用户名: 密码: 验证码:
电镀锡板的电沉积成核机理及防护技术
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电镀锡板广泛应用于各种形态物品如化工、油漆、喷雾剂、食品、饮料的包装和各种器皿的制造。一直以来,锡板的电沉积和耐蚀性能一直是生产企业特别关心的问题。电沉积成核与生长机理对镀层的结构、相组成具有十分重大的影响,进一步影响镀层的耐蚀性能及其使用条件。采用电化学手段和技术(计时安培法、循环伏安法、电化学阻抗谱,电化学噪声等)开展锡电沉积过程的成核/生长机制方面的研究,对于探索和深入理解金属电沉积的电化学理论,开发新型电镀添加剂,提高电镀锡板的耐蚀能力等,具有极其重要的理论和实际指导意义。同时,镀层的软熔和钝化是提高镀锡板耐蚀性能的两个重要方法,研究其工艺参数并加以优化,有助于得到耐蚀性能更优的镀锡板。
     本论文主要分为两部分,第一部分研究了镀锡板电沉积成核与生长机理,采用电化学方法分别建立了相关的机理模型;第二部分研究了镀锡板的两种防护技术:软熔及钝化,并以镀层的耐蚀性能为指标优化出最佳的工艺参数。
     论文首先研究了镀锡板的电沉积成核与生长机制。以镀锡板的耐蚀性能为指标,主要通过电化学阻抗谱评价不同工艺(主盐浓度、镀液pH值、温度、电流密度等)得到的镀锡板的耐蚀性能,从而优化得到最佳电沉积工艺。
     通过循环伏安方法判断出在此电沉积条件下,锡的电沉积行为为三维成核与生长机理,且主要受扩散控制。采用电势阶跃的方法研究了不同过电位下瞬时成核与连续成核类型,成核与生长速率常数等。结果表明,镀锡板电沉积随着过电位的增大,成核与生长机制由连续成核转变为瞬时成核。考虑到沉积过程伴随着析氢反应,基于成核与析氢过程总电流建立了新的电流—时间曲线模型,并以此计算出镀锡板真实的成核与生长速率常数。阶跃结果表明,较低恒电位沉积时,沉积总电流主要由锡的成核与生长电流和基底表面的析氢反应电流,以及锡核表面的析氢反应电流三部分组成;较高恒电位沉积时,沉积总电流主要由锡的成核与生长电流和锡核表面的析氢反应电流组成。
     同时采用电化学阻抗研究了镀锡板电沉积机理。结果表明,镀锡板电沉积过程的电荷转移电阻与沉积过电位间存在着指数衰减的关系。进一步采用电化学电位噪声的方法探讨了电位噪声特征与镀层结构间的对应关系。当镀锡板结晶颗粒较大或有枝晶时,电位噪声波动幅动较大且电位出现正移,而当镀锡板表面平整致密时,电位噪声波动幅动较小且电位正移值很小。相对能量分布谱得到的沉积过程中的生长能量与X射线衍射测得的镀锡板的晶粒尺寸具有随恒电流变化相同的变化趋势。
     其次,论文研究了镀锡板的软熔工艺与性能。利用电化学测试和表面分析手段研究了软熔处理温度和时间对镀锡钢板中合金层及其在3.5%NaCl溶液中腐蚀电化学行为的影响。结果显示,软熔处理温度和时间增加,镀锡钢板的合金层数量增多,且腐蚀电位正移,对应腐蚀速率下降。与锡偶接后,脱锡处理后的镀锡钢板初始阶段作为阴极而锡作为阳极。然而经过一段时间后,电偶对的极性反转。而且,软熔处理温度和时间增加,电偶电流下降。
     最后,论文探讨了镀锡板的钝化工艺与性能。以镀锡板的耐蚀性能为指标,采用极化曲线和电化学阻抗谱的方法研究了不同工艺下的钝化镀锡板的耐蚀性能。结果表明,钝化镀锡板耐蚀性能随着浓度、时间以及温度呈现出先上升而下降的趋势,这是钝化膜的生成与氧化膜的溶解共同作用的结果。
Electrolytic tinplate is widely used in various forms of items such as chemical, paint, spray, food and beverage packaging and manufacturing of various kinds of vessels. For a long time, electroplating mechanism and corrosion resistant properties of tin plate has been the special concern of the production enterprises. Nucleation and growth mechanism has the very big impact on the electrodeposition of coating structure, phase composition, further influence on the performance of the coating corrosion resistance and its wide application. The study on electrodeposition nucleation/growth mechanism by electrochemical methods and technology (chronoamperometry, cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), electrochemical noise (EN)) is beneficial to explore and understand metal electrodeposition of electrochemical theory, development of new type electroplating additives, improve the corrosion resistant ability of electrolytic tinplate, etc., which also has extremely important theoretical and practical significance. Meanwhile, reflowing and passivation are two important ways to improve the corrosion resistance of tinplate. The study on the effect of different technological parameters on the corrosion resistance helps to optimize these parameters to get the best corrosion resistance of tinplate.
     This paper was mainly divided into two parts, one of the works on the nucleation and growth mechanism of tinplate electrodeposition. New mechanism models are established using some electrochemical methods; the other one mainly on the two protection technology:tinplate reflowing and passivation, where the corrosion resistant was used as the target to optimize the related process parameters.
     This paper first studied the nucleation and growth mechanism of tinplate electrodeposition. The effect of the electrodeposition parameters (main salt concentration, solution pH, temperature, current density, etc.) on the corrosion resistance of tinplate was evaluated mainly by electrochemical impedance spectroscopy to optimize these parameters.
