel acceptor material: graphene. Adv. Mater.2008;20(20):3924-3930.
    [19] Machado BF, Serp P. Graphene-based materials for catalysis. Catal. Sci. Technol.2012;2(1):54-75.
    [20]Xiang Q, Yu J, Jaroniec M. Graphene-based semiconductor photocatalysts. Chem. Soc.Rev.2012;41(2):782-796.
    [21] Zhang N, Zhang Y, Xu Y-J. Recent progress on graphene-based photocatalysts:current status and future perspectives. Nanoscale2012;4(19):5792-5813.
    [22] Xie G, Zhang K, Guo B, Liu Q, Fang L, Gong JR. Graphene-based materials forhydrogen generation from light-driven water splitting. Adv. Mater.2013;25(28):3820-3839.
    [23] Xiang Q, Yu J, Jaroniec M. Enhanced photocatalytic H2-production activity ofgraphene-modified titania nanosheets. Nanoscale2011;3(9):3670-3678.
    [24] Zhang X-Y, Li H-P, Cui X-L, Lin Y. Graphene/TiO2nanocomposites: synthesis,characterization and application in hydrogen evolution from water photocatalyticsplitting. J. Mater. Chem.2010;20(14):2801-2806.
    [25] Zhang X, Sun Y, Cui X, Jiang Z. A green and facile synthesis of TiO2/graphenenanocomposites and their photocatalytic activity for hydrogen evolution. Int. J.Hydrogen Energy2012;37(1):811-815.
    [26] Lv X-J, Fu W-F, Chang H-X, Zhang H, Cheng J-S, Zhang G-J, et al. Hydrogenevolution from water using semiconductor nanoparticle/graphene compositephotocatalysts without noble metals. J. Mater. Chem.2011;22(4):1539-1546.
    [27] Li Y, Wang H, Xie L, Liang Y, Hong G, Dai H. MoS2nanoparticles grown ongraphene: an advanced catalyst for the hydrogen evolution reaction. J. Am. Chem. Soc.2011;133(19):7296-7299.
    [28] Mukherji A, Seger B, Lu GQ, Wang L. Nitrogen doped Sr2Ta2O7coupled withgraphene sheets as photocatalysts for increased photocatalytic hydrogen production.ACS Nano2011:5(5):3483-3492.
    [29] Ng YH, Iwase A, Kudo A, Amal R. Reducing graphene oxide on a visible-light BiVO4photocatalyst for an enhanced photoelectrochemical water splitting. J. Phys. Chem.Lett.2010;1(17):2607-2612.
    [30] Xiang Q, Yu J, Jaroniec M. Synergetic Effect of MoS2and graphene as cocatalysts forenhanced photocatalytic H2production activity of TiO2nanoparticles. J. Am. Chem.Soc.2012;134(15):6575-6578.
    [31] Peng T, Li K, Zeng P, Zhang Q, Zhang X. Enhanced photocatalytic hydrogenproduction over graphene oxide-cadmium sulfide nanocomposite under visible lightirradiation. J. Phys. Chem. C2012;116(43):22720-22726.
    [32] Li Q, Guo B, Yu J, Ran J, Zhang B, Yan H, et al. Highly efficient visible-light-drivenphotocatalytic hydrogen production of CdS-cluster-decorated graphene nanosheets. J.Am. Chem. Soc.2011;133(28):10878-10884.
    [33] Min S, Lu G. Dye-cosensitized graphene/Pt photocatalyst for high efficient visiblelight hydrogen evolution. Int. J. Hydrogen Energy2012;37(14):10564-10574.
    [34] Mou Z, Dong Y, Li S, Du Y, Wang X, Yang P, et al. Eosin Y functionalized graphenefor photocatalytic hydrogen production from water. Int. J. Hydrogen Energy2011;36:8885-8893.
    [35] Li Z, Chen Y, Du Y, Wang X, Yang P, Zheng J. Triphenylamine-functionalizedgraphene decorated with Pt nanoparticles and its application in photocatalytichydrogen production. Int. J. Hydrogen Energy2012;37(6):4880-4888.
    [36] Zhu M, Dong Y, Xiao B, Du Y, Yang P, Wang X. Enhanced photocatalytic hydrogenevolution performance based on Ru-trisdicarboxybipyridine-reduced graphene oxidehybrid. J. Mater. Chem.2012;22(45):23773-23779.
    [37] Zhu M, Li Z, Xiao B, Lu Y, Du Y, Yang P, et al. Surfactant assistance in improvementof photocatalytic hydrogen production with the porphyrin noncovalentlyfunctionalized graphene nanocomposite. ACS Appl. Mater. Interfaces2013;5(5):1732-1740.
    [38] Min S, Lu G. Dye-sensitized reduced graphene oxide photocatalysts for highlyefficient visible-light-driven water reduction. J. Phys. Chem. C2011;115(28):13938-13945.
