用户名: 密码: 验证码:
利用转基因番茄验证柚转录因子CgDREB对果实成熟性状的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
柑橘是多年生木本作物,在全世界内都具有广泛的经济价值。然而目前关于柑橘果实成熟的研究还较少,其调控机制也了解不多。为了研究转录因子对果实成熟的调节作用,在HB柚中克隆CgDREB基因并且将该基因在番茄(Lycopersicon esculentum)中超量表达进行功能验证。亚细胞定位表明CgDREB蛋白定位在细胞核内。通过实时荧光PCR检测23个转基因系和野生型植株的表达模式,发现其中35S-CgDREBline5,35S-CgDREBlinel5和35S-CgDREBlinel9这三个株系该基因表达量较高。因此,本研究以35S-CgDREBline5和35S-CgDREBlinel9转基因株系为材料,研究番茄果实成熟过程中果肉和果皮中代谢物质的变化。利用GC-MS气质联用仪对转基因株系和野生型番茄的果肉和果皮中的初生代谢物进行了分析,结果表明两个转基因株系果肉和果皮的有机酸、糖类和脂肪酸含量相比野生型番茄显著升高。这些代谢物的显著变化表明CgDREB基因在果实成熟过程中起到了重要作用。相对野生型果实,在两个转CgDREB基因株系果实乙烯释放量也显著增加。本研究发现果实成熟与代谢物具有密切的关系,这些代谢物包括有机酸、糖类、脂肪酸以及乙烯释放,这一发现强调了果实成熟过程中这些代谢物的变化以及乙烯的释放的重要作用。以上结果进一步揭示了CgDREB基因与果实成熟过程的关系。
Citrus is a perennial woody crop with a world-widely economic importance. However, the regulatory mechanism of fruit ripening in citrus has been less investigated. To explore the regulation role of transcription factors in fruit ripening, CgDREB gene was characterized in Citrus grandis and functionally over-expressed in tomato (Lycopersicon esculentum). Subcellular localization showed that CgDREB protein was localized in the nucleus. Expression patterns of23transgenic lines comparing with wild type were examined by real time-PCR.35S-CgDREBline5,35S-CgDREBlinel5and35S-CgDREBlinel9showed higher expression level among the23transgenic lines. Based on realtime-PCR results,35S-CgDREBline5and35S-CgDREBlinel9lines were used to study the metabolites profile in flesh and peel of tomato fruit during ripening. Primary metabolites in tomato flesh and peel fruits for the transgenic lines and wild type were measured by gas chromatography-mass spectrometry. The levels of organic acids, sugars and fatty acids were dramatically increased in tomato flesh and peel of the two CgDREB lines than wild type. Notable changes of the metabolic profiling response to CgDREB during fruit ripening suggest that CgDREB are involved in fruit ripening regulation. Ethylene production was significantly increased in both CgDREB lines than wild type. A sturdy correlation between fruit ripening and primary metabolite groups, such as organic acids, sugars, and fatty acids and ethylene releasing were observed, which emphasizes the significance of these metabolic changes and ethylene emancipation during fruit ripening. These results shed a new light into the relation between CgDREB and ripening process.
引文
1. Aharoni A, O'Connell AP, 2002. Gene expression analysis of strawberry achene and receptacle maturation using DNA microarrays. J. Exp. Bot. 53: 2073
    2. Aharoni A, Ric de Vos CH, Verhoeven HA, Maliepaard CA, Kruppa G, Bino R, Goodenowe DB, 2002. Nontargeted metabolome analysis by use of Fourier transform ion cyclotron mass spectrometry. OMICS 6: 217
    3. Aizat WM, Able JA, Stangoulis JCR, and Able A J, 2013. Characterisation of ethylene pathway components in non-climacteric capsicum. BMC Plant Biol. 13:191.
    4. Alba R, Fei Z, Payton P, Liu Y, Moore SL, Debbie P, Cohn J, D'Ascenzo M, Gordon JS, Rose JK, Martin G, Tanksley SD, Bouzayen M, Jahn MM, Giovannoni J, 2004. ESTs, cDNA microarrays, and gene expression profiling: Tools for dissecting plant physiology and development. Plant J. 39: 697-714.
    5. Alba R, Payton P, Fei Z, McQuinn R, Debbie P, Martin GB, Tanksley SD, Giovannoni JJ, 2005. Transcriptome and selected metabolite analyses reveal multiple points of ethylene control during tomato fruit development. Plant Cell. 17:2954-2965.
    6. Alexander L, and Grierson D, 2002. Ethylene biosynthesis and action in tomato:a model for climacteric fruit ripening. J. Exp. Bot. 53:2039-2055.
    7. Atkinson RG, Gunaseelan K, Wang MY, Luo L, Wang T, Norling CL, Johnston SL, Maddumage R, Schroder R, Schaffer RJ, 2011. Dissecting the role of climacteric ethylene in kiwifruit (Actinidia chinensis) ripening using a 1-aminocyclopropane-1-carboxylic acid oxidase knockdown line. J. Exp. Bot. 62: 3821-35.
    8. Barry CS, Giovannoni JJ, 2006. Ripening in the tomato Green-ripe mutant is inhibited by ectopic expression of a protein that disrupts ethylene signaling. Proc. Natl. Acad. Sci. USA 103:7923-7928.
    9. Barry CS, Giovannoni JJ, 2007. Ethylene and fruit ripening. J. Plant Growth Regul. 26:143-159.
    10. Barry CS, Llop-Tous MI, Grierson D, 2000. The regulation of laminocyclopropane-1-carboxylic acid synthase gene expression during the transition from system-1 to system-2 ethylene synthesis in tomato. Plant Physiol. 123:979-986.
    11. Barry CS, McQuinn RP, Thompson AJ, Seymour GB, Grierson D, Giovannoni JJ, 2005. Ethylene insensitivity conferred by the Green-ripe and Never-ripe 2 ripening mutants of tomato. Plant Physiol.138:267-275.