     Tin electrodeposition behavior follows three-dimensional nucleation and growth mechanism, and mainly controlled by the diffusion, which was confirmed by cyclic voltammetric method. Chronoamperometry was used to differentiate the instantaneous nucleation or progressive nucleation type under different overpotentials, nucleation and growth rate constant, etc. The results show that with the increment of overpotentials, nucleation and growth mechanism changes from progressive nucleation into instantaneous nucleation. New current-time model was established based on both the tin nucleation/growth and the simultaneous hydrogen evolution reaction, which was used to analyze the real nucleation and growth rate constant. Chronoamperometry results show that under the lower deposition overpotentials, the total current is composed of tin nucleation/growth current and current of hydrogen evolution reaction on the substrate, as well as on the tin growth centres; while under the higher deposition overpotentials, the total current is composed of tin nucleation/growth current and current of hydrogen evolution reaction on the tin growth centres.
     Meanwhile, EIS was also used to study the electrodeposition mechanism of tinplate. Results reveal that the charge transfer resistance of the deposition process decreases exponentially with the applied potential bias. Furthermore, electrochemical potential noise was carried out to explore the relationship between the potential noise features and the tinplate structure. EEN generated during the electroplating of dentritic or large conglomerate zinc deposit has large potential oscillation amplitude and positive potential drift while the compact zinc deposit possesses small noise amplitude and little potential drift. The variation trend of the growth energy obtained from the relative energy distribution plot is the same as the tin crystal size from XRD with variation of deposition current density.
     Secondly, the paper studied the tinplate reflowing process and performance. Effects of reflowing temperature and time on the alloy layer of tinplate and its electrochemical behavior was investigated in3.5%NaCl solution by electrochemical measurements and surface characterization. It is found that with increase of reflowing temperature and time, the amount of alloy layer increases. Then the corrosion potential of detinned tinplate shifts positively and the corrosion rate decreases. After coupled with tin, detinned tinplate is as cathode initially. However, after exposed for some time, the potential shifts of both detinned tinplate and tin reverse polarity of coupling system. The galvanic current density decreases with increase of reflowing temperature and time.
     Finally, the paper discusses the passivation process of tinplate. The corrosion resistance was used as the target to evaluate the effect of different passivation parameters, mainly by the method of polarization curve and EIS. The results show that the variation trend of the corrosion resistance with the passivation parameters, is initially rise and then drop, which is the result from the joint action of both the growth of passive film and dissolvation of oxidation film.
引文
[1]周其良译,镀锡板指南,冶金工业出版社,1989
    [2]罗德先,世界镀锡板工业的回顾与展望,世界有色金属,2001,(9)10-12
    [3]耿炳玺,谈我国镀锡板的生产与发展,冶金信息,1999,(4)6-9
    [4]范宏义等译,现代电镀,化学工业出版社,2006
    [5]J.J. Maisano, Kadija I, Abys J A, A Rotating cylinder throwing power electrode. Annual Conf., American Electroplaters and Surface Finishers Society (June 1992)
    [6]T.C. Tan, Model for calculating metal distribution and throwing power of plating baths, Plating and surface finishing,74(1987) 67-71
    [7]T.C. Tan, A noval experimental cell for the determination of the throwing power of an electroplating system, Journal of The Electrochemical Society,44(1987) 3011-3015
    [8]P.A. Kohl, The high speed electrodeposition of Sn/Pb alloys, Journal of The Electrochemical Society,39(1982) 1196-1201
    [9]M. Schwartz, Deposition from aqueous solutions:An overview, in deposition technologies for films and coatings, R. F. Bunshah, ed., Noyes Pub., ParkRidge, NJ, 1982
    [10]T.C. Frankin, Some mechanisms of action of additives in electrodeposition processes, Surface and Coatings Technology,30(1987) 415-428
    [11]L. Oniciu, L. Muresan, Some fundamental aspects of leveling and brightening in metal electrodeposition, Journal of Applied Electrochemistry,21(1991) 565-574
    [12]Y. Zhang, J.A. Abys, An alternative surface finish for Sn-Pb solders:Pure tin. Annual Conference American Electroplaters and Surface Finishers Society (June 1996)
    [13]C.A. Discher, Some properties of tin(ii) sulfate solutions and their role in electrodeposition of tin, Ⅲ. solutions with tin(ii) sulfate, sulfuric acid, and addition agents, Journal of The Electrochemistry Society,102(1955) 617-622
    [14]S. Meibuhr, E. Yeager, A. Kozawa, The electrochemistry of tin,1. effects of nonionic addition agents on electrodeposition from stannous sulfate solutions, Journal of The Electrochemistry Society,110(1963) 190-202
    [15]A. Kozawa, E. Yeager, Organic addition agents in acid tin plating, Electrochemical technology,3(1965) 133-136
    [16]G.S. Tzeng, Effects of additives on the electrodeposition of tin From an acidic Sn(Ⅱ) bath, Plating and surface finishing,82(1995) 67-71
    [17]C.L. Rinne, J.J. Hren, P.S. Fedkiw, Electrodeposition of tin needle-like structures, Journal of The Electrochemical Society,149(2002) 150-158
    [18]I.S. Zavarine, O. Khaselev, Y. Zhang, Spectroelectrochemical study of the effect of organic additives on the electrodeposition of Tin, Journal of The Electrochemical Society,150(2003) 202-207
    [19]J. Lee, J. Kim, B. Chang, etal, Effects of ethoxylated a-Naphtholsulfonic acid on tin electroplating at iron electrodes, Journal of The Electrochemical Society,151(2004) 333-341
    [20]Z. Zhang, D.P. Barkey, Nucleation of tin and tin-silver alloy on copper and nickel in acid plating baths, Journal of The Electrochemical Society,154(2007) 550-556
    [21]S. Hirsch, Tin-Lead, Lead and Tin Plating in Metal Finishing, Guidebook and Directory,1994
    [22]陈达宏,王玉霞,锡铅合金电镀,电子工艺技术,2000,21(2)76-80
    [23]陈达宏,NCI/PC-1酸性硫酸盐镀锡,印制电路信息,1994,(2)10-12
    [24]黄海泉,刘盛斌.酸性镀锡液的新进展田,电镀与涂饰,1994,13(3)51-53
    [25]欧阳双,谭强.酸性光亮镀锡工艺的研究,电镀与环保,2002,22(4)8-9
    [26]K. Obata, et al., U.S. patent 4459185
    [27]F. I. Nobel et al., U.S. patent 4565609
    [28]F. I. Nobel et al., U.S. patent 4717460
    [29]G. Karustis et al., U.S.3850765
    [30]Nobel Fred I, Ostrow, et al. Bath and process for electroplating tin, lead and tin/lead alloys. U.S:723595,1985
    [31]Nobel Fred I, Ostrow, et al. Bath and process for electroplating tin, lead and tin/lead alloys. U.S:4701244,1987
    [32]Toben Michael P, Brown, et al. High speed tin, lead or tin/lead alloy electroplating. U.S:409914,1989
    [33]Nobel Fred I, Ostrow, et al. Limiting tin sludge formation in tin or tin/lead electroplating solutions. U.S:188233,1988
    [34]Nobel Fred I, Ostrow, et al. Limiting tin sludge formation in tin or tin/lead electroplating solutions. U.S:585768,1990
    [35]Federman George A, Thomson, et al. High speed lectroplating of tinplate.U.S:5174887,1990
    [36]Thomson Donald. Electrolytic tin plating method. U.S:3766248,1994.