    [39] Min S, Lu G. Promoted photoinduced charge separation and directional electrontransfer over dispersible xanthene dyes sensitized graphene sheets for efficient solarH2evolution. Int. J. Hydrogen Energy2013;38(5):2106-2116.
    [40] Tedesco JL, Rowe JE, Nemanich RJ. Titanium silicide islands on atomically cleanSi(100): Identifying single electron tunneling effects. J. Appl. Phys.2010;107(12):123715.
    [41] Ritterskamp P, Kuklya A, Wüstkamp M-A, Kerpen K, Weidenthaler C, Demuth M. Atitanium disilicide derived semiconducting catalyst for water splitting under solarradiation-reversible storage of oxygen and hydrogen. Angew. Chem. Int. Edit.2007;46(41):7770-7774.
    [42] Banerjee S, Mohapatra SK, Misra M. Water photooxidation by TiSi2-TiO2nanotubes.J. Phys. Chem. C2011;115(25):12643-12649.
    [43] Lin Y, Zhou S, Liu X, Sheehan S, Wang D. TiO2/TiSi2heterostructures forhigh-efficiency photoelectrochemical H2O splitting. J. Am. Chem. Soc.2009;131(8):2772-2773.
    [44] Teramura K, Maeda K, Saito T, Takata T, Saito N, Inoue Y, et al. Characterization ofruthenium oxide nanocluster as a cocatalyst with (Ga1-xZnx)(N1-xOx) for photocatalyticoverall water splitting. J. Phys. Chem. B2005;109(46):21915-21921.
    [45] Hummers WS, Offeman RE. Preparation of graphitic oxide. J. Am. Chem. Soc.1958;80(6):1339.
    [46] Zheng JP, Jow TR. A new charge storage mechanism for electrochemical capacitors. J.Electrochem. Soc.1995;142(1):L6-L8.
    [47] Yen BK. X-ray diffraction study of solid-state formation of metastable MoSi2andTiSi2during mechanical alloying. J. Appl. Phys.1997;81(10):7061-7063.
    [48] Mou Z, Chen X, Du Y, Wang X, Yang P, Wang S. Forming mechanism of nitrogendoped graphene prepared by thermal solid-state reaction of graphite oxide and urea.Appl. Surf. Sci.2011;258(5):1704-1710.
    [49] Pei S, Cheng H-M. The reduction of graphene oxide. Carbon2012;50(9):3210-3228.
    [50] Iwase A, Ng YH, Ishiguro Y, Kudo A, Amal R. Reduced graphene oxide as asolid-state electron mediator in Z-scheme photocatalytic water splitting under visiblelight. J. Am. Chem. Soc.2011;133(29):11054-11057.
    [51] Rochefort D, Dabo P, Guay D, Sherwood PMA. XPS investigations of thermallyprepared RuO2electrodes in reductive conditions. Electrochim. Acta2003;48(28):4245-4252.
    [52] Chen C C, Chen R S, Tsai T Y, Huang Y S, Tsai D S, Tiong K K. The growth andcharacterization of well aligned RuO2nanorods on sapphire substrates. J.Phys.:Condens. Matter2004;16:8475-8484.
    [53] Larciprete R, Danailov M, Barinov A, Gregoratti L, Kiskinova M. Thermal and pulsedlaser induced surface reactions in Ti/Si(001) interfaces studied by spectromicroscopywith synchrotron radiation. J. Appl. Phys.2001;90(9):4361-4369.
    [54] Wee ATS, Huan ACH, Osipowicz T, Lee KK, Thian WH, Tan KL, et al. Surface andinterface studies of titanium silicide formation. Thin Solid Films1996;283:130-134.
    [55] Maruthamuthu P, Ashokkumar M. Doping effects of transition metal ions on thephotosensitization of WO3particles. Sol. Energ. Mat.1988;17(6):433-438.
    [56] Fan W, Lai Q, Zhang Q, Wang Y. Nanocomposites of TiO2and reduced grapheneoxide as efficient photocatalysts for hydrogen evolution. J. Phys. Chem. C2011;115(21):10694-10701.
    [57] Zhang Y, Tang Z-R, Fu X, Xu Y-J. TiO2-graphene nanocomposites for gas-phasephotocatalytic degradation of volatile aromatic pollutant: is TiO2-graphene trulydifferent from other TiO2-carbon composite materials? ACS Nano2010;4(12):7303-7314.
    [58] Zhang H, Lv X, Li Y, Wang Y, Li J. P25-graphene composite as a high performancephotocatalyst. ACS Nano2009;4(1):380-386.
    [59] He B-L, Dong B, Li H-L. Preparation and electrochemical properties of Ag-modifiedTiO2nanotube anode material for lithium-ion battery. Electrochem. Commun.2007;9(3):425-430.
