用户名: 密码: 验证码:
玉米对区域光、温、水资源变化的响应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了研究玉米生育期、积温需求、产量及产量构成因素、干物质积累和产量潜力对光温水资源变化的响应,分析影响玉米生育期长短、产量及干物质积累的主要因素以及资源高效利用的技术措施,2007-2012年在北方春玉米区和黄淮海夏玉米区大尺度研究区域内安排多点联网试验,取得了如下结果:
     1、生态条件尤其是气候因子(温度、光周期、日照时数、光辐射和降雨量)是影响玉米生长发育的主要因素,同时玉米也通过调节生育期来适应生态环境的变化。随着纬度的北移,玉米的生育期发生显著变化,营养生长期显著增加而生殖生长期显著缩短,纬度每升高1°,播种-出苗和出苗-吐丝阶段生育期天数分别增加0.7d和1.25d,吐丝-成熟阶段生育期天数缩短0.8d。分析影响玉米生育期的主要因素发现:影响玉米营养生长阶段(播种-出苗和出苗-吐丝)生育期长短的主要气象因素是温度((T|-)、T_M和T_m),而影响玉米生殖生长阶段生育期长短的主要气象因素是该阶段的降雨量;
     2、温度是影响玉米生育进程的主要因素,随着纬度的北移,玉米营养生长阶段(播种-出苗和出苗-吐丝)所需的GDD显著增加,而生殖生长阶段(吐丝-成熟)所需的GDD显著降低。玉米营养生长阶段对积温需求显著增加的主要原因是随着纬度的北移光周期显著增加,从而导致玉米的营养生长期延长、玉米总的叶片数增加,最终导致营养生长阶段所需的GDD增加。而玉米不同生育阶段(播种-出苗、出苗-吐丝、吐丝-成熟和播种-成熟)对积温需求的变异受试验年份和试验地点的影响;各生育阶段对积温需求的变异表现为播种-出苗>吐丝-成熟>出苗-吐丝>播种-成熟,且北方春玉米区不同生育阶段对积温需求的变异>黄淮海夏播玉米区;
     3、随着纬度的北移,玉米产量发生了显著的变化,呈先增加后降低的趋势,在39°08’ N时玉米的产量最大,为12.19t ha~(-1)。收获指数和千粒重随纬度的变化是导致玉米产量变化的主要原因。分析玉米干物质生产的空间变化发现:随着纬度的北移玉米收获期总的干物重没有显著的变化,花前干物重显著增加,花后干物重显著降低。纬度每升高1°,花前干物重增加8.84g,花后干物重降低6.36g。温度是影响玉米产量、收获指数和千粒重的主要气象因素;花前干物重主要受生育期长短和累积光辐射量的影响,而花后干物重主要受温度(T和T_M)和积温(GDD)的影响
     4、随着纬度的北移,灌溉区玉米产量和单株干物重呈现先增加后降低的趋势,雨养区玉米产量没有显著的变化。随着经度的东移,雨养区和灌溉区的产量发生了显著的变化,而单株干物重变化不显著;随着生育期和全年降雨量的增加,玉米产量发生显著的变化,呈先增加后降低的趋势;单株干物重随着生育期和降雨量的增加显著降低。与生育期降雨量对玉米的影响相比,全年降雨量对玉米产量和单株干物重影响更大。
     5、北方春玉米区玉米产量潜力随着纬度的北移呈现先增加后降低的变化,其与大田实际产量之间的产量差为4.52t ha~(-1)。而增加玉米产量和缩小产量差的主要技术措施是适宜的种植密度、适宜的播期和收获期,研究表明玉米最适密度随着纬度的北移呈先增加后降低的趋势,在41°57′N时种植密度最大,为7.72万株/公顷。随着经度的东移,玉米最适种植密度显著降低;对于最适播期的研究表明:在高纬度地区,为了充分利用光热资源播期偏早,光温资源的利用率较高,达90%以上,应当选育一些生育期较短的品种。而在低纬度地区由于光热资源比较充足,播期较晚,对光温资源的利用率偏低,只有60%多,应当选育生育期较长的品种;对于适时晚收的增产效果研究表明:适时晚收显著增加玉米产量,随着纬度的北移,玉米适时晚收的增产幅度显著降低。
Environmental conditions greatly affect the growth of maize. To examine differences in phenology,accumulated temperature demand, maize yield, aboveground biomass and yield potential responses ofmaize (Zea mays L.) to climatic factors under different environmental conditions and analyze theinfluencing factors, multi-site experiments were conducted from2007to2012in the north spring maizeregion and Huanghuaihai summer maize region. The results are as follows:
     1. Environmental conditions, especially climatic factors such as temperature, photoperiod, sunshinehours, solar radiation and precipitation, greatly affect maize growth. Maize adapted to regions withdifferent ecological resources by changing its growth durations. Growth durations from sowing toemergence and from emergence to silking were significantly affected by the temperatures (mean,maximum, and minimum), increasing by0.7d and1.25d as a result of an increase of1°in the northlatitude respectively. Compared with the vegetative growth duration, the reproductive growth duration,which was significantly correlated with the precipitation, decreased by0.8d with1°northward inlatitude.
