用户名: 密码: 验证码:
儿茶酚胺类药物对动物信号追踪和目标追踪的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
中性刺激短暂呈现并消失后,奖赏刺激立即呈现,如此多次匹配,中性刺激便转化为条件刺激(conditioned stimulus, CS),诱导出动物的信号追踪或目标追踪。前者是指条件刺激呈现期间,动物接近CS的反应;后者是指条件刺激呈现期间,动物接近奖赏呈现装置的反应。奖赏相关线索不仅能够影响动物的正常行为,还可以导致动物的不可控行为,个体对奖赏有关线索的反应方式可能是决定精神病理现象如成瘾易感性的关键因素。多巴胺(Dopamine, DA)对信号追踪和目标追踪反应均有重要影响。成瘾药物吗啡处理增加脑奖赏系统DA释放,并且新近研究表明阿片受体在环境线索获得控制行为能力的过程中起重要作用,但吗啡对信号追踪和目标追踪行为的影响,以及对先天具有信号追踪和目标追踪倾向的动物的影响是否相同,均未见到报道。吗啡和氟哌啶醇(D2受体拮抗剂)联合给药对两类动物的行为效应也不清楚。再者,有机体的生理功能是多种神经递质共同作用的结果,对DA释放具有调节作用的5-羟色胺(5-hydroxytryptamine,5-HT)系统也参与了信号追踪调节。但信号追踪和目标追踪反应中是否存在着DA和5-HT之间的交互作用,也需进行深入研究。最后,本课题选用丙咪嗪和氟哌啶醇考察DA和5-HT系统之间的交互作用对信号追踪和目标追踪的影响。其中的丙咪嗪同时提高去甲肾上腺素(Norepinephrine, NE)和5-HT在突触间隙中的含量。而NE对信号追踪和目标追踪的影响目前尚未见到报道。
     本课题以食物为奖赏、以短暂呈现的局部性CS为信号,条件刺激与食盒之间保持8cm的空间距离,采用同时测量信号追踪和目标追踪的方式探讨条件性接近反应的多巴胺机制,以进一步理解环境刺激影响个体行为的机制,为治疗以行为控制能力丧失为特征的精神疾病提供线索。本课题的主要发现如下:①吗啡、氟哌啶醇急性和慢性处理均显著减少大鼠的信号追踪表达。②氟哌啶醇能够降低目标追踪组大鼠而非信号追踪组大鼠的信号追踪获得,吗啡单独注射没有显著影响两组大鼠的信号追踪获得,而与氟哌啶醇联合给药的情况下,吗啡强化氟哌啶醇引起的目标追踪组大鼠信号追踪获得减少的倾向。可能是分组训练阶段的信号和奖赏等经历影响了大鼠在新的Autoshaping训练中的反应,使吗啡处理没有显著影响两组大鼠的信号追踪。其次,信号追踪大鼠伏隔核多巴胺水平较高,使其不敏感于吗啡和氟哌啶醇处理,而目标追踪大鼠伏隔核较低的多巴胺水平使其敏感于DA有关药物的处理。再者,可能是细胞间DA含量的升高引起了目标追踪组大鼠D2受体功能下调。③氟哌啶醇和丙咪嗪均能够降低大鼠的信号追踪获得,在同时注射这两种药物的情况下,丙咪嗪强化氟哌啶醇引起的大鼠信号追踪获得减少的倾向,这可能是由于细胞间5-羟色胺含量的升高使多巴胺释放减少导致的行为倾向。心得安没有显著影响大鼠的信号追踪获得,在同时注射丙咪嗪和心得安的情况下,心得安没有能够抑制丙咪嗪引起的大鼠信号追踪获得减少的倾向,这是由于NE没有显著影响信号追踪所导致的。④吗啡、氟哌啶醇、丙咪嗪和心得安单独给药与联合给药均没有显著影响大鼠目标追踪的获得与表达,这可能由三种原因导致:目标追踪反应很稳固,较少受其他因素影响;多巴胺D2受体在目标追踪中没有起重要作用;本研究所采用的信号—食盒间较远的距离和较为显眼的食盒设置,导致大鼠的目标追踪反应达渐近线水平,对各种实验处理不敏感。
Sign-tracking (behaviour directed towards the cues associated with reward during CS presentation) and goal-tracking (behaviour directed towards the food cup during CS presentation) are essentially conditioned approach responses which are induced by repeated pairings of conditioned stimulus (CS) and reward. Conditioned approach responses have positive meaning such as gaining food for survival and negative influence such as approaching addictive drugs on an organism. Multiple presentations of neutral stimulus and reward lead to the stimulus imbued with attractive, desired, riveting incentives gaining the power to control behavior. Reward-related cues in the environment not only guide normal behavior, but can also lead to uncontrollable behavior, and the way an individual responds to signals associated with rewards may be a key determinant of vulnerability to psychopathology, such as substance abuse. Dopamine (DA), one of the most important neurotransmitters in the central nervous system, has an important influence on sign-tracking and goal-tracking. Morphine causes dopamine release in the brain's reward system. Recently studies show opioid receptors play an important role in the process of CS gaining the power to control behavior. But the effect of morphine on sign-tracking and goal-tracking isn't studied yet. And no researches explore whether or not does morphine have the same effect of on ign-trackers and goal-trackers. It is not yet clear whether or not does morphinge combined with haloperidol (dopamine D2receptor antagonist) influence