    [60] Fu Y, Wang X. Magnetically separable ZnFe2O4-graphene catalyst and its highphotocatalytic performance under visible light irradiation. Ind. Eng. Chem. Res.2011;50(12):7210-7218.
    [61] Park Y, Kang S-H, Choi W. Exfoliated and reorganized graphite oxide on titaniananoparticles as an auxiliary co-catalyst for photocatalytic solar conversion. Phys.Chem. Chem. Phys.2011;13(20):9425-9431.
    [62] Li N, Liu G, Zhen C, Li F, Zhang L, Cheng H-M. Battery performance andphotocatalytic activity of mesoporous anatase TiO2nanospheres/graphene compositesby template-free self-assembly. Adv. Funct. Mater.2011;21(9):1717-1722.
    [63] Xiang Q, Yu J, Jaroniec M. Preparation and enhanced visible-light photocatalyticH2-production activity of graphene/C3N4composites. J. Phys. Chem. C2011;115(15):7355-7363.
    [64] Kamat PV. Manipulation of charge transfer across semiconductor interface. a criterionthat cannot be ignored in photocatalyst design. J. Phys. Chem. Lett.2012;3(5):663-672.
    [65] Bang JH, Kamat PV. CdSe quantum dot-fullerene hybrid nanocomposite for solarenergy conversion: electron transfer and photoelectrochemistry. ACS Nano2011;5(12):9421-9427.
    [66] Harati M, Jia J, Giffard K, Pellarin K, Hewson C, Love DA, et al. One-potelectrodeposition, characterization and photoactivity of stoichiometric copper indiumgallium diselenide (CIGS) thin films for solar cells. Phys. Chem. Chem. Phys.2010;12(46):15282-15290.
    [67] Torres-Martinez LM, Gomez R, Vazquez-Cuchillo O, Juarez-Ramirez I, Cruz-LopezA, Alejandre-Sandoval FJ. Enhanced photocatalytic water splitting hydrogenproduction on RuO2/La:NaTaO3prepared by sol-gel method. Catal. Commu.2011;12(4):268-272.
    [68] Zong X, Han J, Ma G, Yan H, Wu G, Li C. Photocatalytic H2evolution on CdS loadedwith WS2as cocatalyst under visible light irradiation. J. Phys. Chem. C2011;115(24):12202-12208.
    [69] Li Q, Lu G. Significant effect of pressure on the H2releasing fromphotothermal-catalytic water steam splitting over TiSi2and Pt/TiO2. Catal. Lett.2008;125(3):376-379.
    [70] Yoo H, Kim Y, Lee J, Lee H, Yoon Y, Kim G, et al. n-Type reduced graphene oxidefield-effect transistors (FETs) from photoactive metal oxides. Chem. Eur. J.2012;18(16):4923-4929.
    [1] Geim AK. Graphene: status and prospects. Science2009;324:1530-1534.
    [2] Geim AK, Novoselov KS. The rise of graphene. Nat. Mater.2007;6(3):183-191.
    [3] Rao CNR, Sood AK, Subrahmanyam KS, Govindaraj A. Graphene: The newtwo-dimensional nanomaterial. Angew. Chem. Int. Edit.2009;48(42):7752-7777.
    [4] Allen MJ, Tung VC, Kaner RB. Honeycomb carbon: a review of graphene. Chem.Rev.2009;110(1):132-145.
    [5] Liang X, Fu Z, Chou SY. Graphene transistors fabricated via transfer-printing indevice active-areas on large wafer. Nano Lett.2007;7(12):3840-3844.
    [6] Gilje S, Han S, Wang M, Wang KL, Kaner RB. A chemical route to graphene fordevice applications. Nano Lett.2007;7(11):3394-3398.
    [7] An X, Yu JC. Graphene-based photocatalytic composites. RSC Adv.2011;1(8):1426-1434.
    [8] Pumera M. Graphene-based nanomaterials for energy storage. Energ. Environ. Sci.2011;4(3):668-674.
    [9] Jung N, Kim N, Jockusch S, Turro NJ, Kim P, Brus L. Charge transfer chemicaldoping of few layer graphenes: charge distribution and band gap formation. Nano Lett.2009;9(12):4133-4137.
    [10] Wang H, Maiyalagan T, Wang X. Review on recent progress in nitrogen-dopedgraphene: synthesis, characterization, and its potential applications. ACS Catal.2012;2(5):781-794.
    [11] Liu H, Liu Y, Zhu D. Chemical doping of graphene. J. Mater. Chem.2011;21(10):3335-3345.
    [12] Panchakarla LS, Subrahmanyam KS, Saha SK, Govindaraj A, Krishnamurthy HR,Waghmare UV, et al. Synthesis, structure, and properties of boron-andnitrogen-doped graphene. Adv. Mater.2009;21(46):4726-4730.