    12. Barsan C, Sanchez-Bel P, Rombaldi C, Egea I, Rossignol M, Kuntz M, Zouine M, Latche A, Bouzayen M, Pech JC, 2010. Characteristics of the tomato chromoplast revealed by proteomic analysis. J. Exp Bot 61:2413-2431.
    13. Bastias A, Lopez-Climent M, Valcarcel M, Rosello S, Gomez-Cadenas, A, Casaretto JA, 2011. Modulation of organic acids and sugar content in tomato fruits by an abscisic acid-regulated transcription factor. Physiol. Plantarum.141: 215-226.
    14. Baxter, CJ, Carrari F, Bauke A, Overy S, Hill SA, Quick PW, Fernie AR, Sweetlove LJ, 2005. Fruit carbohydrate metabolism in an introgression line of tomato with increased fruit soluble solids. Plant Cell Physiol. 46: 425-437.
    15. Beckles DM, Craig J, Smith AM, 2001. ADP-glucose pyrophosphorylase is located in the plastid in developing tomato fruit. Plant Physiol. 126: 261-266.
    16. Bernardi J, Licciardello C, Russo MP, Chiusano ML, Carletti G, Recupero GR, Marocco A, 2010. Use of a custom array to study differentially expressed genes during blood orange (Citrus sinensis L. Osbeck) ripening. J. plant physiol. 167: 301-310.
    17. Biswas MK, Qiang X, Deng X, Chai L, 2012. Generation, functional analysis and utility of Citrus grandis EST from a flower-derived cDNA library. Mol. Biol. Rep. 39: 7221-7235.
    18. Bombarely A, Merchante C, Csukasi F, Cruz-Rus E, Caballero JL, Medina-Escobar N, Blanco-Portales R, Botella MA, Munoz-Blanco J, S anchez-Sevilla JF, Valpuesta V, 2010. Generation and analysis of ESTs from strawberry (Fragaria 3 ananassa) fruits and evaluation of their utility in genetic and molecular studies. BMC Genomics 11:503
    19. Borsani J, Budde CO, Porrini L, Lauxmann MA, Lombardo VA, Murray R, Andreo CS, Drincovich MF, Lara MV, 2009. Carbon metabolism of peach fruit after harvest: changes in enzymes involved in organic acid and sugar level modifications. J. Exp. Bot. 60:1823-1837.
    20. Brady CJ, 1987. Fruit ripening. Annu. Rev. Plant Physiol. 38:155-178.
    21.Cara B, Giovannoni JJ, 2008. Molecular biology of ethylene during tomato fruit development and maturation. Plant Sci. 175:106-113.
    22. Carrari F, and Fernie A, 2006. Metabolic regulation underlying tomato fruit development. J Exp Bot. 57:1883-1897.
    23. Carrari F, Baxter C, Usadel B, Urbanczyk-Wochniak E, Zanor MI, Nunes-Nesi A, Nikiforova V, Centero D, Ratzka A, Pauly M, Sweetlove LJ, Fernie AR, 2006. Integrated analysis of metabolite and transcript levels reveals the metabolic shifts that underlie tomato fruit development and highlight regulatory aspects of metabolic network behavior. Plant Physiol. 142:1380-1396.
    24. Centeno DC, Osorio S, Nunes-Nesi A, Bertolo AL, Carneiro RT, Araujo WL, Steinhauser MC, Michalska J, Rohrmann J, Geigenberger P, Oliver SN, Stitt M, Carrari F, Rose JK, Fernie AR, 2011. Malate plays a crucial role in starch metabolism, ripening, and soluble solid content of tomato fruit and affects postharvest softening. Plant Cell. 23:162-84.
    25. Chapman NH, Bonnet J, Grivet L, Lynn J, Graham N, Smith R, Sun G, Walley PG, Poole M, Causse M, King GJ, Baxter C, Seymour GB, 2012. High-resolution mapping of a fruit firmness-related quantitative trait locus in tomato reveals epistatic interactions associated with a complex combinatorial locus. J. Plant Physiol. 159:1644-1657.
    26. Chen M, Jiang Q, Yin XR, Lin Q, Chen JY, Allan AC, Xu CJ, Chen KS, 2012. Effect of hot air treatment on organic acid- and sugar-metabolism in Ponkan (Citrus reticulata) fruit. Sci. Hort. 147:118-125.
    27. Cheng Y, Dong Y, Yan H, Ge W, Shen C, Guan J, Liu L, Zhang Y, 2012. Effects of 1-MCP on chlorophyll degradation pathway associated genes expression and chloroplast Ultrastructure during the Peel yellowing of Chinese pear fruits in storage. Food Chem. 135:415-422.
    28. Chervin C, El-Kereamy A, Roustan JP, Latche A, Lamon J, Bouzayen M, 2004. Ethylene seems required for the berry development and ripening in grape, a non-climacteric fruit. Plant Sci.167:1301-1305.
    29. Coombe B, 1976. The development of fleshy fruits. Annual Review of Plant Physiology. 27: 207-228.
    30. Davies JN, Hobson GE, 1981. The constituents of tomato fruit: the influence of environment, nutrition and genotype. CRC Crit. Rev. Food. Sci. Nutr. 15: 205-280
    31. Deluc LG, Grimplet J, Wheatley MD, Tillett RL, Quilici DR, Osborne C, Schooley DA, Schlauch KA, Cushman JC, Cramer GR, 2007. Transcriptomic and metabolite analyses of Cabernet Sauvignon grape berry development. BMC Genomics. 8:429.
    32. Dinar M, Stevens MA, 1981. The relationship between starch accumulation and soluble solids content of tomato fruits. J. Am. Soc. Hortic. Sci. 106: 415-418.
    33. Eaks IL, 1970. Respiratory response, ethylene production, and response to ethylene of citrus fruit during ontogeny. Plant Physiol. 45:334-338.