on sign-trackers and goal-trackers differently. Thirdly, physiological functions of an organism are the results of multiple neurotransmitters working together.5-hydroxytryptamine (5-HT) system which regulates DA release, participate in the regulation of sign-tracking. But no study pursues the interaction of DA and5-HT on sign-tracking and goal-tracking. Finally, the current study used haloperidol and imipramine which acts as norepinephrine/serotonin reuptake inhibitor to examine the interaction of DA and5-HT on sign-tracking and goal-tracking. Effect of NE on sign-tracking and goal-tracking is not yet reported.
     The current study used food as reward, local cues as signal,8cm as the distance between CS and food cup, and simultaneously measuring sign-tracking and goal-tracking to explore dopamine mechanisms of conditioned approach responses for better understanding the control of behavior by reward-related stimuli and treating mental illness without the power of behavior control. The major findings and conclusions are as follows:①Both acute and chronic morphine/haloperidol treatment decreased expression of sign-tracking in the rat.②Haloperidol decreased acquisition of sign-tracking in goal-trackers, but not in sign-trackers. Morphine didn't have an effect on acquisition of sign-tracking in sign-trackers and goal-trackers. The decreased sign-tracking acquisition in goal-trackers(but not in sign-trackers) induced by haloperidol was aggravated by morphine. The topography of sign-tracking and goal-tracking is dependent on a number of factors, including prior experience with the CS or US. It is perhaps because sign-tracking rats who also have higher levels of DA in the nucleus accumbens are insensitive to morphine/haloperidol treatment, but goal-tracking rats who have lower levels of DA in the nucleus accumbens are sensitive to DA drug treatment. It is the increased DA content among cells that induced down-regulation of D2dopamine receptor.③Both haloperidol and imipramine decreased acquisition of sign-tracking in the rat. The decreased sign-tracking acquisition induced by haloperidol was aggravated by imipramine. It is perhaps because the increased5-HT content among cells induced the decreased DA release. Propranolol didn't have an effect on acquisition of sign-tracking. The decreased sign-tracking acquisition induced by haloperidol wasn't inhibited by propranolol. It is perhaps because NE didn't have an important effect on acquisition of sign-tracking.④Morphine, haloperidol, imipramine and propranolol by itself and combination didn't have an effect on acquisition and expression of goal-tracking. There is three reasons that lead to:goal-tracking is robust, influenced by few factors; dopamine D2receptor didn't play an important role in goal-tracking; the current study used the farther distance between CS and food cup and prominent food cup, which leads to the asymptote level of goal-tracking and insensitive to the experimental treatments.
引文
常逢锦,崔睿思,李新旺.(2013).动物信号追踪和目标追踪行为及其神经机制.心理科学进展,21(1),68-76.