    [13] Liang Y, Li Y, Wang H, Zhou J, Wang J, Regier T, et al. Co3O4nanocrystals ongraphene as a synergistic catalyst for oxygen reduction reaction. Nat. Mater.2011;10(10):780-786.
    [14] Shao Y, Zhang S, Engelhard MH, Li G, Shao G, Wang Y, et al. Nitrogen-dopedgraphene and its electrochemical applications. J. Mater. Chem.2010;20(35):7491-7496.
    [15] He D, Jiang Y, Lv H, Pan M, Mu S. Nitrogen-doped reduced graphene oxide supportsfor noble metal catalysts with greatly enhanced activity and stability. Appl. Catal. B:Environ.2013;132-133:379-388.
    [16] Imran Jafri R, Rajalakshmi N, Ramaprabhu S. Nitrogen doped graphene nanoplateletsas catalyst support for oxygen reduction reaction in proton exchange membrane fuelcell. J. Mater. Chem.2010;20(34):7114-7117.
    [17] Qu L, Liu Y, Baek J-B, Dai L. Nitrogen-doped graphene as efficient metal-freeelectrocatalyst for oxygen reduction in fuel cells. ACS Nano2010;4(3):1321-1326.
    [18] Jia L, Wang D-H, Huang Y-X, Xu A-W, Yu H-Q. Highly durable N-dopedgraphene/CdS nanocomposites with enhanced photocatalytic hydrogen evolution fromwater under visible light irradiation. J. Phys. Chem. C2011;115(23):11466-11473.
    [19] Chen P, Xiao T-Y, Li H-H, Yang J-J, Wang Z, Yao H-B, et al. Nitrogen-dopedgraphene/ZnSe nanocomposites: hydrothermal synthesis and their enhancedelectrochemical and photocatalytic activities. ACS Nano2012;6(1):712-719.
    [20] Van Khai T, Na HG, Kwak DS, Kwon YJ, Ham H, Shim KB, et al. Significantenhancement of blue emission and electrical conductivity of N-doped graphene. J.Mater. Chem.2012;22(34):17992-18003.
    [21] Li N, Wang Z, Zhao K, Shi Z, Gu Z, Xu S. Large scale synthesis of N-dopedmulti-layered graphene sheets by simple arc-discharge method. Carbon2010;48(1):255-259.
    [22] Wei D, Liu Y, Wang Y, Zhang H, Huang L, Yu G. Synthesis of N-doped graphene bychemical vapor deposition and its electrical properties. Nano Lett.2009;9(5):1752-1758.
    [23] Deng D, Pan X, Yu L, Cui Y, Jiang Y, Qi J, et al. Toward N-doped graphene viasolvothermal synthesis. Chem. Mater.2011;23(5):1188-1193.
    [24] Guo B, Liu Q, Chen E, Zhu H, Fang L, Gong JR. Controllable N-doping of graphene.Nano Lett.2010;10(12):4975-4980.
    [25] Li X, Wang H, Robinson JT, Sanchez H, Diankov G, Dai H. Simultaneous nitrogendoping and reduction of graphene oxide. J. Am. Chem. Soc.2009;131(43):15939-15944.
    [26] Wakeland S, Martinez R, Grey JK, Luhrs CC. Production of graphene from graphiteoxide using urea as expansion-reduction agent. Carbon2010;48(12):3463-3470.
    [27] Mou Z, Dong Y, Li S, Du Y, Wang X, Yang P, et al. Eosin Y functionalized graphenefor photocatalytic hydrogen production from water. Int. J. Hydrogen Energy2011;36:8885-8893.
    [28] Mkhoyan KA, Contryman AW, Silcox J, Stewart DA, Eda G, Mattevi C, et al. Atomicand electronic structure of graphene-oxide. Nano Lett.2009;9(3):1058-1063.
    [29] Paredes JI, Villar-Rodil S, Mart′nez-Alonso A, Tascón JMD. Graphene oxidedispersions in organic solvents. Langmuir2008;24(19):10560-10564.
    [30] Park S, An J, Jung I, Piner RD, An SJ, Li X, et al. Colloidal suspensions of highlyreduced graphene oxide in a wide variety of organic solvents. Nano Lett.2009;9(4):1593-1597.
    [31] Kaniyankandy S, Achary SN, Rawalekar S, Ghosh HN. Ultrafast relaxation dynamicsin graphene oxide: evidence of electron trapping. J. Phys. Chem. C2011;115(39):19110-19116.
    [32] Pham TA, Choi BC, Lim KT, Jeong YT. A simple approach for immobilization of goldnanoparticles on graphene oxide sheets by covalent bonding. Appl. Surf. Sci.2011;257(8):3350-3357.
    [33] Ferrari AC, Robertson J. Interpretation of Raman spectra of disordered andamorphous carbon. Phys. Rev. B2000;61(20):14095-14107.