    [37]Thomson Donald, Luke, etal. Reducing tin sludge in tin acid plating. U.S:5378347,1995
    [38]A. George, Federmam, Lea Ronal, A comparative study of the effects of metallic impurities on MSA & PSA-based tin electrolytes. International tinplate.11(1992) 10-88
    [39]M. Nicholas, M.N. Martyak, R. Seefeldt, Additive effects during plating in acid tin methanesulfonate electrolytes, Electrochimica Acta,49(2004) 4303-4311
    [40]M.S. Sub, C.J. Park, H.S. Kwon, Effects of plating parameters on alloy composition and microstructure of Sn-Bi electrOdeposits from methanesulphonate bath, Surface and Coatings Technology,200(2006) 3527-3532
    [41]C.T. Low, F.C. Walsh, Electrodeposition of tin, copper and tin-copper alloys from a melhanesulfonic acid electrolyte containing a perfluorinated cationic surfactant, Surface and Coatings Technology,202(2008) 1339-1349
    [42]蔡积庆,甲烷磺酸在印刷板电镀与精饰中的应用,电镀与环保,1995,15(2)21-22
    [43]赵平堂,甲基磺酸盐Sn-Pb合金电镀在带材中电镀的应用,材料保护,2000,33(3)13-14
    [44]丁运虎,周国福,毛祖国,甲基磺酸亚光亮纯锡电镀锡添加剂的研究,材料保护,2006,39(3)4-8
    [45]李国斌,令玉林,甲基磺酸体系电镀铅锡合金工艺的研究,材料保护,2006,39(3)29-32
    [46]郝建军,安成强,甲基磺酸盐镀锡液性能研究,渤海大学学报,2007,28(4)297-330
    [47]胡立新,程骄,占稳等,甲基磺酸电镀锡工艺的研究,电镀与环保,2009,29(6)29-32
    [48]张著,龙晋明,郭忠诚等,添加剂对甲基磺酸盐镀锡液性能的影响,电镀与环保,2011,31(5)13-16
    [49]杨敬娥,一种新的测量碱性镀锡液中锡酸钠含量的方法,电镀与涂饰,2000,19(4)41-42
    [50]文斯雄,碱性镀锡液的维护,电镀与涂饰,1996,(15)48-49
    [51]Lowenheim F A., Alkaline Tin plating in Modern Electroplating, Lowenheim F A, ed., McGraw-Hill, New York,1978
    [52]周绍民,金属电沉积-原理与研究方法,上海科学技术出版社,1987
    [53]R.D. Armstrong, J.A. Harrison, Two-dimensional nucleation in electrocrystallization, Journal of The Electrochemical Society,116(1969) 328-331
    [54]A. Milchev, S. Stoyanov, R. Kaischev, Atomistic theory of electrolytic nucleation, Thin Solid Films,22(1974) 255-265
    [55]H. Bort, K. Jutter, W.J. Lorenz, Underpotential-overpotential transition phenomena in metal deposition process, Electrochimica Acta,28(1983) 985-991
    [56]Alexander, Role of the substrate state in electrochemical nucleation, Electrochimica Acta,28(1983) 947-953
    [57]B.R. Scharifker, J. Mostany, Three-dimensional nucleation with diffusion controlled growth, Part I. Number density of active sites and nucleation rates Per site, Journal of Electroanalytical Chemistry.177(1984) 13-23
    [58]J.R. Melrose, D.B. Hibbert, R.C. Ball, Interfacial velocity in electrochemical deposition and the hecker transition, Physical review letters,65(1990) 3009-3012
    [59]J.N. Chazalviel, Electrochemical aspects of the generation of ramified metallic electrodeposits, Physical review A,42(1990) 7355-7367
    [60]V. Fleury, J.N. Chazalviel, M. Rosso, Theory and experimental evidence of electroconvection around electrochemical deposits, Physical review letters,68(1992) 2492-2495
    [61]Rene Winand, Contribution to the study of copper electrocrystallization in view of industrial applications submicroscopic and macroscopic considerations, Electrochimica Acta,43(1998) 2925-2932
    [62]J.E. Garland, C.M. Pettit, M.J. Walters, et al, Analysis of potentiostatic current transients at metal-liquid interfaces: resolving the effects of a finite step interval, Surface and Interface Analysis,31(2001) 492-503
    [63]L. Christophe, E. Juan, A. Francoise, Internal structure of dense electrodeposits, Physical Review E,61(2000) 5452-5463
    [64]M.Y. Abyaneh, M. Fleischmann, Extracting nucleation rates from current-time transients:further comments, Journal of Electroanalytical Chemistry,530(2002) 123-125
    [65]M.Y. Abyaneh, Extracting nucleation rates from current-time transients Part III: nucleation kinetics following the application of a pre-pulse, Journal of Electroanalytical Chemistry,530(2002) 96-104