    崔睿思,李新旺,魏曙光,焦晶晶,朱小林.(2010).氟哌啶醇与丙咪嗪交互作用对成本效益决策的影响.心理学报,42(9),946-954.
    江开达.(2007).精神药理学.北京:人民卫生出版社.
    鞠平,王冬梅,李勇辉,郑希耕,杨晓燕,隋南.(2006).中脑多巴胺神经元位相性兴奋与行为强化.生理科学进展,37(1),71-74.
    刘惠军,高磊.(2012).趋近和回避动机的区分及其对心理病理学的影响.心理科学进展,20(11),1803-1811.
    张中启,罗质璞.学习记忆的胆碱机制与去甲肾上腺素能和5-HT介质系统的关系[J].中国药理学通报,1994,10(1),81-83.
    Anderson, R. I.,& Spear, L. P. (2010). Effects of housing conditions on sign-tracking behavior in adolescent and adult female Sprague-Dawley rats. Developmental Psychobiology,52,692.
    Anderson, R. I.,& Spear, L. P. (2011). Autoshaping in adolescence enhances sign-tracking behavior in adulthood:Impact on ethanol consumption. Pharmacology, Biochemistry and Behavior,98,250-260.
    Beckmann, J. S.,& Bardo, M. T. (2011). Environmental enrichment reduces attribution of incentive salience to a food-associated stimulus. Behavioural Brain Research,226(1),331-334.
    Beckmann, J. S., Marusich, J. A., Gipson, C. D.,& Bardo, M. T. (2011). Novelty seeking, incentive salience and acquisition of cocaine self-administration in the rat. Behavioural Brain Research,216,159-165.
    Blaiss, C. A.,& Janak, P. H. (2007). Post-training, but not post-reactivation, administration of amphetamine and anisomycin modulates Pavlovian conditioned approach. Neurobiology of Learning and Memory,87,644-658.
    Blaiss, C. A.,& Janak, P. H. (2009). The nucleus accumbens core and shell are critical for the expression, but not the consolidation, of Pavlovian conditioned approach. Behavioural Brain Research,200,22-32.
    Boakes, R. A. (1977). Performance on learning to associate a stimulus with positive reinforcement. In H. Davis & H. M. B. Hurwitz (Eds.), Operant-Pavlovian interactions (pp.67-97). Hillsdale, NJ:Erlbaum.
    Bressan, R. A.,& Crippa, J. A. (2005). The role of dopamine in reward and pleasure behaviour-review of data from preclinical research. Acta Psychiatr Scand,111[Suppl,427], 14-21.
    Brown, P. L.,& Jenkins, H. M. (1968). Auto-shaping of the pigeon's key-peck. Journal of the Experimental Analysis of Behavior,11,1-8.
    Bussey, T. J., Everitt, B. J.,& Robbins, T. W. (1997). Dissociable effects of cingulate and medial frontal cortex lesions on stimulus-reward learning using a novel Pavlovian autoshaping procedure for the rat:Implications for the neurobiology of emotion. Behavioral Neuroscience, 111,908-919.
    Cardinal, R. N., Parkinson, J. A., Lachenal, G, Halkerston, K. M., Rudarakanchana, N., Hall, J., et al. (2002). Effects of selective excitotoxic lesions of the nucleus accumbens core, anterior cingulate cortex, and central nucleus of the amygdala on autoshaping performance in rats. Behavioral Neuroscience,116,553-567.
    Cardinal, R. N., Parkinson, J. A., Marbini, H. D., Toner, A. J., Bussey, T. J., Robbins, T. W., et al. (2003). Role of the anterior cingulated cortex in the control over behavior by Pavlovian conditioned stimuli in rats. Behavioral Neuroscience,117,566-587.
    Chudasama, Y.,& Robbins, T. W. (2003). Dissociable contributions of the orbitofrontal and infralimbic cortex to Pavlovian autoshaping and discrimination reversal learning:Further evidence for the functional heterogeneity of the rodent frontal cortex. The Journal of Neuroscience,23,8771-8780.