    [34] Lee YT, Kim NS, Bae SY, Park J, Yu S-C, Ryu H, et al. Growth of vertically alignednitrogen-doped carbon nanotubes: control of the nitrogen content over the temperaturerange900-1000℃. J. Phys. Chem. B2003;107(47):12958-12963.
    [35] Yang Q-H, Hou P-X, Unno M, Yamauchi S, Saito R, Kyotani T. Dual Raman featuresof double coaxial carbon nanotubes with N-doped and B-doped multiwalls. Nano Lett.2005;5(12):2465-2469.
    [36] Yadav R, Dobal P, Shripathi T, Katiyar R, Srivastava O. Effect of growth temperatureon bamboo-shaped carbon–nitrogen (C–N) nanotubes synthesized using ferroceneacetonitrile precursor. Nanoscale Res. Lett.2009;4(3):197-203.
    [37] Schniepp HC, Li J-L, McAllister MJ, Sai H, Herrera-Alonso M, Adamson DH, et al.Functionalized single graphene sheets derived from splitting graphite oxide. J. Phys.Chem. B2006;110(17):8535-8539.
    [38] Chandra S, Sahu S, Pramanik P. A novel synthesis of graphene by dichromateoxidation. Mater. Sci. Eng. B2010;167(3):133-136.
    [39] Yang D, Velamakanni A, Bozoklu G, Park S, Stoller M, Piner RD, et al. Chemicalanalysis of graphene oxide films after heat and chemical treatments by X-rayphotoelectron and Micro-Raman spectroscopy. Carbon2009;47(1):145-152.
    [40] Hontoria-Lucas C, López-Peinado AJ, López-Gonzáez JDD, Rojas-Cervantes ML,MartíN-Aranda RM. Study of oxygen-containing groups in a series of graphite oxides:Physical and chemical characterization. Carbon1995;33(11):1585-1592.
    [41] Ismagilov ZR, Shalagina AE, Podyacheva OY, Ischenko AV, Kibis LS, Boronin AI, etal. Structure and electrical conductivity of nitrogen-doped carbon nanofibers. Carbon2009;47(8):1922-1999.
    [42] Maldonado S, Morin S, Stevenson KJ. Structure, composition, and chemical reactivityof carbon nanotubes by selective nitrogen doping. Carbon2006;44(8):1429-1437.
    [43] Maldonado S, Stevenson KJ. Influence of nitrogen doping on oxygen reductionelectrocatalysis at carbon nanofiber electrodes. J. Phys. Chem. B2005;109(10):4707-4716.
    [44] Droppa R, Hammer P, Carvalho ACM, dos Santos MC, Alvarez F. Incorporation ofnitrogen in carbon nanotubes. J. Non-Cryst. Solids2002;299-302,Part2:874-879.
    [45] Kawaguchi M, Yagi S, Enomoto H. Chemical preparation and characterization ofnitrogen-rich carbon nitride powders. Carbon2004;42(2):345-350.
    [46] Zhao H, Chen X, Jia C, Zhou T, Qu X, Jian J, et al. A facile mechanochemical way toprepare g-C3N4. Mater. Sci. Eng. B2005;122(2):90-93.
    [47] Yumitori S. Correlation of C1s chemical state intensities with the O1s intensity in theXPS analysis of anodically oxidized glass-like carbon samples. J. Mater. Sci.2000;35(1):139-146.
    [48] Park D, Yun Y-S, Park JM. XAS and XPS studies on chromium-binding groups ofbiomaterial during Cr(VI) biosorption. J. Colloid and Interf. Sci.2008;317(1):54-61.
    [49] Ishpal, Panwar OS, Kumar M, Kumar S. X-ray photoelectron spectroscopic study ofnitrogen incorporated amorphous carbon films embedded with nanoparticles. Appl.Surf. Sci.2010;256(24):7371-7376.
    [50] Pietrzak R. XPS study and physico-chemical properties of nitrogen-enrichedmicroporous activated carbon from high volatile bituminous coal. Fuel2009;88(10):1871-1877.
    [51] Pels JR, Kapteijn F, Moulijn JA, Zhu Q, Thomas KM. Evolution of nitrogenfunctionalities in carbonaceous materials during pyrolysis. Carbon1995;33(11):1641-1653.
    [52] Lahaye J, Nanse G, Fioux P, Bagreev A, Broshnik A, Strelko V. Chemicaltransformation during the carbonisation in air and the pyrolysis under argon of avinylpyridine-divinylbenzene copolymer by X-ray photoelectron spectroscopy. Appl.Surf. Sci.1999;147(1-4):153-174.
    [53] Hakoda T, Yamamoto S, Kawaguchi K, Yamaki T, Kobayashi T, Yoshikawa M.Oxygen reduction activity of N-doped carbon-based films prepared by pulsed laserdeposition. Appl. Surf. Sci.2010;257(5):1556-1561.