     2. Temperature was the main reason for the variation of growth duration. With latitudes northward,the GDD of vegetative and reproductive growth stages varied significantly. With increasing latitude theGDD of vegetative growth duration increased significantly and GDD of reproductive growth durationdecreased significantly. The prolonged photoperiod led to the increase of maize total leaf number andthen resulted in the GDD demand increased. The variations of different growth duration (sowing toemergence, emergence to silking, silking to maturity and sowing to maturity) were influenced by theexperimental years and locations. The variations of different growth durations were sowing toemergence﹥silking to maturity﹥emergence to silking﹥sowing to maturity; The variations of differentgrowth durations in the north spring maize region﹥the variations of different growth durations in theHuanghuaihai summer maize region;
     3. Environmental conditions have important effects on maize (Zea mays L.) growth. To analyzespatial variation in maize yield and aboveground biomass, and to understand differences in the responseof maize yield and aboveground biomass to climatic factors under various ecological conditions, wefound that the maize yield and aboveground biomass (pre-silking and post-silking) were found to bestrongly influenced by locations. A non-linear positive relationship existed between the maize yields andlatitude. Maize yield was the greatest (12.19Mg ha~(-1)) at39°08’ N, and the corresponding pre-silkingand post-silking aboveground biomass at this location were143.41g plant~(-1)and215.35g plant~(-1),respectively. Variations in the HI and1000-kernel weight were the main reasons for yield latitudinaltrends. Among the climatic factors, air temperature had the best relationships with variations in maizeyield, HI, and1000-kernel weight. With latitudes increasing northward, pre-silking abovegroundbiomass affected by D and Ra increased significantly. The aboveground biomass of post-silking stagewhich was affected by TM, and GDD decreased significantly with latitudes increasing northward.However, there were no significant changes of total aboveground biomass with latitudes increasing northward.
     4. By further analyzing spatial variation in maize yield and aboveground biomass and understanddifferences in the response of maize yield and aboveground biomass to precipitation rainfed region andirrigated region we found that1) with latitude northward, the maize yield and aboveground biomass inthe irrigated regions were found to be strongly influenced by locations. A non-linear positiverelationship existed between the maize yields, aboveground biomass in the irrigated regions and latitude.As longitude eastward maize yield changed significantly while the aboveground biomass changed littlein the irrigated and rainfed regions;2) maize yield and aboveground biomass in the rainfed regions werefound to be strongly influenced by precipitation. With the growing season precipitation and annualprecipitation increased the maize yield first increased and then decreased and the aboveground biomassdecreased significantly;3) compared with the growing season precipitation, the annual precipitationinfluenced more on maize yield and the aboveground biomass.