    Costa, D. S. J.,& Boakes, R. A. (2009). Context blocking in rat autoshaping:Sign-tracking versus goal-tracking. Learning and Motivation,40,178-185.
    Dalley, J. W., Chudasama, Y., Theobald, D. E., Pettifer, C. L., Fletcher, C. M.,& Robbins, T. W. (2002). Nucleus accumbens dopamine and discriminated approach learning:Interactive effects of 6-hydroxydopamine lesions and systemic apomorphine administration. Psychopharmacology, 161,425-433.
    Danna, C. L.,& Elmer, G I. (2010). Disruption of conditioned reward association by typical and atypical antipsychotics. Pharmacology Biochemistry and Behavior,96,40-47.
    Di Ciano, P., Cardinal, R. N., Cowell, R. A., Little, S. J.,& Eceritt, B. J. (2001). Differential involvement of NMDA, AMPA/kainate, and dopamine receptors in the nucleus accumbens core in the acquisition and performance of Pavlovian approach behavior. The Journal of Neuroscience,21,9471-9477.
    Diller, J. W., Saunders, B. T, Anderson, K. G. (2008). Effects of acute and repeated administration of caffeine on temporal discounting in rats. Pharmacology, Biochemistry and Behavior,89, 546-555.
    Doremus-Fitzwater, T. L.,& Spear, L. P. (2011). Amphetamine-Induced Incentive Sensitization of Sign-Tracking Behavior in Adolescent and Adult Female Rats. Behavioral Neuroscience,125(4): 661-667.
    Eyny, Y. S.,& Horvitz, J. C. (2003). Opposing roles of D1 and D2 receptors in appetitive conditioning. The Journal of Neuroscience,23,1584-1587.
    Flagel, S. B., Akil, H.,& Robinson, T. E. (2009). Individual differences in the attribution of incentive salience to reward-related cues:Implications for addiction. Neuropharmacology,56, 139-148.
    Flagel, S. B., Cameron, C. M., Pickup, K. N., Watson, S. J., Akil, H.,& Robinson, T. E. (2011). A food predictive cue must be attributed with incentive salience for it to induce c-FOS mRNA expression in cortico-striatal-thalamic brain regions. Neuroscience,196,80-96.
    Flagel, S. B., Robinson, T. E., Clark, J. J., Clintonl, S. M., Watson, S. J., Seeman, P., et al. (2010). An animal model of genetic vulnerability to behavioral disinhibition and responsiveness to reward-related cues:Implications for addiction. Neuropsychopharmacology,35(2),388-400.
    Flagel, S. B., Watson, S. J., Akil, H.,& Robinson, T. E. (2008). Individual differences in the attribution of incentive salience to a reward-related cue:Influence on cocaine sensitization. Behavioural Brain Research,186,48-56.
    Flagel, S. B., Watson, S. J., Robinson, T. E.,& Akil, H. (2007). Individual differences in the propensity to approach signals vs. goals promote different adaptations in the dopamine system of rats. Psychopharmacology,191,599-607.
    Goldstein, L. H.,& Oakley, D. A. (1989). Autoshaping in micrencephalic rats. Behavioral Neuroscience,103,566-573.
    Hall, D. A.,& Gulley, J. M. (2011). Disruptive effect of amphetamines on Pavlovian to instrumental transfer. Behavioural Brain Research,216,440-445.
    Hall, J., Parkinson, J. A., Connor, T. M., Dickinson, A.,& Everitt, B. J. (2001). Involvement of the central nucleus of the amygdala and nucleus accumbens core in mediating Pavlovian influences on instrumental behaviour. European Journal of Neuroscience,13,1984-1992.
    Heinz, A., Dufeu, P., Kuhn, S., Dettling, M., Graf, K., Kurten, I., Rommelspacher, H., Schmidt, L. G. (1996). Psychopathological and behavioral correlates of dopaminergic sensitivity in alcohol-dependent patients. Archives of General Psychiatry,53,1123-1128.
    Holden, J. M.,& Peoples, L. L. (2010). Effects of acute amphetamine exposure on two kinds of Pavlovian approach behavior. Behavioral Brain Research,208,270-273.