    [54] Soto G, Samano EC, Machorro R, Farís MH, Cota-Araiza L. Study of compositionand bonding character of CNxfilms. Appl. Surf. Sci.2001;183(3-4):246-258.
    [55] Moon IK, Lee J, Ruoff RS, Lee H. Reduced graphene oxide by chemicalgraphitization. Nat. Commun.2010;1:1-6.
    [56] López V, Sundaram RS, Gómez-Navarro C, Olea D, Burghard M, Gómez-Herrero J,et al. Chemical vapor deposition repair of graphene oxide: a route to highlyconductive graphene monolayers. Adv. Mater.2009;21(46):4683-4686.
    [1] Xiang Q, Yu J, Jaroniec M. Graphene-based semiconductor photocatalysts. Chem. Soc.Rev.2012;41(2):782-796.
    [2] Cheng P, Yang Z, Wang H, Cheng W, Chen M, Shangguan W, et al. TiO2-graphenenanocomposites for photocatalytic hydrogen production from splitting water. Int. J.Hydrogen Energy2012;37(3):2224-2230.
    [3] Zhang X-Y, Li H-P, Cui X-L, Lin Y. Graphene/TiO2nanocomposites: synthesis,characterization and application in hydrogen evolution from water photocatalyticsplitting. J. Mater. Chem.2010;20(14):2801-2806.
    [4] Fan W, Lai Q, Zhang Q, Wang Y. Nanocomposites of TiO2and reduced grapheneoxide as efficient photocatalysts for hydrogen evolution. J. Phys. Chem. C2011;115(21):10694-10701.
    [5] Lv X-J, Fu W-F, Chang H-X, Zhang H, Cheng J-S, Zhang G-J, et al. Hydrogenevolution from water using semiconductor nanoparticle/graphene compositephotocatalysts without noble metals. J. Mater. Chem.2011;22(4):1539-1546.
    [6] Xiang Q, Yu J, Jaroniec M. Enhanced photocatalytic H2-production activity ofgraphene-modified titania nanosheets. Nanoscale2011;3(9):3670-3678.
    [7] Li Q, Guo B, Yu J, Ran J, Zhang B, Yan H, et al. Highly efficient visible-light-drivenphotocatalytic hydrogen production of CdS-cluster-decorated graphene nanosheets. J.Am. Chem. Soc.2011;133(28):10878-10884.
    [8] Xiang Q, Yu J, Jaroniec M. Preparation and enhanced visible-light photocatalyticH2-production activity of graphene/C3N4composites. J. Phys. Chem. C2011;115(15):7355-7363.
    [9] Mukherji A, Seger B, Lu GQ, Wang L. Nitrogen doped Sr2Ta2O7coupled withgraphene sheets as photocatalysts for increased photocatalytic hydrogen production.ACS Nano2011:5(5):3483-3492.
    [10] Li Y, Wang H, Xie L, Liang Y, Hong G, Dai H. MoS2nanoparticles grown ongraphene: an advanced catalyst for the hydrogen evolution reaction. J. Am. Chem. Soc.2011;133(19):7296-7299.
    [11] Panchakarla LS, Subrahmanyam KS, Saha SK, Govindaraj A, Krishnamurthy HR,Waghmare UV, et al. Synthesis, structure, and properties of boron-andnitrogen-doped graphene. Adv. Mater.2009;21(46):4726-4730.
    [12] Van Khai T, Na HG, Kwak DS, Kwon YJ, Ham H, Shim KB, et al. Significantenhancement of blue emission and electrical conductivity of N-doped graphene. J.Mater. Chem.2012;22(34):17992-18003.
    [13] Qu L, Liu Y, Baek J-B, Dai L. Nitrogen-doped graphene as efficient metal-freeelectrocatalyst for oxygen reduction in fuel cells. ACS Nano2010;4(3):1321-1326.
    [14] Shao Y, Zhang S, Engelhard MH, Li G, Shao G, Wang Y, et al. Nitrogen-dopedgraphene and its electrochemical applications. J. Mater. Chem.2010;20(35):7491-7496.
    [15] Zhang L-S, Liang X-Q, Song W-G, Wu Z-Y. Identification of the nitrogen species onN-doped graphene layers and Pt/NG composite catalyst for direct methanol fuel cell.Phys. Chem. Chem. Phys.2010;12(38):12055-12059.
    [16] He D, Jiang Y, Lv H, Pan M, Mu S. Nitrogen-doped reduced graphene oxide supportsfor noble metal catalysts with greatly enhanced activity and stability. Appl. Catal. B:Environ.2013;132-133:379-388.