    [66]M.Y. Abyaneh, M. Fleischmann, Extracting nucleation rates from current-time transients Part II:comparing the computer-fit and pre-pulse method, Journal of Electroanalytical Chemistry,530(2002) 89-95
    [67]M.Y. Abyaneh, Extracting nucleation rates from current-time transients Part Ⅰ: the choice of growth models, Journal of Electroanalytical Chemistry,530(2002) 82-88
    [68]M.Y. Abyaneh, M. Fleischmann, Extracting nucleation rates from current-time transients:comments on the criticisms of Fletcher on three papers published in this issue, Journal of Electroanalytical Chemistry,530(2002) 108-118
    [69]G. Darko, P. Batric, Electrodeposition of copper the nucleation mechanisms, Electrochimica Acta,47(2002) 2901-2912
    [70]E. Gomez, G. Kipervaser, E. Valles, Electrodeposition under a time-dependent boundary condition, Thin Solid Films,440(2003) 45-53
    [71]M.Y. Abyaneh, Modelling diffusion controlled electrocrystallisation processes. Journal of Electroanalytical Chemistry,586(2006) 196-203
    [72]F.J. Barry, V.J. Cunnane, Synergistic effects of organic additives on the discharge, nucleation and growth mechanisms of tin at polycrystalline copper electrodes, Journal of Electroanalytical Chemistry,537(2002) 151-163
    [73]A.Q. He, Q. Liu, G.I. Douglas, Electrodeposition of tin:a simple approach, Journal of Materials Science-materials in Electronics,19(2008) 553-562
    [74]C.F. Han, Q. Liu, G.I. Douglas, Kinetics of Sn electrodeposition from Sn(II)-citrate solutions, Electrochimica Acta,53(2008) 8332-8340
    [75]E. Budevski, G Staikov, W.J. Lorenz, Electrocrystallization: Nucleation and growth phenomena, Eleetrochimica Acta,45(2000) 2559-2574
    [76]张著,郭忠诚,龙晋明等,电流密度对甲基磺酸盐电沉积亚光锡的影响,材料工程,2012,(4)76-81
    [77]杜小光,牛振江,李则林等,电沉积条件对甲基磺酸锡镀层织构的影响,电镀与涂饰,2004,23(5)6-9
    [78]Shixue Wen, A. Jerzy, Szpunar. Nucleation and growth of tin on low carbon steel, Electrochimica Acta,50(2005) 2393-2399
    [79]C.S. Chen, Effect of agitation on tin-lead alloy deposition in a methane sulfonate system, Plating and surface finishing,88(2001) 86-89
    [80]邱万江,陈宝春,王悦,电镀铅一锡二元合金溶液均匀性对镀层中锡含量的影响,汽车工艺与材料,2001,(7)9-11
    [81]李昌明,赵灵智,刘志平等,超声在电沉积锡基碳纳米管复合材料中应用,金属功能材料,2009,16(2)37-40
    [82]陈华茂,吴华强,超声电镀锡铋合金研究,表面技术,2004,33(5)52-54
    [83]陈华茂,吴华强,超声波对锡铋合金电镀层的影响,材料保护,2004,37(8)24-25
    [84]鄢力,酸性光亮镀锡溶液的维护与管理,电镀与精饰,2001,23(1)27-29
    [85]C.T.J. Low, F.C. Walsh, The influence of a perfluorinated cationic surfactant on the electrodeposition of tin from a methanesulfOnic acid bath, Journal of Electroanalytical Chemistry,615(2008) 91-102
    [86]封勇,光亮酸性镀锡工艺综述,机电元件,2005,25(2)32-36
    [87]吴筑平,杨成对,刘密新,一种用于甲磺酸铅、锡电镀液的光亮整平剂,CN,98111714.7,1999
    [88]J.H. Lee, Brightener and aqueous plating bath for tin and/or lead, US,4844780, 1989
    [89]K. Obata, N. Dohi, Y. Okuhama, et al, Tin, lead, and tin-lead alloy plating balhs. US,4459185,1984
    [90]C.T.J. Low, F.C. Walsh, The stability of an acidic tin memaIlesulfonafe electrolyte in the presence of a hydioquinone antioxidant, Electrochimica Acta, 53(2008) 5280-5286
    [91]曹立新,韩清瑕,李宁等,三乙四胺六乙酸消除高速镀锡液中铁杂质影响的研究,材料保护,2006,39(6)62-64
    [92]王腾,安成强,郝建军,甲基磺酸盐镀锡添加剂研究进展,电镀与涂饰,2009,28(6)15-18
    [93]李强,辜敏,鲜晓红,铜电结晶的研究进展,化学进展,2008,20(4)483-490
    [94]T.E. Gruz, M.Z. Volmer, Physikalische Chemie,150(1930) 203-212
    [95]W.Z. Lorenz, Electrochemistry,58(1954) 912-918
    [96]R. Kaischew, Z.Z. Mutaftschiew, Physic Chemistry,204(1955) 334-345
    [97]M. Fleischmann, H.R. Thirsk, Advances in Electrochemistry and Electrochemical Engineering. New York:Wiley,1963 123-156
    [98]M. Fleischmann, H.R. Thirsk, The potentiostatic study of the growth of deposits on electrodes, Electrochimica Acta,1(1959) 146-160
    [99]A. Bewick, M. Fleischmann, H.R. Thirsk, Kinetics of the electrocrystallization of thin flims of Calomel, Transactions of Faraday Society,58(1962) 2200-2216