    Holland, P. C. (1980). Influence of visual conditioned stimulus characteristics on the form of Pavlovian appetitive conditioned responding in rats. Journal of Experimental Psychology: Animal Behavior Processes,6,81-97.
    Horvitz, J. C.,& Eyny, Y. S. (2000). Dopamine D2 receptor blockade reduces response likelihood but does not affect latency to emit a learned sensory-motor response:Implications for Parkinson's disease. Behavioral Neuroscience,114,934-939.
    Huerta-Rivas, A., Perez-Garcia, G., Gonzalez-Espinosa, C.,& Meneses, A. (2010). Time-course of 5-HT6 receptor mRNA expression during memory consolidation and amnesia. Neurobiology of Learning and Memory,93,99-110.
    Ito, R., Everitt, B. J.,& Robbins, T. W. (2005). The hippocampus and appetitive Pavlovian conditioning:Effects of excitotoxic hippocampal lesions on conditioned locomotor activity and autoshaping. Hippocampus,15(6),713-721.
    Kapur, S.,& Remington, G. (1996). Serotonin-dopamine interaction and its relevance to schizophrenia. American Journal of Psychiatry,153,436-476.
    Lomanowska, A. M., Lovic, V., Rankine, M. J., Mooney, S. J., Robinson, T. E.,& Kraemer, G. W. (2011). Inadequate early social experience increases the incentive salience of reward-related cues in adulthood. Behavioural Brain Research,220,91-99.
    Lovic, V., Saunders, B. T., Yager, L. M.,& Robinson, T. E. (2011). Rats prone to attribute incentive salience to reward cues are also prone to impulsive action. Behavioural Brain Research,223(2),255-261.
    Mahler, S. V.,& Berridge, K. C. (2009). Which cue to "want?" central amygdala opioid activation enhances and focuses incentive salience on a prepotent reward cue. Journal of Neuroscience,29, 6500-6513.
    Mahler, S. V.,& de Wit, H. (2010). Cue-reactors:Individual differences in cue-induced craving after food or smoking abstinence. PLoS ONE,5, e15475.
    Mead, A. N.,& Stephens, D. N. (2003a). Involvement of AMPA receptor GluR2 subunits in stimulus-reward learning:Evidence from glutamate receptor gria2 knock-out mice. Journal of Neuroscience,23,9500-9507.
    Mead, A. N.,& Stephens, D. N. (2003b). Selective disruption of stimulus-reward learning in glutamate receptor grial knock-out mice. Journal of Neuroscience,23,1041-1048.
    Meneses, A. (2004). Effects of the 5-HT7 receptor antagonists SB-269970 and DR 4004 in autoshaping Pavlovian/instrumental learning task. Behavioural Brain Research,155(2), 275-282.
    Meneses, A. (2007a). Do serotonin 1-7 receptors modulate short and long-term memory? Neurobiology of Learning and Memory,87,561-572.
    Meneses, A. (2007b). Stimulation of 5-HT1A,5-HT1B,5-HT2A/2A,5-HT3 and 5-HT4 receptors or 5-HT uptake inhibition:Short-and long-term memory. Behavioural Brain Research,184, 81-90.
    Meneses, A.,& Hong, E. (1995). Effect of fluoxetine on learning and memory involves multiple 5-HT systems. Pharmacology Biochemistry and Behavior,52(2),341-346.
    Meneses, A., Manuel-Apolinar, L., Castillo, C.,& Castillo, E. (2007). Memory consolidation and amnesia modify 5-HT6 receptors expression in rat brain:An autoradiographic study. Behavioural Brain Research,178,53-61.
    Meyer, P. J., Ma, S. T.,& Robinson, T. E. (2012). A cocaine cue is more preferred and evokes more frequency-modulated 50-kHz ultrasonic vocalizations in rats prone to attribute incentive salience to a food cue. Psychopharmacology,219,999-1009.
    Morrow, J. D., Maren, S.,& Robinson, T. E. (2011). Individual variation in the propensity to attribute incentive salience to an appetitive cue predicts the propensity to attribute motivational salience to an aversive cue. Behavioural Brain Research,20,238-243.