    [17] Imran Jafri R, Rajalakshmi N, Ramaprabhu S. Nitrogen doped graphene nanoplateletsas catalyst support for oxygen reduction reaction in proton exchange membrane fuelcell. J. Mater. Chem.2010;20(34):7114-7117.
    [18] Jia L, Wang D-H, Huang Y-X, Xu A-W, Yu H-Q. Highly durable N-dopedgraphene/CdS nanocomposites with enhanced photocatalytic hydrogen evolution fromwater under visible light irradiation. J. Phys. Chem. C2011;115(23):11466-11473.
    [19] Chen P, Xiao T-Y, Li H-H, Yang J-J, Wang Z, Yao H-B, et al. Nitrogen-dopedgraphene/ZnSe nanocomposites: hydrothermal synthesis and their enhancedelectrochemical and photocatalytic activities. ACS Nano2012;6(1):712-719.
    [20] Fujishima A, Rao TN, Tryk DA. Titanium dioxide photocatalysis. J. Photoch.Photobio C: Photoch. Rev.2000;1(1):1-21.
    [21]Chen X, Mao SS. Titanium dioxide nanomaterials:synthesis, properties, modifications,and applications. Chem. Rev.2007;107(7):2891-2959.
    [22] Nethravathi C, Rajamathi M. Chemically modified graphene sheets produced by thesolvothermal reduction of colloidal dispersions of graphite oxide. Carbon2008;46(14):1994-1998.
    [23] Fan X, Peng W, Li Y, Li X, Wang S, Zhang G, et al. Deoxygenation of exfoliatedgraphite oxide under alkaline conditions: a green route to graphene preparation. Adv.Mater.2008;20(23):4490-4493.
    [24] Tung VC, Allen MJ, Yang Y, Kaner RB. High-throughput solution processing oflarge-scale graphene. Nat. Nano.2009;4(1):25-29.
    [25] Gao X, Jang J, Nagase S. Hydrazine and thermal reduction of graphene oxide:reaction mechanisms, product structures, and reaction design. J. Phys. Chem. C2010;114(2):832-842.
    [26] López V, Sundaram RS, Gómez-Navarro C, Olea D, Burghard M, Gómez-Herrero J,et al. Chemical vapor deposition repair of graphene oxide: a route to highlyconductive graphene monolayers. Adv. Mater.2009;21(46):4683-4686.
    [27] Liang YT, Vijayan BK, Gray KA, Hersam MC. Minimizing graphene defectsenhances titania nanocomposite-based photocatalytic reduction of CO2for improvedsolar fuel production. Nano Lett.2011;11(7):2865-2870.
    [28] Zhang Y, Tang Z-R, Fu X, Xu Y-J. Engineering the unique2D mat of graphene toachieve graphene-TiO2nanocomposite for photocatalytic selective transformation:what advantage does graphene have over its forebear carbon nanotube? ACS Nano2011;5(9):7426-7435.
    [29] Zhang Y, Zhang N, Tang Z-R, Xu Y-J. Improving the photocatalytic performance ofgraphene-TiO2nanocomposites via a combined strategy of decreasing defects ofgraphene and increasing interfacial contact. Phys. Chem. Chem. Phys.2012;14(25):9167-9175.
    [30] Mou Z, Chen X, Du Y, Wang X, Yang P, Wang S. Forming mechanism of nitrogendoped graphene prepared by thermal solid-state reaction of graphite oxide and urea.Appl. Surf. Sci.2011;258(5):1704-1710.
    [31] Groves MN, Chan ASW, Malardier-Jugroot C, Jugroot M. Improving platinumcatalyst binding energy to graphene through nitrogen doping. Chem. Phys. Lett.2009;481(4-6):214-219.
    [32] Zhong J, Deng J-J, Mao B-H, Xie T, Sun X-H, Mou Z-G, et al. Probing solid stateN-doping in graphene by X-ray absorption near-edge structure spectroscopy. Carbon2012;50(1):335-338.
    [33] Zhang X, Sun Y, Cui X, Jiang Z. A green and facile synthesis of TiO2/graphenenanocomposites and their photocatalytic activity for hydrogen evolution. Int. J.Hydrogen Energy2012;37(1):811-815.
    [34] Pan X, Zhao Y, Liu S, Korzeniewski CL, Wang S, Fan Z. Comparing graphene-TiO2nanowire and graphene-TiO2nanoparticle composite photocatalysts. ACS Appl. Mater.Interfaces2012;4(8):3944-3950.
    [35] Kraeutler B, Bard AJ. Heterogeneous photocatalytic preparation of supportedcatalysts. Photodeposition of platinum on titanium dioxide powder and othersubstrates. J. Am. Chem. Soc.1978;100(13):4317-4318.
    [36] Lee WJ, Lee JM, Kochuveedu ST, Han TH, Jeong HY, Park M, et al. BiomineralizedN-doped CNT/TiO2core/shell nanowires for visible light photocatalysis. ACS Nano2012;6(1):935-943.