     5. Maize yield potential was strongly influenced by locations and a non-linear positive relationshipexisted between the maize yields and latitudes. The yield gap between maize yield potential andexperimental yield was4.52t ha~(-1). The technical measures for increasing maize yield and narrowing theexisting yield gap were choosing suitable plant density and sowing date, and adopting appropriate lateharvest. With latitude northward, the suitable plant density varied significantly and a non-linear positiverelationship existed between suitable plant density and latitude, At41°57′N maize yield was greatestwhich was77200plants ha~(-1). As for the suitable sowing date, we found that: in order to fully use thetemperature resource, the suitable sowing date of higher latitude region was earlier than the lowerlatitude region and short-growth-duration cultivars should be planted in this region. In the lower latituderegion, the suitable sowing date was late than the higher latitude region because of the abundanttemperature resouce and long-growth-duration cultivars should be planted in this region. As for the lateharvest, we found that: the late harvest significantly increased the maize yield and with the latitudenorthward, the increasing rate of late harvest significantly decreased.
引文
1.白彩云,李少昆,张厚宝,柏军华,谢瑞芝,孟磊,郑单958在东北春玉米区生态适应性研究.作物学报,2010,36(2):296-302.
    2.白向历,孙世贤,杨国航,刘明,张振平,齐华,不同生育时期水分胁迫对玉米产量及生长发育的影响.玉米科学2009,17:60-63.
    3.柏秦凤,霍治国,李世奎,杜海江,贺楠,姜燕,1978年前、后中国≥10CC年积温对比.应用生态学报2008,19(8):1810-1816
    4.鲍巨松,杨成书,薛吉全,郝引川,水分胁迫对玉米生长发育及产量形成的影响.陕西农业科学1990,3:7-9.
    5.曹玲,邓振镛,窦永祥,杨晓玲,气候变暖对河西走廊绿洲灌区玉米产量影响及对策研究.西北植物学报2008,5:174-183.
    6.陈国平,高聚林,赵明,董树亭,李少昆,杨祁峰,刘永红,王立春,薛吉全,柳京国,李潮海,王永宏,王友德,宋慧欣,赵久然,近年我国玉米超高产田的分布、产量构成及关键技术分析.作物学报2012,38:80-85.
    7.陈国平,玉米涝害及其防御措施的研究. Ⅱ.玉米不同生育期对涝害的反应.华北农学报,1989,4:16-22.
    8.陈国平,赵久然,试论超级玉米的育种、栽培模式.玉米栽培研究50年-陈国平先生文集.北京:中国农业科学技术出版社2005,433-440.
    9.陈现平,李运生,戚尚恩,淮北地区玉米夏播制种的灌浆速度和最适收获期.安徽农业科学1999,27(5):438-439,441.
    10.戴俊英,玉米不同品种各生育时期干旱对生育时期及产量的影响.沈阳农业大学学报1990,21:181-186.
    11.邓肯(高学曾、腾世云译),玉米生理译丛.北京:农业出版社,1979.
    12.冯秀藻,陶炳炎,农业气象学原理.北京:气象出版社.1991.
    13.高蓓,暖冬对陕西省冬小麦生长发育和产量的影响.科技咨询导报2008,18:256.
    14.高晶,玉米不同收获期对产量的影响.现代农村科技2009,5:47
    15.郭庆法,王庆成,汪黎明,中国玉米栽培学.上海:上海科技出版社,2004年.
    16.何维勋,曹永华,玉米展开叶增加速率与温度和叶龄的关系.中国农业气象1990,3:301.
    17.侯鹏,陈新平,崔振岭,李世清,王伟,叶优良,陈远学,张福锁,4种典型土壤上玉米产量潜力的实现程度及其因素分析.中国生态农业学报2012,20:874-881.
    18.黄振喜,王永军,王空军,李登海,赵明,柳京国,董树亭,王洪军,王军海,杨今胜,产量15000kg ha-1以上夏玉米灌浆期间的光合特性.中国农业科学2007,40:1898-1906.