    [100]B. Scharifker, G. Hills, Theoretical and experimental studies of multiple nucleation, Electrochemica Acta,28(1983) 879-889
    [101]M.H. Holzle, U. Retter, D.M. Kolb, The kinetics of structural changes in copper layers on Au (111), Journal of Electroanalytical Chemistry,371(1994) 101-109
    [102]B. Enrique, P.P. Manuel, B. Nikola, etal, Formation mechanisms and characterization of black and white Cobalt electrodeposition onto stainless steel, Journal of The Electrochemical Society,147(2000) 1787-1796
    [103]I. Petersson, E. Ahlberg, Kinetics of the electrodeposition of Pb-Sn alloys-Part I. At glassy carbon electrodes, Journal of.Electroanalytical Chemistry, 485(2000)166-177
    [104]I. Petersson, E. Ahlberg, Kinetics of the electrodeposition of Pb-Sn alloys-Part II. At polycrystalline gold electrodes, Journal of Electroanalytical Chemistry,485(2000) 178-187
    [105]B.J. Torrent, E. Guaus, F. Sanz, Initial stages of tin electrodeposition from sulfate baths in the presence of gluconate, Journal of Applied Electrochemistry, 32(2002) 225-230
    [106]李俊华,费锡明,徐芳,2种有机添加剂对锡电沉积的影响,应用化学,2006,23(9)1042-1046
    [107]黄久贵,李宁,蒋丽敏等,软熔条件对镀锡板合金层组织及其耐蚀性的影响,上海金属,2004,26(3)19-22.[108]王煜,陆文聪,陈念贻等,铁和液体锡相互作用的研究,上海金属,2004,26(3)23-26
    [109]黄久贵,李宁,周德瑞,电流密度对锡镀层结构及耐蚀性的影响,电镀与环保,2004,24(2)14-15
    [110]张汉诚,软熔后镀锡层的均匀性对马口铁抗硫污的影响,食品工业,1994,(5)46-49
    [111]G.C. Van Haastrecht, J. Miedema, GB. Hoogovens, et al, A mathematical model of reflow process during tinplating, Fifth International Tnplate Conference, London. 1992,10:99
    [112]A. Fumio, H. Makoto, K. Fumio, et al. Tin, Lead, Tin-lead alloy plating, Metal Finishing,96(1998)310-319
    [113]B.B. Katemann, C.G Inchauspe, P.A. Castro, et al. Precursor sites for localised corrosion on lacquered tinplates visualised by means of alternating current SEM, Electrochimica Acta,48(2003) 1115-1121
    [114]H.E. Biber, W.T. Harter,The growth of FeSn2 layers on specifically oriented iron single crystals, Journal of The Electrochemical Society,113(1966) 823-834
    [115]E. Zumelzu, C. Cabezas, Observations on the influence of microstructure on electrolytic tinplate corrosion, Materials Characterization,34(1995) 143-148
    [116]H. Takano, H. Kagechila, Y. Yomura, et al, Characteristics of FeSn-alloyed tinplate, Third International Tinplate Conference, London,1984,201-213.
    [117]H. Makoto, K. Wataru, M. Hiroshi, Influence of microstructure of passivation of tinplate on prevention of tin oxide growth, Iron & Steel,31(1996) 1142-1145
    [118]李宁,王震模,黎德育,镀锡薄钢板高温氧化的研究,钢铁研究学报,2000,12(4)47-50
    [119]李宁,李平,黎德育等,用明度差法研究杂质对镀锡板黑灰的影响,材料保护,2001,34(1)15-16
    [120]贡雪南,刘常升,于晓中等,不同温度条件下铬酸盐钝化镀锡板的耐蚀性研究,表面技术,2007,36(6)25-29
    [121]孙杰,安成强,于晓中等,不同表面状态镀锡钢板铬酸盐钝化膜中铬元素的XPS分析,光谱学与光谱分析,2009,29(2)544-547
    [122]D.R. Cowieson, A.R. Scholefield, Passivation of tin-zinc alloycoated steel, Trans IMF,63(1985) 56-58
    [123]X.Q. Huang, N. Li, H.Y. Wang, et al, Electrodeposited cerium filrn as chromate replacement for tinplate, Thin Solid Films,516(2008) 1037-1043
    [124]X.Q. Huang, N. Li, Structural characterization and properties of lanthanum film as chromate replacement for tinplate, Applied Surface Science,254(2007) 1463-1470
    [125]X.Q. Huang, N. Li, L.X. Cao, et al, Electrodeposited lanthanum film as chromate replacement for tinplate, Materials Letters,62(2008) 466-469
    [126]杜艳娜,李国希,朱日龙等,镀锡钢板钼酸盐钝化膜的耐蚀性能,电镀与精饰,2007,29(3)4-12
    [127]成信刚,镀锡板的无铬钝化,哈尔滨工业大学,2006:21-33
    [128]L.J. Zhang, J.J. Fan, Z. Zhang, et al, Study on the anodic film formation process of AZ91D magnesium alloy, Electrochimica Acta,52(2007) 5325-5334
    [129]靳佳琨,添加剂对甲基磺酸盐镀锡电沉积过程的影响,表面技术,2007,36(5)53-55
    [130]E. Gomez, E. Guaus, F. Sanz, et al, Tin electrodeposition on carbon electrodes. From nuclei to microcrystallites, Journal of Electroanalytical Chemistry,465(1999) 63-71.