    34. Enfissi EM, Barneche F, Ahmed I, Lichtle C, Gerrish C, McQuinn RP, Giovannoni JJ, Lopez-Juez E, Bowler C, Bramley PM, Fraser PD, 2010. Integrative transcript and metabolite analysis of nutritionally enhanced DE-ETIOLATED1 downregulated tomato fruit. Plant Cell. 22:1190-1215.
    35.Etienne A, Genard M, Lobit P, Mbeguie AMD, Bugaud C, 2013. What controls fleshy fruit acidity? A review of malate andcitrate accumulation in fruit cells. J. Exp. Bot. 64 (6):1451-1469.
    36. Fabi JP, Cordenunsi BR, de Mattos Barreto GP, Mercadante AZ, Lajolo FM, Oliveira do Nascimento JR, 2007. Papaya fruit ripening: response to ethylene and 1-methylcyclopropene (1-MCP). J. Agric. Food. Chem. 55: 6118-23.
    37. Fait A, Hanhineva K, Beleggia R, Dai N, Rogachev I, Nikiforova VJ, Fernie AR, Aharoni A, 2008. Reconfiguration of the achene and receptacle metabolic networks during strawberry fruit development. Plant Physiol. 148:730-750.
    38. Faurobert M, Mihr C, Bertin N, Pawlowski T, Negroni L, Sommerer N, Causse M, 2007. Major proteome variations associated with cherry tomato pericarp development and ripening. Plant Physiol. 143:1327-1346.
    39. Fernie AR, Trethewey RN, Krotzky AJ, Willmitzer L, 2004. Metabolite profiling: from diagnostics to systems biology. Nat Rev Mol Cell Biol 5:763-769.
    40. Fillatti J, Kiser J, Rose R, Comai L. Efficient transfer of a glyphosate tolerance gene into tomato using a binary Agrobacterium tumefaciens vector. Nat Biotech, 1987, 5: 726-730
    41.Fraser PD, Enfissi EM, Bramley PM, 2009. Genetic engineering of carotenoid formation in tomato fruit and the potential application of systems and synthetic biology approaches. Arch. Biochem. Biophys. 483:196-204.
    42. Fraser PD, Enfissi EMA, Halket JM, Truesdale MR, Yu D, Gerrish C, Bramley PM, 2007. Manipulation of phytoene levels in tomato fruit: effects on isoprenoids, plastids, and intermediary metabolism. Plant Cell 19:3194-3211.
    43. Fujii H, Shimada T, Sugiyama A, Nishikawa F, Endo T, Nakano M, Ikoma Y, Shimizu T, Omura M, 2007. Profiling ethylene-responsive genes in mature mandarin fruit using a citrus 22K oligoarray. Plant Sci.173:340-348.
    44. Fujisawa M, Nakano T, Ito Y, 2011. Identification of potential target genes for the tomato fruit-ripening regulator RIN by chromatin immunoprecipitation. BMC Plant Biol.11:26.
    45. Gao HY, Zhu BZ, Zhu HL, Zhang Y, Xie L, Li YH, Luo YCYB,2007. Effect of suppression of ethylene biosynthesis on flavour products in tomato fruits. Russ. J. Plant Physiol.54:80-88.
    46. Genard M, Bruchou C, 1993. A functionnal and explanatory approach to studying growth:the example of the peach fruit. J. of the Am. Soc. Hort. Sci. 118:317-323.
    47. Genard M, Reich M, Lobit P, Besset J, 1999. Correlations between sugar and acid content and peach growth. J. Hort. Sci. Biotechnol.74: 772-776.
    48. Genard M, Souty M, Holmes S, Reich M, Breuils L, 1994. Correlations among quality parameters of peach fruit. J. Sci. Food Agri. 66: 241-245.
    49. Gillaspy G, Ben-David H, Gruissem W, 1993. Fruits: A Developmental Perspective. Plant Cell. 5:1439-1451.
    50. Giovannoni J, 2001. Molecular biology of fruit maturation and ripening. Annu. Rev. Plant Physiol. Plant Mol. Biol. 52:725-749.
    51. Giovannoni JJ, 2004 Genetic regulation of fruit development and ripening. Plant Cell. 16 (Suppl.): S170-S180.
    52. Giovannoni JJ, 2007. Fruit ripening mutants yield insights into ripening control. Curr. Opin. Plant. Biol. 10: 283-289.
    53. Goff SA, Klee HJ, 2006. Plant volatile compounds: sensory cues for health and nutritional value? Science. 311:815-819.
    54. Golding JB, Shearer D, Wyllie SG, McGlasson WB, 1998. Application of 1MCP and propylene to identify ethylene-dependent ripening processes in mature banana fruit, Postharvest Biol. Technol. 14:87-98.
    55. Goldschmidt EE, 1998. Ripening of citrus and other non-climacteric fruit: a role for ethylene? Acta Hortic. 463,335-340.
    56. Grimplet J, Deluc LG, Tillett RL, Wheatley MD, Schlauch KA, Cramer GR, Cushman JC, 2007. Tissue-speci mRNA expression profiling in grape berry tissues. BMC Genomics. 8:187.
    57. Grumet R, Katzir N, Little HA, Portnoy V, Burger Y, 2007. New insights into reproductive development in melon (Cucumis melo L.). Int. J. Plant. Dev. Biol. 1:253-64.
    58. Howard LR, Wildman REC, 2007. Antioxidant Vitamin and Phytochemical Content of Fresh and Processed Pepper Fruit (Capsicum annuum), Ed 2. CRC Press, Boca Raton, FL.
    59. Iannetta PPM, Laarhoven LJ, Medina-Escobar N, James EK, McManus MT, Davies HV, Harren FJM, 2006. Ethylene and carbon dioxide production by developing strawberries show a correlative pattern that is indicative of ripening climacteric fruit. Physiol. Plantarum 127:247-259.