    19.蒋中亚,王桂芹,郑单958玉米种植密度与适宜收获期试验初报.现代农业科技2007,17:141,143.
    20.金岩,王从卯,李延奇,史桂萍,气候变暖对龙口小麦适播期的影响.山东气象2008,28(2):28-30.
    21.李晔,收获期对夏玉米产量性状的影响.中国种业2007,10:42.
    22.李潮海,苏新宏,谢瑞芝,周苏玫,李登海,超高产栽培条件下夏玉米产量与气候生态条件关系研究.中国农业科学2001,34(3):311-316.
    23.李洪梅,白洪立,王西芝,孟淑华,王立功,张娟,不同收获时期对夏直播玉米产量影响的试验.农业科技通讯2008,6:80-82.
    24.李克南,杨晓光,刘志娟,王文峰.陈阜,全球气候变化对中国种植制度可能影响分析Ⅲ.中国北方地区气候资源变化特征及其对种植制度界限的可能影响.中国农业科学2010,43:2088-2097.
    25.李少昆,王崇桃,中国玉米生产技术的演变与发展.中国农业科学2009,42:1941-1951.
    26.李少昆,王崇桃,玉米高产潜力途径.北京:科学出版社,2010.
    27.李言照,东先旺,刘光亮,陶飞,光温因子对玉米产量及产量构成因素值的影响.中国生态农业学报2002,10(2):86-89.
    28.李言照,刘光亮,张海燕,光温因子与玉米产量的关系.西北农业学报2001,10(2):67-70.
    29.李月华,侯大山,刘强,李向华,李霞,于广军,李辉利,李中建,收获期对夏玉米千粒重及产量的影响.河北农业科学2008,12(7):1-3,6.
    30.廖宗族,土温对玉米苗期生育影响的研究.农业气象1980,2:49-55.
    31.刘晓东,安芷生,方建刚,陈广善,全球气候变暖条件下黄河流域降水的可能变化.地理科学2002,22(5):513-519.
    32.刘一龙,张忠学,郭亚芬,膜下滴灌条件下不同灌溉制度的玉米产量与水分利用效应.东北农业大学学报2010,41:53-56.
    33.刘毅,李世清,陈新平,白金顺,黄土旱塬Hybrid-Maize模型适应性及春玉米生产潜力估算.农业工程学报,2008,24:302-308.
    34.刘志娟,杨晓光,王文峰,赵俊芳,张海林,陈阜,全球气候变暖对中国种植制度可能影响Ⅳ.未来气候变暖对东北三省春玉米种植北界的可能影响.中国农业科学2010,43:2280-2291.
    35.刘志全,李万良,路立平,沈海波,周桂林,李才库,王吉春,王厚胜,刘世梅,孟祥武,2006年美国玉米高产竞赛的启示.玉米科学2007,15:144-145.
    36.刘祖贵,刘战东,肖俊夫,南纪琴,巩文军,苗期与拔节期淹涝抑制夏玉米生长发育、降低产量.农业工程学报2012,29:44-52.
    37.路海东,薛吉全,马国胜,郝引川,张仁和,马向峰,陕西榆林春玉米高产田土壤理化性状及根系分布.应用生态学报2010,21:895-900.
    38.孟凯,张兴义,东北北部黑土区玉米耗水特征的介析.玉米科学1996,4:66-67.
    39.任和平,张秀梅,苏祯禄,吴建宇,玉米适时收获期的研究.河南农业大学学报1988,22(2):127-134.
    40.石云素,黎裕,王天宇,宋艳春,玉米种质资源描述规范和数据标准.北京:中国农业出本社,2006.
    41.司翠,吴昊,气候变暖对东北地区农业的影响和对策的研究.三农论坛2009,(5):19-22.