    Nilsson, J., Kristiansen, T. S., Fosseidengen, J. E., Ferno, A., van den, B. R. (2008). Sign-and goal-tracking in Atlantic cod (Gadus morhua). Animal Cognition,11(4),651-659.
    Oakley, D. A., Eames, L. C., Jacobs, J. L., Davey, G. C. L.,& Cleland, G. C. (1981). Signal-centered action patterns in rats without neocortex in a Pavlovian conditioning situation. Physiological Psychology,9,135-144.
    Obuchowicz, E., Krysiak, R., Wieronska, J. M., Smialowska, M.,& Herman, Z. S. (2005). Alterations in striatal neuropeptide Y system activity of rats with haloperidolinduced behavioral supersensitivity. Neuropeptides,39,515-523.
    Parker, J. G, Zweifel, L. S., Clark, J. J., Evans, S. B., Phillips, P. E. M.,& Palmiter, R. D. (2010). Absence of NMDA receptors in dopamine neurons attenuates dopamine release but not conditioned approach during Pavlovian conditioning. Proceedings of the National Academy of Sciences of the United States of America,107,13491-13496.
    Parkinson, J. A., Dalley, J. W., Cardinal, R. N., Bamford, A., Fehnert, B., Lachenal, G, et al. (2002). Nucleus accumbens dopamine depletion impairs both acquisition and performance of appetitive Pavlovian approach behaviour:Implications for mesoaccumbens dopamine function. Behavioral Brain Research,137(1-2),149-163.
    Parkinson, J. A., Olmstead, M. C., Burns, L. H., Robbins, T. W.,& Everitt, B. J. (1999). Dissociation effects of lesions of the nucleus accumbens core and shell on appetitive Pavlovian approach behavior and the potentiation of conditioned reinforcement and locomotor activity by D-amphetamine. Journal of Neuroscience,19,2401-2411.
    Parkinson, J. A., Robbins, T. W.,& Everitt, B. J. (2000). Dissociable roles of the central and basolateral amygdala in appetitive emotional learning. European Journal of Neuroscience,12, 405-413.
    Parkinson, J. A., Willoughby, P. J., Robbins, T. W.,& Everitt, B. J. (2000). Disconnection of the anterior cingulate cortex and nucleus accumbens core impairs Pavlovian approach behavior: Further evidence for limbic cortical-ventral striatopallidal systems. Behavioral Neuroscience, 114,42-63.
    Phillips, G. D., Setzu, E.,& Hitchcott, P. K. (2003). Facilitation of appetitive Pavlovian conditioning by d-amphetamine in the shell, but not the core, of the nucleus accumbens. Behavioral Neuroscience,117,675-684.
    Phillips, G. D., Setzu, E., Vugler, A.,& Hitchcott, P. K. (2003). An immunohistochemical examination of the effects of sensitization on the mesotelencephalic dopaminergic response to d-amphetamine. Neuroscience,117,741-753.
    Phillips, P. E. M., Walton, M. E.,& Jhou, T. C. (2007). Calculating utility:preclinical evidence for cost-benefit analysis by mesolimbic dopamine. Psychopharmacology,191,483-495.
    Robinson, T. E.,& Berridge, K. C. (1993). The neural basis of drug craving:an incentive-sensitization theory of addiction. Brain Res Rev,18,247-291.
    Robinson, T. E.,& Flagel, S. B. (2009). Dissociating the predictive and incentive motivational properties of reward-related cues through the study of individual differences. Biological Psychiatry,65,869-873.
    Salamone, J. D., Arizzi, M., Sandoval, M. D., Cervone, K. M.,& Aberman, J. E. (2002). Dopamine antagonists alter response allocation but do not suppress appetite for food in rats: contrast between the effects of SKF 83566, raclopride and fenfluramine on a concurrent choice task. Psychopharmacology (Berl),160,371-380.
    Saunders, B. T.,& Robinson, T. E. (2010). A cocaine cue acts as an incentive stimulus in some but not others:Implications for addiction. Biological Psychiatry,67,730-736.