    60. Ibafiez AM, Martinelli F, Reagan RL, Uratsu SL, Vo A, Tinoco MA, Phu ML, Chen Y, Rocke DM, Dandekar AM, 2014. Transcriptome and metabolome analysis of Citrus fruit to elucidate puffing disorder. Plant Sci. 217-218:87-98.
    61.Itkin M, Seybold H, Breitel D, Rogachev I, Meir S, Aharoni A, 2009. TOMATO AGAMOUS-LIKE 1 is a component of the fruit ripening regulatory network. Plant J.60:1081-1095.
    62. Ito Y, Kitagawa M, Ihashi N, Yabe K, Kimbara J, Yasuda J, Ito H, Inakuma T, Hiroi S, Kasumi T, 2008. DNA-binding specificity, transcriptional activation potential, and the rin mutation effect for the tomato fruit-ripening regulator RIN. Plant J. 55:212-223.
    63. Jeffery D, Smith C, Goodenough P, Prosser I, Grierson D,1984. Ethylene independent and ethylene-dependent biochemical changes in ripening tomatoes. J. Plant Physiol. 74: 32-38.
    64. Jia HF, Chai YM, Li CL, Lu D, Luo JJ, Qin L, Shen YY, 2011. Abscisic acid plays an important role in the regulation of strawberry fruit ripening. Plant Physiol. 157:188-199.
    65. Johnston JW, Gunaseelan K, Pidakala P, Wang M, Schaffer RJ, 2009. Co-ordination of early and late ripening events in apples is regulated through differential sensitivities to ethylene. J. Exp. Bot. 60:2689-99.
    66. Jump DB, Tripathy S, Depner CM, 2013. Fatty acid-regulated transcription factors in the liver.Annu. Rev. Nutr. 33:249-69.
    67. Kader AA, 1992. Postharvest biology and technology:an overview, in:A.A. Kader (Ed.), Postharvest Technology of Horticultural Crops, Regents of the University of Carifornia, Division of Agricultural and Natural Resources, Oakland, CA, 15-20.
    68. Kahlau S, Bock R, 2008. Plastid transcriptomics and translatomics of tomato fruit development and chloroplast-to-chromoplast differentiation:Chromoplast gene expression largely serves the pro-duction of a single protein. Plant Cell. 20:856-874.
    69. Karlova R, Fernie AR, Rosin FM, Fraser PD, Jacqueline BL, Baxter C, Parapunova V, Angenent GC, Do PT, Maagd RAD, 2011. Transcriptome and Metabolite Profiling Show That APETALA2a Is a Major Regulator of Tomato Fruit Ripening. Plant Cell. 23:923-941.
    70. Katz E, Boo KH, Kim HY, Eigenheer RA, Phinney BS, Shulaev V, Negre-Zakharov F, Sadka A, Blumwald E, 2011. Label-free shotgun proteomics and metabolite analysis reveal a significant metabolic shift during citrus fruit development. J. Exp.Bot. 62:5367-5384.
    71. Katz E, Lagunes PM, Riov J, Weiss D, Goldschmidt EE, 2004. Molecular and physiological evidence suggests the existence of a system II-like pathway of ethylene production in non-climacteric citrus fruit. Planta. 219: 243-252.
    72. Kevany BM, Tieman DM, Taylor MG, Cin VD, Klee HJ, 2007. Ethylene receptor degradation controls the timing of ripening in tomato fruit. Plant J. 51:458-467.
    73. Kim HJ, Baek KH, Lee SW, Kim J, Lee BW, Cho HS, Kim WT, Choi D, Hur CG, 2008. Pepper EST database: comprehensive in silico tool for analyzing the chili pepper (Capsicum annuum) transcriptome. BMC Plant Biol. 8:101
    74. Klann EM, Hall B, Bennett AB, 1996. Antisense acid invertase (TIV1) gene alters soluble sugar composition and size in transgenic tomato fruit. Plant Physiol. 112: 1321-1330.
    75. Klee HJ, 2002. Control of ethylene-mediated processes in tomato at the level of receptors. J. Exp. Bot. 53:2057-2063
    76. Klee HJ, 2004. Ethylene signal transduction. Moving beyond Arabidopsis. Plant Physiol. 135:660-667.
    77. Klee HJ, Giovannoni JJ, 2011. Genetics and control of tomato fruit ripening and quality attributes. Annu. Rev. Genet. 45: 41-59.
    78. Lata C, Prasad M, 2011. Role of DREBs in regulation of abiotic stress responses in plants. J. Exp. Bot. 6:1-18.
    79. Lee S, Chung EJ, Joung YH, Choi D, 2010. Non-climacteric fruit ripening in pepper: increased transcription of EIL-like genes normally regulated by ethylene. Funct. Integr. Genomics. 10: 135.
    80. Lemaire-Chamley M, Petit J, Garcia V, Just D, Baldet P, Germain V, Fagard M, Mouassite M, Cheniclet C, Rothan C, 2005. Changes in transcriptional profiles are associated with early fruit tissue specialization in tomato. Plant Physiol. 139:750-769.
    81. Li X, Korir NK, Liu L, Shangguan L, Wang Y, Han J, Chen M, Fang J, 2012. Microarray analysis of differentially expressed genes engaged in fruit development between Prunus mume and Prunus armeniaca. J. Plant Physiol.169: 1776.
    82. Li YC, Zhu BZ, Xu WT, Zhu HL, Chen AJ, Xie YH, Shao Y, Luo YB, 2007. LeERF1 positively modulated ethylene triple response on etiolated seedling, plant development and fruit ripening and softening in tomato. Plant Cell Rep.26:1999-2008.
    83. Lin Z, Zhong S, Grierson D, 2009. Recent advances in ethylene research. J. Exp. Bot. 60:3311-3336.
    84. Lin Z., Hong Y., Yin M., Li C., Zhang K., Grierson D. (2008). A tomato HD-Zip homeobox protein, LeHB-1, plays an important role in floral organogenesis and ripening. Plant J. 55:301-310.