    42.苏珍,施雅风,小冰期以来中国季风温冰川对全球变暖的响应.冰川冻土2000,22(3):223-228.
    43.孙孟梅,姜丽霞,于荣环,孙玉亭,玉米生育期热量指标及其不同品种的栽培北界.黑龙江气象1998,3:38-43.
    44.孙世贤,年美国玉米高产竞赛简况.玉米科学2003,11:102.
    45.唐国平,李秀彬,Fische G,Sylvia P,气候变化对中国农业生产的影响.地理学报2000,55(2):129-138.
    46.王位泰,张天锋,姚玉璧,王润元,郭江勇,黄斌,黄土高原夏半年降水气候变化特征及对作物产量的影响.干旱地区农业研究2008,26:154-159.
    47.王秀萍,刘天学,李潮海,李大鹏,遮光对不同株型玉米品种农艺性状和果穗发育的影响.江西农业学报2010,22:5-7.
    48.吴建宇,徐翠莲,任和平,苏祯禄,台国琴,玉米不同收获期的子粒品质研究.河南农业大学学报1994,28(1):92-94.
    49.闫洪奎,杨镇,吴东兵,曹广才,姚金保,刘晓丽,李刚,玉米生育期和品质性状的纬度效应研究.科技导报2009,27:38-41.
    50.闫洪奎,杨镇,徐方,吴东兵,刘晓丽,李刚,曹广才,玉米生育期和生育阶段的纬度效应研究.中国农学通报2010,26(12):324-329.
    51.杨今胜,王永军,张吉旺,刘鹏,李从锋,朱元刚,郝梦波,柳京国,李登海,董树亭,三个超高产夏玉米品种的干物质生产及光和特性.作物学报2011,37:355-361.
    52.杨学明,张晓平,方华军,农业土壤固碳对缓解全球变暖的意义.地理科学2003,23(1):101-106.
    53.尤莉,程玉翠,郭瑞清,李俊有,丁晓华,内蒙古赤峰地区气候变暖及其影响.中国农业气象2008,29(2):134-138.
    54.张吉旺,董树亭,王空军,胡昌浩,刘鹏,大田遮荫对夏玉米光合特性的影响.作物学报2007,33(2):216-222.
    55.张建平,王春乙,杨晓光,赵艳霞,刘志娟,王靖,陈艳英,未来气候变化对中国东北三省玉米需水量的影响预测.农业工程学报2009,25:50-55.
    56.张丽娟,许彦川,雷进新,玉米生育期气候指标分析及应用.农业气象1994,2:25-28.
    57.张世煌,李少昆,国内外玉米产业技术发展报告.北京:中国农业科学技术出版社,2009.
    58.张同法,不同收获期对夏直播玉米千粒重的影响.农业科技通讯2009,8:84-85.
    59.郑度,欧阳,周成虎,对自然地理区划方法的认识与思考.地理学报2008,63:563–573.
    60.郑盛华,严昌荣,水分胁迫对玉米苗期生理和形态特性的影响.生态学报2006,26:1138-1143.
    61. Afuakwa J. J., Kent Crookston R., Jones R. J., Effect of Temperature and Sucrose Availability onKernel Black Layer Development in Maize. Crop Sci.1983,24:285-288.
    62. Aggarwal P.K., Kalra N., Simulating the effect of climatic factors, genotype, water and nitrogenavailability on productivity of wheat: II. climatically potential yields and optimal managementstrategies. Field Crops Res.1994,38:93-103.
    63. Ahrens T.D., Lobell D.B., Ortiz-Monasterio J.I., Li Y., Matson P.A., Narrowing the agronomicyield gap with improved nitrogen use efficiency: a modeling approach. Ecol. Appl.2010,20,91–100.
    64. Aitken Y., Non-destructive method for estimation of tassel initiation in maize (Zea mays L.). J.Aust. Inst. Agric. Sci.1980,42:65-66.