    [131]王新东,武世民,刘艳芳,用电化学交流阻抗法研究铝合金表面稀土转化 膜,北京科技大学学报,2001,23(4)320-323
    [132]P. Passiniemi, K. Vakipana, Characterizaton of polyaniline blends with AC impedance measurements, Synthetic Metals.69(1995) 237-238
    [133]崔艳芳,李家邮,龙光斗,交流阻抗谱在蟾蜍膀胱膜通透性研究中的应用,华中师范大学学报(自然科学版),1996,30(1)69-71
    [134]U. Bertocci, F. Huet, Noise analysis applied to electrochemical systems, Corrosion,51(1995)131-144
    [135]E. Budevski, W. Obretenov, G. Staikov, Noise analysis in metal deposition-expectations and limits, Electrochimical Acta,34(1989) 1023-1029
    [136]Y. Puget, K. Trethewey, R.J.K. Wood, Electrochemical noise analysis of polyurethane-coated steel subjected to erosion-corrosion, Wear,233(1999) 552-567
    [137]J.F. Chen, W.F. Bogaerts, Electrochemical emission spectroscopy for monitoring uniform and localized corrosion, Corrosion,52(1996) 753-789
    [1]孙杰,齐国超,于晓中,安成强,镀锡钢板铬酸盐钝化膜中铬的x射线光电子能谱分析,冶金分析,2007,27(1)17-19
    [2]贡雪南,刘常升,于晓中,安成强,不同温度条件下铬酸盐钝化镀锡板的耐蚀性研究,表面技术,2007,36(6)25-26
    [1]丁祯祥,张允诚,杨信仰,郑瑞庭,实用装饰性镀层与涂层,化学工业出版社,2006:51
    [2]屠振密,韩书梅,杨哲龙,防护装饰性镀层,化学工业出版社,2006:294
    [3](加)施莱辛格(Schlesinger,M.),(美)庞诺威奇(Paunovic, M.)主编,范宏义等译,现代电镀,化学工业出版社,2006:209-210
    [4]W.H. Ho, H.C. Liu, H.C. Chen, S.K. Yen, Characterization of electrolytic tin dioxide deposition on Pt for lithium ion battery applications, Surface and Coatings Technology,201 (2007) 7100-7106
    [5]E. Gomez, E. Guaus, F. Sanz, E. Valles, Tin electrodeposition on carbon electrodes. From nuclei to microcrystallites, Journal of Electroanalytical Chemistry, 465(1999)63-71
    [6]T. Teshigawara, T. Nakata, K. Inoue, T. Watanabe, Microstructure of pure tin electrodeposited films, Scripta materialia,44 (2001) 2285-2289
    [7]F.J. Barry, V.J. Cunnane, Synergistic effects of organic additives on the discharge, nucleation and growth mechanisms of tin at polycrystalline copper electrodes, Journal of Electroanalytical Chemistry,537 (2002) 151-163
    [8]J.T. Burgues, E. Guaus, F. Sanz, Initial stages of tin electrodeposition from sulfate baths in the presence of gluconate, Journal of Applied Electrochemistry,32 (2002) 225-230
    [9]C.F. Han, Q. Liu, D.G. Ivey, Nucleation of Sn and Sn-Cu alloys on Pt during electrodeposition from Sn-citrate and Sn-Cu-citrate solutions, Electrochimica Acta, 54(2009)3419-3427
    [10]S.X. Wen, J.A. Szpunar, Nucleation and growth of tin on low carbon steel, Electrochimica Acta,50 (2005) 2393-2399
    [11]牛振江,林飞峰,杨防祖,姚士冰,周绍民,钒化合物稳定剂对锡电沉积 过程的影响,电镀与精饰,2001,23(3)1-4
    [12]S. Jaya, T.P. Rao, G.P. Pao, Electrochemical phase formation-I. The electrodeposition of copper on glassy carbon, Electrochimica Acta,31 (1986) 343-348
    [13]Z. Zhang, Electrochemical behavior of electropolated Zn-P alloy, Transactions of Nonferrous Metals Society of China,11(2001) 603-605
    [14]C.T.J.Low, F.C.Walsh, The influence of a perfluorinated cationic surfactant on the electrodeposition of tin from a methanesulfonic acid bath, Journal of Electroanalytical Chemistry,615 (2008) 91-102
    [15]D.Pletcher, A first course in electrode processes, The Electrochemical Consultancy, Romsey,1991
    [16]F.C. Walsh, A first course in electrochemical engineering, The Electrochemical Consultancy, Romsey,1993
    [17]C.M.A. Brett, A.M.O. Brett, Electrochemistry:Principles, Methods, and Applications, Oxford University Press Inc., New York,1993
    [18]A.J. Bard, L.R. Faulkner, Electrochemical Methods: Fundamentals and Applications,2nd ed., John Wiley & Sons, New York,2001
    [19]M.A. Climent, A. Aldaz, J.L. Vzquez, Anales de Quimica,79(1983) 660-668
    [20]D.H. van der Weijde, E.P.M. van Westing, J.H.W.de Wit, Electrochemical techniques for delamination studies, Corrosion Science,36(1994) 643-652
    [21]P. Campestrini, E.P.M van Westing, J.H.W de Wit, Influence of surface preparation on performance of chromate conversion coatings on Alclad 2024 aluminium alloy:Part II:EIS investigation, Electrochimica Acta,46(2001) 2631-2647
    [22]S.G. Wang, C.B. Shen, K. Long, T. Zhang, F.H. Wang, Z.D. Zhang, The electrochemical corrosion of bulk nanocrystalline ingot iron in acidic sulfate solution, Journal of Physical Chemistry B,110 (2006) 377-382
    [23]S.G Wang, C.B. Shen, K. Long, H.Y. Yang, F.H. Wang, Z.D. Zhang, Preparation and elctrochemical corrosion behavior of bulk nanocrystalline ingot iron in HCl acid solution, Journal of Physical Chemistry B,109 (2005) 2499-2503
    [24]D. Grujicic, B. Pesic, Electrochemical and AFM study of nickel nucleation mechanisms on vitreous carbon from ammonium sulfate solutions, Electrochimica Acta,51(2006)2678-2690
    [25]E.C. Munoz, R.S. Schrebler, P.K Cury, C.A. Suarez, R.A. Cordova, C.H. Gomez, R.E. Marotti and E.A. Dalchiele, The Influence of Poly(ethylene oxide) and Illumination on the Copper Electrodeposition Process onto n-Si(100), Journal of Physical Chemistry B,110 (2006) 21109-21117
    [26]Y. Chen, Q.P. Wang, C. Cai, Y.N. Yuan, F.H. Cao, Z. Zhang, J.Q. Zhang, Electrodeposition and characterization of nanocrystalline CoNiFe films, Thin Solid Films.520(2012) 3553-3557