    85. Liu Q, Zhu A, Chai L, Zhou W, Yu K, Ding J, Xu J, Deng X, 2009. Transcriptome analysis of a spontaneous mutant in sweet orange [Citrus sinensis (L.) Osbeck] during fruit development. J. Exp. Bot. 60(3):801-813.
    86. Liu S, Li W, Wu Y, Chen C, Lei J, 2013. De novo transcriptome assembly in chili pepper (Capsicum frutescens) to identify genes involved in the biosynthesis of capsaicinoids. PLoS ONE. 8:e48156.
    87. Liu YZ, Deng XX, 2007. Citrus Breeding and Genetics in China. The Asian Austral. J. Plant Sci. Biotechnol. 1 (1):23-28.
    88. Lobit P, Genard M, Wu BH, Soing P, Habib R, 2003. Modelling citrate metabolism in fruits: Responses to growth and temperature. J. Exp. Bot. 54: 2489-2501.
    89. Lohani S, Trivedi PK, Nath P, 2004. Changes in activities of cell wall hydrolases during ethylene induced ripening in banana: effect of 1-MCP, ABA and auxin. Postharvest Biol. Technol. 31:119-26.
    90. Lombardo VA, Osorio S, Borsani J, Lauxmann MA, Bustamante CA, Budde CO, Andreo CS, Lara MV, Fernie AR, Drincovich MF,2011. Metabolic profiling during peach fruit development and ripening reveals the metabolic networks that underpin each developmental stage. Plant Physiol. 157:1696-1710.
    91. Lowell CA, Tomlinson PT, Koch KE, 1989. Sucrose-metabolizing enzymes in transport tissues and adjacent sink structures in developing Citrus fruit. Plant Physiol. 90:1394-1402.
    92. Lu CA, Ho TH, Ho SL, Yu SM, 2002. Three novel MYB proteins with one DNA binding repeat mediate sugar and hormone regulation of alpha-amylase gene expression. Plant Cell. 14: 1963-1980.
    93. Ma G, Zhang L, Matsuta A, Matsutani K, Yamawaki K, Yahata M, Wahyudi A, Motohashi R, Kato M, 2013. Enzymatic Formation of b-Citraurin from b- Cryptoxanthin and Zeaxanthin by Carotenoid Cleavage Dioxygenase4 in the Flavedo of Citrus Fruit. J.Plant Physiol. 163:682-695.
    94. Ma Q, Ding Y, Chang J, Sun X, Zhang L, Wei Q, Cheng Y, Chen L, Xu J, Deng X, 2014. Comprehensive insights on how 2,4-dichlorophenoxyacetic acid retards senescence in post-harvest citrus fruits using transcriptomic and proteomic approaches. J.Exp.Bot. 65:61-74.
    95. Magnani E, Sjo lander K, Hake S, 2004. From endonucleases to transcription factors: evolution of the AP2 DNA binding domain in plants. Plant Cell. 16:2265-2277.
    96. Manning K, Tor M, Poole M, Hong Y, Thompson AJ, King GJ, Giovannoni JJ, Seymour GB,2006. A naturally occurring epigenetic mutation in a gene encoding an SBP-box transcription factor inhibits tomato fruit ripening. Nat. Genet. 38:948-952.
    97. Martinez-Esteso MJ, Selles-Marchart S, Lijavetzky D, Angeles Pedren M, Bru-Martinez R, 2011. A DIGE-based quantitative proteomic analysis of grape berry flesh development and ripening reveals key events in sugar and organic acid metabolism. J. Exp. Bot. 62: 2521-2569.
    98. Massot C, Genard M, Stevens R, Gautier H, 2010. Fluctuations in sugar fruit content not determinant in explaining variations in vitamin C in tomato fruit. Plant Physiol. Biochem. 48(9):751-7.
    99. Matsumoto H, Ikoma Y, Kato M, Nakajima N, Hasegawa Y, 2009. Effects of postharvest temperature and ethylene on carotenoid accumulation in the flavedo and juice sacs of Satsuma mandarin (Citrus unshiu Marc) fruit. J. Agric. Food Chem. 57: 4724-4732.
    100. Mayuoni L, Sharabi-Schwager M, Feldmesser E, Porat R, 201 la. Effects of ethylene degreening on the transcriptome of mandarin flesh. Postharvest Biol. Technol. 60: 75-82.
    101. Mayuoni, L., Tietel, Z., Patil, B.S., Porat, R., 2011b. Does ethylene degreening affect internal quality of citrus fruit? Postharvest Biol. Technol. 62: 50-58.
    102. McGlasson WB, Eaks IL, 1972. A role for ethylene in the development of wastage and off-flavors in stored 'Valencia' oranges. Hort. Sci.7:80-81.
    103. McMurchie EJ, McGlasson WB, Eaks IL, 1972. Treatment of fruit with propylene gives information about the biogenesis of ethylene. Nat. 237:235-236.
    104. Miron D, Petreikov M, Carmi N, Shen S, Levin I, Granot D, Zamski E, Schaffer AA, 2002. Sucrose uptake, invertase localization and gene expression in developing fruit of Lycopersicon esculentum and the sucrose-accumulating Lycopersicon hirsutum and Bonpl. Plant Physiol. 115:35-47.
    105. Morgan MJ, Osorio S, Gehl B, Baxter CJ, Kruger NJ Ratcliffe RG, Fernie AR, Sweetlove LJ, 2013. Metabolic Engineering of Tomato Fruit Organic Acid Content Guided by Biochemical Analysis of an Introgression Line. J. Plant Physiol.161:397-407.
    106. Mounet F, Moing A, Garcia V, Petit J, Maucourt M, Deborde C, Bernillon S, Gall GL, Colquhoun I, Defernez M, Giraudel JL, Rolin D, Rothan C, Chamley ML, 2009. Gene and metabolite regulatory network analysis of early developing fruit tissues highlights new candidate genes for the control of tomato fruit composition and development. J. Plant Physiol. 149: 1505-1528.