    65. Allison J.C.S., Daynard T.B., Effect of change in time of flowering, induced by alteringphotoperiod or temperature, on attributes related to yield in maize. Crop Sci.1979,19:1-4.
    66. Almaraz J.J., Mabood F., Zhou X., Gregorich E.G., Smith D.L., Climate change, weathervariability and corn yield at a higher latitude locale: Southwestern Quebec. Climatic Change2008,88:187-197. doi:10.1007/s10584-008-9408-y.
    67. Andersen S., Dyrkning af korn, In: Andersen, S.(Ed.), Landbrugsplanterne., second ed. DSRForlaget Inc., Frederiksberg, Denmark,2000,106-114.
    68. Andrade F.H., Ferreiro M.A., Reproductive growth of maize, sunflower and soybean at differentsource levels during grain filling. Field Crops Res.1996,48:155-165.
    69. Andrade F.H., Uhart S.A., Cirilo, A., Temperature affects radiation use efficiency in maize. FieldCrops Res.1993,32:17-25.
    70. Asare D.K., Frimpong J.O., Ayeh E.O., Amoatey H.M., Water use efficiencies of maize cultivarsgrown under rain-fed conditions. Agric. Sci.2011,2:125-130.
    71. Audsley E., Pearn K.R., Simota C., Cojocaru G., Koutsidou E., Rounsevell M.D.A., Trnka M.,Alexandrov V., What can scenario modeling tell us about future European scale agricultural landuse and what not? Environ. Sci. Policy2006,9:148-162.
    72. Bartholomew P.W., Williams R.D., Cool-season grass development response to accumulatedtemperature under a range of temperature regimes. Crop Sci.2005,45:529-534.
    73. Bergamaschi H., Wheeler T.R., Challinor A.J., Comiran F., Machado Heckler B.M., Maize yieldand rainfall on different spatial and temporal scales in Southern Brazil. Pesquisa Agr. Brasil.2007,42:603-613.
    74. Bhatia V.S., Singh P., Wani S.P., Chauhan G.S., Rao A.V.R.K., Mishra A.K., Sriniuas K.,Analysis of potential yields and yield gaps of rainfed soybean in India using CROPGRO-Soybeanmodel. Agric. For. Meteorol.2008,148:1252-1265.
    75. Birch C.J., Hammer G.L., Rickert K.G., Temperature and photoperiod sensitivity of developmentin five cultivars of maize (Zea mays L.) from emergence to tassel initiation. Field Crops Res.1998,55:93-107.
    76. Boote K.J., Loomis R.S., The prediction of canopy assimilation. In: Boote, K.J., Loomis, R.S.,eds. Modeling crop photosynthesis-from biochemistry to canopy. Madison: Crop Science Societyof America.1991,109-140.
    77. Bootsma A., Anderson D., Gameda S., Potential impacts of climate change on agroclimaticindices in Southern regions of Ontario and Quebec. Technical Bulletin ECORC Contribution No.03-284. Eastern Cereal and Oilseed Research Centre. Agriculture and Agri-Food Canada, Ottawa,Ontario,2004.
    78. Breuer C.M., Hunter R.B., Kannenberg L.W., Effects of10-and20-h photoperiod treatments at208C and308C on rate of development of a single-cross maize (Zea mays) hybrid. Can. J. PlantSci.1976,56:795-798.
    79. Brown R. A., Rosenberg N. J., Sensitivity of crop yield and water use to change in a range ofclimate factors and CO2concentrations: a simulation study applying EPIC to the central USA.Agri. Forest Meteorol.1997,83:171-203.
    80. Bruns H.A., Abbas H.K., Planting date effects on Bt and non Bt corn in the Mid-South USA.Agron. J.2006,98:100~106.
    81. Bunting E.S., Accumulated temperature and maize development in England. J. Agric. Sci.1976,87:577-583.
    82. Cao W., Moss D.N., Modelling phasic development in wheat: a conceptual integration ofphysiological components. J. Agric. Sci.1997,129:163-172. doi:10.1017/s0021859697004668.