    [27]G.J. Hills, D.J. Schiffrin, J. Thompson, Electrochemical nucleation from molten salts-I. Diffusion cotrolled electrodeposition of silver from alkali molten nitrates, Electrochimica Acta,19 (1974) 657-670
    [28]B. Scharifker, G Hills, Theoretical and experimental studies of multiple nucleation, Electrochimica Acta,28 (1983) 879-889
    [29]G Gunawardena, G. Hills, I. Montenegro, B. Scharifker, Electrochemical nucleation:Part I. General considerations, Journal of Electroanalytical Chemistry and Interfacial Electrochemistry,138 (1982) 225-239
    [30]G Gunawardena, G Hills, I. Montenegro, B. Scharifker, Electrochemical nucleation:Part III. The electrodeposition of mercury on vitreous carbon, Journal of Electroanalytical Chemistry and Interfacial Electrochemistry,138 (1982) 255-271
    [31]B.R. Scharifker, J. Mostany, Three-dimensional nucleation with diffusion controlled growth:Part I. Number density of active sites and nucleation rates per site, Journal of Electroanalytical Chemistry and Interfacial Electrochemistry,177 (1984) 13-23
    [32]E. Barrera, M. Palomar-Pardave, N. Batina, I. Gonzalez, Formation mechanisms and characterization of black and white cobalt electrodepostion onto stainless steel, Journal of The Electrochemical Society,147 (2000) 1787-1796
    [33]M. Palomar-Pardave, B.R. Scharifker, E.M. Arce, M. Romero-Romo, Nucleation and diffusion-controlled growth of electroactive centers:reduction of protons during cobalt electrodeposition, Electrochimica Acta,50 (2005) 4736-4745
    [34]Z.N. Yang, Z. Zhang, J.Q. Zhang, Electrodeposition of decorative and protective Zn-Fe coating onto low-carbon steel substate, Surface and Coatings Technology,200 (2006)4810-4815
    [35]M.H. Holzle, U. Retter, D.M. Kolb, The kinetics of structural changes in Cu adlayers on Au (111), Journal of Electroanalytical Chemistry,371 (1994) 101-109
    [36]E. Budevski, G. Staikov, W.J. Lorenz, Electrocrystallization:nucleation and growth phenomena, Electrochimica Acta,45 (2000) 2559-2574
    [37]L.J. Zhang, J.J. Fan, Z. Zhang, F.H. Cao, J.Q. Zhang, C.N. Cao, Study on the anodic film formation process of AZ91D magnesium alloy, Electrochimica Acta,52 (2007) 5325-5333
    [38]B.R. Scharifker, J. Mostany, M. Palomar-Pardave,I. Gonzalez, On the theory of the potentiostatic current transient for diffusion-controlled three-dimentsional electrocrystaalization processes, Journal of The Electrochemical Society,146 (1999) 1005-1012
    [39]L.H. Mendoza-Huizar, J. Robles, M. Palomar-Pardave, Nucleation and growth of cobalt onto different substrates:Part I. Underpotential deposition onto a gold electrode, Journal of Electroanalytical Chemistry,521 (2002) 95-106
    [40]L.H. Mendoza-Huizar, J. Robles, M. Palomar-Pardave, Nucleation and growth of cobalt onto different substrates:Part II. The upd-opd transition onto a gold electrode, Journal of Electroanalytical Chemistry,545 (2003) 39-45
    [41]M. Arbib, B. Zhang, V. Lazarov, D. Stoychev, A. Milchev, Electrochemical nucleation and growth of rhodium on gold substates, Journal of Electroanalytical Chemistry,510 (2001) 67-77
    [42]A.E. Alvarez, D.R. Salinas, Formation of Cu/Pd bimetallic crystal by electrochemical deposition, Electrochimica Acta,55 (2010) 3714-3720
    [43]Southampton Electrochemistry Group, in:T.J. Kemp (Ed.), Instrumental Methods in Electrochemistry, Ellis Horwood Ltd., Chichester, UK,1985
    [44]E. Budewskin, W. Bostanoff, T. Witanoff, Z. Stoinoff, A. Kotzewa, R. Kaischew, Keimbildungserscheinungen an versetzungsfreien (100)-flachen von silbereinkristallen, Electrochimica Acta,11 (1966) 1697-1707
    [45]G. Blanc, C. Gabrielli, M. Keddam, Measurement of the electrochemical noise by a cross correlation method, Electrochimica Acta,20 (1975) 687-689
    [46]E.W. Bohannan, L.Y. Huang, F.S. Miller, M.G. Shumsky, J.A. Switzer, In situ electrochemical quartz crystal microbalance study of potential oscillations during the electrodeposition of Cu/Cu2O layered nanostructures, Langmuir,15 (1999) 813-818
    [47]A. Bonnefont, R. Kostecki, F. Mclarnon, J.C. Arrayet, L. Servant, F. Argoul, In situ atomic force microscopy imaging of electrodeposition of mixed layers of Copper/Cuprous oxide, Journal of The Electrochemical Society,149 (1999) 4101-4104
    [48]Z. Zhang, W.H. Leng, Q.Y. Cai, F.H. Cao, J.Q. Zhang, Study of the zinc electroplating process using electrochemical noise technique, Journal of Electroanalytical Chemistry,578 (2005) 357-367
    [49]F. Safizadeh, A.M. Lafront, E. Ghali, G.E. Houlachi, Monitoring the influence of gelatin and thiourea on copper electrodeposition employing electrochemical noise technique, Canaidan Metallurgical Quarterly,49 (2010) 21-28
    [50]F. Safizadeh, A.M. Lafront, E. Ghali, GE. Houlachi, An investigation of the influence of selenium on copper deposition during electrorefining using electrochemical noise analysis, Hydrometallurgy. 111 (2012) 29-34
    [51]Z.H. Dong, X.P. Guo, J.S. Zheng, L.M. Xu, Calculation of noise resistance by use of the discrete wavelets transform, Electrochemistry Communication,3 (2001) 561-565