    107. Moussaieff A, Rogachev I, Brodsky L, Malitsky S, Toal TW, Belche H, Yativ M, Brady SM, Benfey PN, Aharoni A, 2013. High-resolution metabolic mapping of cell types in plant roots. P. Natl. Acad. Sci. USA. 110(13): E1232-1241.
    108. Murray AJ, Hobson GE, Schuch W, Bird CR, 1993. Reduced ethylene synthesis in EFE antisense tomatoes has differential effects on fruit ripening processes, Postharvest Biol. Technol. 2: 301-313.
    109. Murray HG, Thompson WF, 1980. Rapid isolation of high molecular weight DNA. Nucl. Acids Res.8:4321-4325.
    110. Oliu GO, Hertog MLATM, Poel BVD, Asiama JA, Geeraerd AH, NicolaY BM, 2011. Metabolic characterization of tomato fruit during preharvest development, ripening, and postharvest shelf-life. Postharvest Biol. Technol. 62:7-16.
    111. Osorio S, Alba R, Damasceno CM, Lopez-Casado G, Lohse M, Zanor MI, Tohge T,Usadel B, Rose JK, Fei Z, Giovannoni JJ, Fernie AR, 2011a. Systems biology of tomato fruit development: combined transcript, protein, and metabolite analysis of tomato transcription factor (nor, rin) and ethylene receptor (Nr) mutants reveals novel regulatory interactions. Plant Physiol. 157:405-425.
    112. Osorio S, Alba R, Nikoloski Z, Kochevenko A, Fernie AR, Giovannoni JJ, 2012. Integrative comparative analyses of transcript and metabolite profiles from pepper and tomato ripening and development stages uncovers species-specific patterns of network regulatory behavior. Plant Physiol. 159:1713-1729.
    113. Osorio S, Bombarely A, Giavalisco P, Usadel B, Stephens C, Araguez I, Medina-Escobar N, Botella MA, Fernie AR, Valpuesta V, 2011b. Demethylation of oligogalacturonides by FaPE1 in the fruits of the wild strawberry Fragaria vesca triggers metabolic and transcriptional changes associated with defence and development of the fruit. J Exp Bot 62:2855.
    114. Palma JM, Corpas FJ, Luis A, Rio d, 2011. Proteomics as an approach to the understanding of the molecular physiology of fruit development and ripening. J. Proteomics. 74:1230-1243.
    115. Paul V, Pandey R, Srivastava GC, 2012. The fading distinctions between classical patterns of ripening in climacteric and non-climacteric fruit and the ubiquity of ethylene—an overview. J. Food Sci. Technol. 49:1-21.
    116. Pech JC, Bouzayen M, Latche A, 2008. Limacteric fruit ripening:ethylene-dependent and independent regulation of ripening pathways in melon fruit. Plant Sci. 175:114-120.
    117. Pino LE, Lombardi-Crestana S, Azevedo MS, Scotton DC, Borgo L, Quecini V, Figueira A, Peres LEP, 2010. The Rgl allele as a valuable tool for genetic transformation of the tomato Micro-Tom model system. Plant Methods. 6:23.
    118. Pirrello J, Jaimes-Miranda F, Sanchez-Ballesta MT, Tournier B, Khalil-Ahmad Q, Regad F, Latche'A, Pech JC, Bouzayen M. 2006. S1-ERF2, a tomato ethylene response factor involed in ethylene response and seed germination. Plant and Cell Physiology 47, 1195-1205.
    119. Rodrigo MJ, Zacarias L, 2007. Effect of postharvest ethylene treatment on carotenoid accumulation and the expression of carotenoid biosynthesis genes in the flavedo of orange (Citrus sinensis L. Osbeck) fruit. Postharvest Biol. Technol. 43: 14-22.
    120. Roessner U, Willmitzer L, Fernie AR, 2001. High-Resolution Metabolic Phenotyping of Genetically and Environmentally Diverse Potato Tuber Systems Identification of Phenocopies. J. Plant Physiol. 127:749-764.
    121. Rohrmann J, Tohge T, Alba R, Osorio S, Caldana C, McQuinn R, Arvidsson S, van der Merwe MJ, Riano-Pachon DM, Mueller-Roeber B, Fei Z, Nesi AN, Giovannoni JJ, Fernie AR, 2011. Combined transcription factor profiling, microarray analysis and metabolite profiling reveals the transcriptional control of metabolic shifts occurring during tomato fruit development. Plant J. 68: 999-1013.
    122. Romero P, Lafuente MT, Rodrigo MJ, 2012. The Citrus ABA signalosome: identification and transcriptional regulation during sweet orange fruit ripening and leaf dehydration. J. Exp. Bot. 63(13):4931-4945.
    123. Rontein D, Dieuaide-Noubhani M, Dufourc EJ, Raymond P, Rolin D, 2002. The metabolic architecture of plant cells. Stability of central metabolism and flexibility of anabolic pathways during the growth cycle of tomato cells. J. Biol. Chem. 277: 43948-43960.
    124. Ruffner HP, Koblet W, Rast D, 1975. Gluconeogenesis in the ripening fruit of Vitis vinifera. Vitis. 13:319-328.
    125. Sadka A, Dahan E, Cohen L, Marsh KB, 2000a. Aconitase activity and expression during the development of lemon fruit. Plant Physiol. 108:255-262.
    126. Sadka A, Dahan E, Or E, Cohen L, 2000b. NADP - isocitrate dehydrogenase gene expression and isozyme activity during citrus fruit development. Plant Sci. 158:173-181.