    83. Casal J.J., Deregibus V.A., Sanchez R.A., Variations in tiller dynamics and morphology inLolium multiflorum Lam.vegetative and reproductive plants as affected by differences inred/far-red Irradiation. Ann. Bot.1985,56:553–559.
    84. Cassman K.G., Dobermann A., Walters D.T., Yang H., Meeting cereal demand while protectingnatural resources and improving environmental quality. Annu. Rev. Environ. Resour.2003,28:315–358.
    85. Cassman K.G., Ecological intensification of cereal production systems: Yield potential, soilquality, and precision agriculture. Proc. Natl. Acad. Sci. USA1999,96:5952–5959.
    86. Caton B.P., Foin T.C., Gibson K.D., Hill J.E., A temperature-based model of direct-,water-seeded rice (Oryza sativa) stand establishment in California. Agric. Forest Meteorol.1998,90:91-102.
    87. Chase S.S., Nanda D.K., Number of leaves and maturity classification in Zea mays L. Crop Sci.1967,7:431-432.
    88. Chen C.Q., Lei C.X., Deng A.X., Qian C.R., Willem H., Zhang W.J., Will higher minimumtemperature increase corn production in Northeast China? An analysis of historical data over1965-2008. Agric. Forest Meterol.2011a,151:1580-1588.
    89. Chen X.P., Cui Z.L., Vitousek P.M., Cassman K.G., Matson P.A., Bai J.S., Meng Q.F., Hou P.,Yue S.C., R mheld V., Zhang F.S., Integrated soil-crop system management for food security.Proc. Natl. Acad. Sci.2011b,108:6399-6404.
    90. Cirilo A.G., Andrad, F.H., Sowing date and maize productivity: I. Crop growth and dry matterpartitioning. Crop Sci.1994,34:1039-1043.
    91. CMA Archives,2010. Chinese Meteorological Administration archives. http://cdc.cma.gov.cn
    92. Coe E. H. Jr, Neuffer M. G., Hoisington D.A., In G. F. Sprague and J. W. Dudley (ed) Corn andCorn Improvement. American Society of Agronomy. Madison, WI.1988.
    93. Coligado M.C., Brown D.M., Response of corn (Zea mays L.) in the pre-tassel initiation period totemperature and photoperiod. Agric. Meteorol.1974,14:357-367.
    94. Cooper P.J.M., Law R., Enhanced soil temperature during very early growth and its associationwith maize development and yield in the highlands of Kenya. J. Agric. Sci.1978,91:567-577.
    95. Craufurd P.Q., Qi A., Ellis R.H., Summerfield R.J., Roberts E.H., Mahalakshmi V., Effect ofTemperature on Time to Panicle Initiation and Leaf Appearance in Sorghum. Crop Sci.1998,38:942-947.
    96. Craufurd P.Q., Qi A., Ellis R.H., Summerfield R.J., Roberts E.H., Mahalakshmi V., Effect ofTemperature on Time to Panicle Initiation and Leaf Appearance in Sorghum. Crop Sci.1998,38:942-947.
    97. Darwinkel A., Hag B.A.t., Kuizenga J., Effect of sowing date and seed rate on crop developmentand grain production of winter wheat. Neth. J. Agric. Sci.1977,25:83-94.
    98. Daynard T. B., Duncan W. G., The Black Layer and Grain Maturity in Corn. Crop Sci.1969,9:473-476.
    99. De Jong R., Li K.Y., Bootsma A. et al., Crop yield variability under climate change andadaptative crop management scenarios. Final Report for Climate Change Action Fund ProjectA080. Eastern Cereal and Oilseed Research Centre (ECORC). Agriculture and Agri-Food,Canada.2001.
    100. Ding L., Wang K.J., Jiang G.M., Liu M.Z., Niu S.L., Gao L.M., Post-anthesis changes inphotosynthetic traits of maize hybrids released in different years. Field Crops Res.2005,93:108-115. doi:10.1016/j.fcr.2004.09.008.