    [37] Liang Y, Li Y, Wang H, Zhou J, Wang J, Regier T, et al. Co3O4nanocrystals ongraphene as a synergistic catalyst for oxygen reduction reaction. Nat. Mater.2011;10(10):780-786.
    [38] Pei F, Liu Y, Xu S, Lü J, Wang C, Cao S. Nanocomposite of graphene oxide withnitrogen-doped TiO2exhibiting enhanced photocatalytic efficiency for hydrogenevolution. Int. J. Hydrogen Energy2013;38(6):2670-2677.
    [39] Sathish M, Viswanathan B, Viswanath RP, Gopinath CS. Synthesis, characterization,electronic structure, and photocatalytic activity of nitrogen-doped TiO2nanocatalyst.Chem. Mater.2005;17(25):6349-6353.
    [40] Cong Y, Zhang J, Chen F, Anpo M. Synthesis and characterization of nitrogen-dopedTiO2nanophotocatalyst with high visible light activity. J. Phys. Chem. C2007;111(19):6976-6982.
    [41] Bassi AL, Cattaneo D, Russo V, Bottani CE, Barborini E, Mazza T, et al. Ramanspectroscopy characterization of titania nanoparticles produced by flame pyrolysis:The influence of size and stoichiometry. J. Appl. Phys.2005;98(7):074305-074309.
    [42] Zhang L-W, Fu H-B, Zhu Y-F. Efficient TiO2photocatalysts from surfacehybridization of TiO2particles with graphite-like carbon. Adv. Funct. Mater.2008;18(15):2180-2189.
    [43] Zhou W, Pan K, Qu Y, Sun F, Tian C, Ren Z, et al. Photodegradation of organiccontamination in wastewaters by bonding TiO2/single-walled carbon nanotubecomposites with enhanced photocatalytic activity. Chemosphere2010;81(5):555-561.
    [44] Zhao D, Sheng G, Chen C, Wang X. Enhanced photocatalytic degradation ofmethylene blue under visible irradiation on graphene@TiO2dyade structure. Appl.Catal B: Environ.2012;111-112(0):303-308.
    [45] Kubacka A, Fernández-García M, Colón G. Advanced nanoarchitectures for solarphotocatalytic applications. Chem. Rev.2012;112(3):1555-1614.
    [46] Huang Q, Tian S, Zeng D, Wang X, Song W, Li Y, et al. Enhanced photocatalyticactivity of chemically bonded TiO2/graphene composites based on the effectiveinterfacial charge transfer through the C-Ti bond. ACS Catal.2013:1477-1485.
    [47] Hou Y, Zuo F, Dagg A, Feng P. Visible light-driven α-Fe2O3nanorod/graphene/BiV1-xMoxO4core/shell heterojunction array for efficientphotoelectrochemical water splitting. Nano Lett.2012;12(12):6464-6473.
    [48] Mou Z, Yin S, Zhu M, Du Y, Wang X, Yang P, et al. RuO2/TiSi2/graphene compositefor enhanced photocatalytic hydrogen generation under visible light irradiation. Phys.Chem. Chem. Phys.2013;15(8):2793-2799.
    [49] Kotov NA, Dékány I, Fendler JH. Ultrathin graphite oxide–polyelectrolytecomposites prepared by self-assembly: transition between conductive andnon-conductive states. Adv. Mater.1996;8(8):637-641.
    [50] Shao Y, Wang J, Engelhard M, Wang C, Lin Y. Facile and controllableelectrochemical reduction of graphene oxide and its applications. J. Mater. Chem.2010;20(4):743-748.
    [51] Terrones M, Ajayan PM, Banhart F, Blase X, Carroll DL, Charlier JC, et al. N-dopingand coalescence of carbon nanotubes: synthesis and electronic properties. Appl. Phys.A2002;74(3):355-361.
    [52] Shao Y, Yin G, Gao Y. Understanding and approaches for the durability issues ofPt-based catalysts for PEM fuel cell. Journal of Power Sources2007;171(2):558-566.
    [53] Wu G, Li D, Dai C, Wang D, Li N. Well-dispersed high-loading Pt nanoparticlessupported by shell-core nanostructured carbon for methanol electrooxidation.Langmuir2008;24(7):3566-3575.
    [54] Chatterjee D. Effect of excited state redox properties of dye sensitizers on hydrogenproduction through photo-splitting of water over TiO2photocatalyst. Catal. Commun.2010;11(5):336-339.
    [55] Bai Y, Li W, Liu C, Yang Z, Feng X, Lu X, et al. Stability of Pt nanoparticles andenhanced photocatalytic performance in mesoporous Pt-(anatase/TiO2(B))nanoarchitecture. J. Mater. Chem.2009;19(38):7055-7061.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700