    127. Sakuma Y, Liu Q, Dubouzet JG, Abe H, Shinozaki K,Yamaguchi-Shinozaki K. 2002. DNA-binding specificity of the ERF/AP2 domain of Arabidopsis DREBs, transcription factors involved in dehydration and cold-inducible gene expression. Biochemical and Biophysical Research Communications 290, 998-1009.
    128. Sambrook J, Fritsch EF, Maniatis T, 1989. Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, Saravanan RS, Rose JKC, 2004. A critical evaluation of sample extraction techniques for enhanced proteomic analysis of recalcitrant plant tissues. Proteomics 4:2522-2532.
    129. Sato T, Theologis A, 1989. Cloning the mRNA encoding 1-aminocyclopropane-l-carboxylate synthase, the key enzyme for ethylene biosynthesis in plants. Proc. Natl. Acad. Sci. USA. 86: 6621-6625.
    130. Schaffer AA, Petreikov M, 1997. Sucrose-to-starch metabolism in tomato fruit undergoing transient starch accumulation. Plant Physiol. 113:739-746.
    131. Schauer N, Zamir D, Fernie AR, 2005. Metabolic profiling of leaves and fruit of wild species tomato:a Survey of the Solanum Lycopersicum Complex. J. Exp. Bot. 56:297-307.
    132. Schmittgen TD, Livak KJ, 2008. Analyzing real-time PCR data by the comparative C(T) method. Nat Protoc. 3:1101-1108.
    133. Sharma MK, Kumar R, Solanke AU, Sharma R, Tyagi AK, Sharma AK, 2010. Identification, phylogeny, and transcript profiling of ERF family genes during development and abiotic stress treatments in tomato. Molecular Genetics and Genomics 284: 455-475.
    134. Steinhauser MC, Steinhauser D, Koehl K, Carrari F, Gibon Y, Fernie AR, Stitt M, 2010. Enzyme activity profiles during fruit development in tomato cultivars and Solanum pennellii. Plant Physiol. 153:80-98.
    135. Sun C, Palmqvist S, Olsson H, Boren M, Ahlandsberg S, Jansson C, 2003. A novel WRKY transcription factor, SUSIBA2, participates in sugar signaling in barley by binding to the sugar-responsive elements of the isol promoter. Plant Cell. 15(9): 2076-2092.
    136. Sun X, Zhu A, Liu S, Sheng L, Ma Q, Zhang L, Nishawy EM, Zeng Y, Xu J, Ma Z, Cheng Y, Deng X, 2013. Integration of Metabolomics and Subcellular Organelle Expression Microarray to Increase Understanding the Organic Acid Changes in Post - harvest Citrus Fruit. J. Integr. Plant. Biol. 55 (11):1038-1053.
    137. Talon M, Gmitter FG, 2008. Citrus genomics. International Journal of Plant Genomics doi:10.1155/528361.
    138. Testoni A, Cazzola R, Ragozza L, Lanza G, 1992. Storage behavior of orange 'Valencia Late' in rooms with ethylene removal. Proc. Int. Soc. Citriculture 3:1092-1094.
    139. Tieman D, Taylor M, Schauer N, Fernie AR, Klee HJ, 2006. Tomato aromatic amino acid decarboxylases participate in synthesis of flavor volatiles 2-phenlethanol and 2-phenylethanol and 2-phenylacetaldehyde. Proc. Natl. Acad. USA. 103:8287-8292.
    140. Tietel, Z., Plotto, A., Fallik, E., Lewinsohn, E., Porat, R., 2011. Taste and aroma of fresh and stored mandarins. J. Sci. Food Agric. 91, 14-23.
    141. To A, Joubes J, Barthole G, Lecureuil A, Scagnelli A, Jasinski S, Lepiniec L, Bauda, S, 2012. WRINKLED Transcription Factors Orchestrate Tissue-Specific Regulation of Fatty Acid Biosynthesis in Arabidopsis. Plant Cell. 24:5007-5023.
    142. Tournier B, Sanchez-Ballesta MT, Jones B, Pesquet E, Regad F, Latche'A, Pech JC, Bouzayen M. 2003. New members of the tomato ERF family show specific expression pattern and diverse DNA-binding capacity to the GCC box element. FEBS Letters 550, 149-154.
    143. Trainotti L, Pavanello A, Casadoro G, 2005. Different ethylene receptors show an increased expression during the ripening of strawberries: does such an increment imply a role for ethylene in the ripening of these non-climacteric fruits? J. Exp. Bot. 56:2037-2046.
    144. Tucker GA, 1993. Introduction:respiration and energy. In: Seymour, G.B., Taylor, J.E., Tucker, G.A. (Eds.), Biochemistry of Fruit Ripening. Chapman & Hall, London, pp. 3-9.
    145. Vines HM, Grierson W, Edwards GJ, 1968. Respiration, internal atmosphere, and ethylene evolution of citrus fruit. Amer. Soc. Hort. Sci. 92, 227-234.
    146. Vrebalov J, Pan IL, Arroyo AJM, McQuinn R, Chung M, Poole M, Rose J, Seymour G, Grandillo S, Giovannoni J, Irish VF, 2009. Fleshy fruit expansion and ripening are regulated by the TomatoSHATTERPROOF gene TAGL1. Plant Cell. 21:3041-3062.
    147. Vrebalov J, Ruezinsky D, Padmanabhan V, White R, Medrano D, Drake R, Schuch W, Giovannoni J, 2002. A MADS-box gene necessary for fruit ripening at the tomatoripening-inhibitor (rin) locus. Science. 296:343-346.
    148. Vriezen, WH, Feron R, Maretto F, Keijman J, Mariani C, 2008. Changes in tomato ovary transcriptome demonstrate complex hormonal regulation of fruit set. New Phytol. 177:60-76.
    149. Wahyuni Y, Ballester AR, Tikunov Y, de Vos RC, Pelgrom KT, Maharijaya A, Sudarmonowati E, Bino RJ, Bovy AG, 2013. Metabolomics and molecular marker analysis to explore pepper (Capsicum sp.) biodiversity. Metabolomics. 9: 130-144.