    Simon, N. W., Mendez, I. A.,& Setlow, B. (2009). Effects of prior amphetamine exposure on approach strategy in appetitive Pavlovian conditioning in rats. Psychopharmacology,202, 699-709.
    Simon, N. W.,& Setlow, B. (2006). Post-training amphetamine administration enhances memory consolidation in appetitive Pavlovian conditioning:Implications for drug addiction. Neurobiology of Learning and Memory,86,305-310.
    Smith, K. S., Berridge, K. C.,& Aldridge, J. W. (2011). Disentangling pleasure from incentive salience and learning signals in brain reward circuitry. Proceedings of the National Academy of Sciences of the United States of America,108(27), E255-E264.
    Tellez, R., Rocha, L., Castillo, C.,& Meneses, A. (2010). Autoradiographic study of serotonin transporter during memory formation. Behavioural Brain Research,212,12-26.
    Tomie, A., Aguado, A. S., Pohorecky, L. A.,& Benjamin, D. (2000). Individual differences in Pavlovian autoshaping of lever pressing in rats predict stress-induced corticosterone release and mesolimbic levels of monoamines. Pharmacology Biochemistry and Behavior,65,509-517.
    Tomie, A, Grimes, K. L.,& Pohorecky, L. A. (2008). Behavioral characteristics and neurobiological substrates shared by Pavlovian sign-tracking and drug abuse. Brain Research Reviews,58(1),121-135.
    Tomie, A., Tirado, A. D., Yu, L.,& Pohorecky, L. A. (2004). Pavlovian autoshaping procedures increase plasma corticosterone and levels of norepinephrine and serotonin in prefrontal cortex in rats. Behavioural Brain Research,153(1),97-105.
    Uslaner, J. M., Dell'Orco, J. M., Pevzner, A.,& Robinson, T. E. (2008). The influence of subthalamic nucleus lesions on sign-tracking to stimuli paired with food and drug rewards: Facilitation of incentive salience attribution? Neuropsychopharmacology,33,2352-2361.
    Volkow, N. D., Wang, G. J., Fowler, J. S., Logan, J., Hitzmann, R., Ding, Y. S., Pappas, N., Shea, C., Piscani, K. (1996). Decreases in dopamine receptors but not in dopamine transporters in alcoholics. Alcoholism:Clinical & Experimental Research,20,1594-1598.
    Voruganti, L. P.,& Awad, A.G. (2005). Brain imaging research on subjective response to psychotropic drugs. Acta Psychiatr Scand,111 [Suppl,427],22-28.
    Wan, X.,& Peoples, L. L. (2008). Amphetamine exposure enhances accumbal responses to reward-predictive stimuli in a Pavlovian conditioned approach task. The Journal of Neuroscience,28,7501-7512.
    Wassum, K. M., Cely, I. C., Balleine, B. W.,& Maidment, N. T. (2011). μ-opioid receptor activation in the basolateral amygdala mediates the learning of increases but not decreases in the incentive value of a food reward. The Journal of Neuroscience,31(5),1591-1599.
    Wassum, K. M., Ostlund, S. B., Balleine, B. W.,& Maidment, N. T. (2011). Differential dependence of Pavlovian incentive motivation and instrumental incentive learning processes on dopamine signaling. Learning and Memory,18,475-483.
    Winstanley, C. A., Dalley, J. W., Theobald, D. E. H.,& Robbins, T. W. (2004). Fractionating impulsivity:Contrasting effects of central 5-HT depletion on different measures of impulsive behavior. Neuropsychopharmacology,29,1331-1343.
    Wyvell, C. L.,& Berridge, K. C. (2001). Incentive Sensitization by Previous Amphetamine Exposure:Increased Cue-Triggered "Wanting" for Sucrose Reward. The Journal of Neuroscience, October 1,21(19):7831-7840.
    Yager, L. M.,& Robinson, T. E. (2010). Cue-induced reinstatement of food seeking in rats that differ in their propensity to attribute incentive salience to food cues. Behavioural Brain Research,214(1),30-34.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700