    [52]A.R. Babar, S.S. Shinde, A.V. Moholkar, K.Y. Rajpure, Synthesis and characterization of Cu2ZnSnS4 thin films grown by PLD:Solar cells, Journal of Alloys and Compounds,505(2010) 7439-7446
    [1]D.H. Xia, J.H. Wang, S.Z. Song, B. Zhong, Z.W. Han, Corrosion behavior of tinplate in NaCl solution, Advanced Materials Research,233(2011) 1747-1751
    [2]A. Pournaras, M. Prodromidis, A. Katsoulidis, A. Badeka, D. Georgantelis, M. Kontominas, Evaluation of lacquered tinplated cans containing octopus in brine by employing X-ray microanalysis and electrochemical impedance spectroscopy, Journal of Food Engineering,86(2008) 460-464
    [3]M. Kontominas, M. Prodromidis, E. Paleologos, A. Badeka, D. Georgantelis, Investigation of fish-product-metal container interaction using scanning electron microscopy-X-ray microanalysis, Food Chemistry,98(2006) 225-230
    [4]L. Perring, D.M. Basic, Determination of total tin in canned food using inductively coupled plasma atomic emission spectroscopy, Analytical and Bioanalysis Chemistry,374(2002) 235-243
    [5]M.A. Arenas, A. Condea, J.J. De Eamborenea, Cerium: A suitable green corrosion inhibitor for tinplate, Corrosion Science,44(2002) 511-520
    [6]M.Carano, Tin Plating, Plating and Surface Finishing,85(1998) 66-67
    [7]Y.S. Jin, T.Y. Kim, K.Y. Kim, The effect of a surface oxide layer of electrolytic tin plate on the frictional properties during the ironing operation of a two-piece can-making process, Surface and Coatings Technology,99(1998) 319-325
    [8]E. Zumelzu, C. Cabezas, Observations on the influence of microstructure on electrolytic tinplate corrosion, Materials Characterization,34(1995) 143-148
    [9]J.G. Huang, N. Li, D.R. Zhou, Generation reason and corrosion characteristic of cavity of tinplate alloy layer, J CNET. South Univ. Technol.11(2004) 362-366
    [10]D. Yfantis, A. Yfantis, B. Tzalas, A new chrome' 1 free passivation method of tinplate used in the canning industry, Corrosion,56(2000) 700-708
    [11]P.C. Lowrev, Challenges facing the other coated product, American Metal Market,108(2000) 16-18
    [12]GF. Cui, J.H. Wang, N. Li, et al. A single precursor pit for pitting corrosion on defect of tinplate alloy layer visualized by atomic force microscopy, Materials Chemistry and Physics,97(2006,) 488-493
    [13]N. Mora, J.L. Cano, J.M. Polo, Corrosion protection properties of cerium layers formed on tinplate, Corrosion Science,46(2004) 563-578
    [14]R. Catald, J.M. Cabafies, An impedance study on the corrosion properties of lacquered tinplate can sin contact with tuna and mussels in pickled sauce, Corrosion Science,40(1998) 1455-1467
    [15]S.F. Lu, G.R. Mount, N.S. Mcintyre, Use of image depth profiling SIMS for study of tinplate corrosion, Surface and Interface Analysis,21(1994) 177-183
    [16]F. Masanori, Y. Kazuhiro, U. Yusuke,57Fe and119Sn conversion electron Mossbauer studies of Fe-Sn phases on tinplate, Journal of Materials Science, 20(1985)4099-4012
    [17]D.K. Van, A.M. Buschow, K. H. J, Physica,138(1986) 55-62
    [18]N. Li, J.G. Huang, D.R. Zhou, Finding of gray points on the surface of the Sn-Fe alloy layer and its effects on the corrosion resistance of the alloy layer, Journal of Materials Scence and Technology,19(2003) 174-176
    [19]N. Li, P. Li, D.Y. Li, Effect of sludge on degree of smudge and corrosion resistance of tinplating, The Chinese Journal of Nonferrous Metals,11(2001) 930-932
    [20]F. Aoki, M. Himeno, F. Kosume, Tin, lead, tin-lead alloy plating, Metal Finishing,96(1998) 310-319
    [21]S. Ramamurthy, T.L. Walzak, S.F. Lu, Study of tinplate structure using imaging secondary ion spectrometry, Surface and Interface Analysis,17(1991) 834-841
    [22]X.Q. Huang, C.F. Liu, H.J. Liu, Studies on the alloy-tin couple for the double reduced tinplate, WISCO Technology,47(2009) 9-11
    [23]GB/T 2520-2008, Cold-reduced electrolytic tinplate, Chinese Standard,2008.
    [24]ASTM A 623-03, Standard Specification for Tin Mill Products, General Requirements, ASTM International,2003.
    [25]S. Liang, L.J. Qiao, W.Y. Chu, AFM study of local plasticity enhanced by stress corrosion, Materials Letters,57(2003) 1135-1141
    [26]J.O.M. Bockris, D. Drazic, A.R. Despic, The electrode kinetics of the deposition and dissolution of iron, Electrochimica Acta,4(1961) 325-361
    [27]D.H. van der Weijde, E.P.M. van Westing, J.H.W.de Wit, Electrochemical techniques for delamination studies, Corrosion Science,36(1994) 643-652
    [28]P. Campestrini, E.P.M van Westing, J.H.W de Wit, Influences of surface preparation on performance of chromate conversion coatings on Alclad 2024 aluminium alloy:Part II:EIS investigation, Electrochimica Acta,46(2001) 2631-2647
    [29]齐国超,于晓中,孙杰等,感应软熔工艺对镀锡板耐蚀性的影响,材料与冶金学报,2005,4(3)233-236
    [30]孙杰,谭永,于晓中,安成强,钝化时间对镀锡钢板耐蚀性的影响,材料保护,2007,40(8)19-20
    [31]翟运飞,李宁,郑振,黎德育,镀锡钢板钝化工艺的展望,电镀与环保,2010,30(5)1-3
    [32]贡雪南,刘常升,于晓中,安成强,不同温度条件下铬酸盐钝化镀锡板的耐蚀性研究,表面技术,2007,36(6)25-26

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700