    150. Wang F, Sanz A, Brenner ML, Smith A,1993. Sucrose synthase, starch accumulation, and tomato fruit sink strength. Plant Physiol. 101:321-327.
    151. Wang H, Schauer N, Usadel B, Frasse P, Zouine M, Hernould M, Latche A, Pech JC, Fernie AR, Bouzayen M, 2009. Regulatory features underlying pollination-dependent and - independent tomato fruit set revealed by transcript and primary metabolite profiling. Plant Cell.21:1428-1452.
    152. Wang, A., Tan, D., Takahashi, A., Li, T.Z., Harada, T., 2007. MdERFs, two ethylene-response factors involved in apple fruit ripening. J. Exp. Bot. 58 (13): 3743-3748.
    153. Wessler SR, 2005. Homing into the origin of the AP2 DNA binding domain. Trends Plant Sci. 10:54-56.
    154. Whitaker BD, 1998. Changes in the steryl lipid content and composition of tomato fruit during ripening. Phytochemistry.27(11):3411-3416.
    155. Wilkinson JQ, Lanahan MB, Yen HC, Giovannoni JJ, Klee HJ, 1995. An ethylene-inducible component of signal transduction encoded by never-ripe. Science. 270: 1807-1809.
    156. Wu BH, G6nard M, Lobit P, Longuenesse JJ, Lescourret F, Habib R, Li SH, 2007. Analysis of citrate accumulation during peach fruit development via a model approach. J. Exp. Bot. 58:2583-2594.
    157. Wu J, Xu Z, Zhang Y, Chai L, Yi H, Deng X, 2014. An integrative analysis of the transcriptome and proteome of the pulp of a spontaneous late-ripening sweet orange mutant and its wild type improves our understanding of fruit ripening in citrus. J.Exp.Bot. 65:1651-1671.
    158. Xiao YY, Chen JY, Kuang JF, Shan W, Xie H, Jiang YM, Lu WJ, 2013. Banana ethylene response factors are involved in fruit ripening through their interactions with ethylene biosynthesis genes. J.Exp.Bot. 64(8):2499-2510.
    159. Yang XY, Xie JX, Lu XP, Liu YZ, Peng SA, 2011a. Isolation of a citrus ethylene-responsive element binding factor gene and its expression in response to abiotic stress, girdling and shading. Sci.Hort. 127 (3):275-281.
    160. Yang SF.1987. The role of ethylene and ethylene synthesis in fruit ripening. In: Thompson W, Nothnagel E, Huffaker R, eds. Plant senescence: its biochemistry and physiology. Rockville, MD:Am. Soc. Plant Physiol. 156-165.
    161. Yang XY, Xie JX, Wang FF, Zhong J, Liu YZ, Li GH, Peng SA, 2011b. Comparison of ascorbate metabolism in fruits of two citrus species with obvious difference in ascorbate content in pulp. J. Plant Physiol. 168(18):2196-2205.
    162. Yen HC, Lee S, Tanksley SD, Lanahan MB, Klee HJ, Giovannoni JJ, 1995. The tomato Never-ripe locus regulates ethylene-inducible gene expression and is linked to a homolog of the Arabidopsis ETR1 gene. Plant Physiol.107:1343-1353.
    163. Yin XR, Allan AC, Chen KS, Ferguson IB, 2010. Kiwifruit EIL and ERF genes involved in regulating fruit ripening. Plant Physiol. 153:1280-1292.
    164. Yin, X, Allan, AC, Xu Q, Burdon J, Dejnoprat S, Chen K, 2012. Differential expression of kiwifruit ERF genes in response to postharvest abiotic stress. Postharvest Biol. Technol. 66:1-7.
    165. Yu K, Xu Q, Da X, Guo F, Ding Y, Deng X, 2012. Transcriptome changes during fruit development and ripening of sweet orange (Citrus sinensis). BMC Genomics. 13:10.
    166. Zamboni A, Di Carli M, Guzzo F, Stocchero M, Zenoni S, Ferrarini A, Tononi P, Toffali K, Desiderio A, Lilley KS, Pe ME, Benvenuto E, Delledonne M, Pezzotti M, 2010. Identification of putative stage-specific grapevine berry biomarkers and omics data integration into networks. Plant Physiol. 154:1439.
    167. Zarba, Silvio A, Zarba, Clelie, 2008. Current framework and prospects of citrus fruit trade in Italy, the role of producers' organizations. Proceedings Of The International Society Of Citriculture. 2:1535-1542.
    168. Zeng Y, Pan Z, Ding Y, Zhu A, Cao H, Xu Q, Deng X, 2011a. A proteomic analysis of the chromoplasts isolated from sweet orange fruits [Citrus sinensis (L.) Osbeck]. J. Exp. Bot. 62 (15):5297-5309.
    169. Zeng Y, Pan Z, Wang L, Ding Y, Xu Q, Xiao S, Deng X, 2014. Phosphoproteomic analysis of chromoplasts from sweet orange during fruit ripening. Physiol. Plant. 150:252-270.
    170. Zhang J, Wang X, Yu O, Tang J, Gu X, Wan X, Fang C, 2011. Metabolic profiling of strawberry (Fragaria 3 ananassa Duch.) during fruit development and maturation. J. Exp. Bot. 62:1103.
    171. Zhang XY, Wang XL, Wang XF, Xia GH, Pan QH, Fan RC, Wu FQ, Yu XC, Zhang DP, 2006. A shift of phloem unloading from symplasmic to apoplasmic pathway is involved in developmental onset of ripening in grape berry. Plant Physiol. 142, 220-232.
    172. Zhou L, Jang JC, Jones TL, Sheen J, 1998. Glucose and ethylene signal transduction crosstalk revealed by an Arabidopsis glucoseinsensitive mutant. P. Nat. Acad. Sci. USA. 95: 10294-10299.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700