    101. Dong J., Liu j., Tao F., Xu X., Wang J., Spatio-temporal changes in annual accumulatedtemperature in China and the effects on cropping systems,1980s to2000. Climate res.2009,40:37-48.
    102. Duncan W., Maize. In Crop Physiology (ed. L. T. Evans),1975, pp.23-50. Cambridge UniversityPress.
    103. Duwayri M., Dat V.T., Van N.N., Reflections on yield gaps in rice production: how to narrow thegaps. In: Papademetriou, M.K., Dent, F.J., Herath, E.M.(Eds.), Bridging the rice yield gap in theAsia-Pacific region. Bangkok, Thailand: UN Food and Agriculture. Organ.2000, pp.26-45.
    104. Dwyer L.M., Stewart D.W., Carrigan L., Ma B.L., Neave P., Balchin D., Guidelines forcomparisons among different maize maturity rating systems. Agron. J.1999,91:946-949.
    105. Echarte L., Andrade F.H., Sadras V.O., Abbate P., Kernel weight and its response to sourcemanipulations during grain filling in Argentinean maize hybrids released in different decades.Field Crops Res.2006,96:307-312. doi:10.1016/j.fcr.2005.07.013.
    106. Ellis R.H., Summerfield R.J., Edmeades G.O., Roberts E.H., Photoperiod, temperature and theinterval from sowing to tassel initiation in diverse cultivars of maize. Crop Sci.1992,32:1225-1232.
    107. Evans L.T., Crop Evolution, Adaptation and YieldLondon: Cambridge University Press,1996,116.
    108. Evans, L.T., Processes, genes, and yield potential. In:Buxton D.R., et al., eds. International CropScience Ⅰ. Madision, Wisconsin: Crop Science Society of America.1993,687-696.
    109. Fageria N.K., Baligar V.C., Clark R.B., Physiology of Crop Production. Food Products Press. AnImprint of the Haworth Press, Inc. New York, London, Oxford,2005, pp72-82.
    110. FAO,2011. FAOSTAT–Agriculture Database. Available athttp://faostat.fao.org/site/291/default.aspx15(verified on30th October,2011).
    111. FAO,2012. FAOSTAT–Agriculture Database. Available at http://faostat.fao.org/site/339/default.aspx.
    112. Fereres E., Connor D.J., Sustainable water management in agriculture. In: Cabrera, E., Cobacho,R.(Eds.), Challenges of the New Water Policies for the XXI Century. A. A. Balkema, Lisse, TheNetherlands,2004, pp.157-170.
    113. Fereres E., Gonzalez-Dugo V., Improving productivity to face water scarcity in irrigatedagriculture. In: Sadras, V.O., Calderini, D.F.(Eds.), Crop Physiology: Applications for GeneticImprovement and Agronomy. Elsevier, Amsterdam, The Netherlands,2009, pp.123-143.
    114. Foley J.A., Ramankutty N., Brauman K.A., Cassidy E.S., Gerber J.S., Johnston M., Mueller N.D.,O'Connell C., Ray D.K., West P.C., Balzer C., Bennett E.M., Carpenter S.R., Hill J., Monfreda C.,Polasky S., Rockstrom J., Sheehan J., Siebert S., Tilman D., Zaks D.P.M., Solutions for acultivated planet. Nature2011,478:337–342.
    115. Gao Y., Duan A.W., Sun J.S., Li F.S., Liu Z.G., Liu H., Liu Z.D., Crop coefficient and water-useefficiency of winter wheat/spring maize strip intercropping. Field Crops Res.2009,111:65–73.
    116. Gardiol J.M., Serio L.A., Della Maggiora A.I., Modelling evapotranspiration of corn (Zea maysL.) under different plant densities. J. Hydrol.2003,271:188-196.
    117. Gardner F.P., Pearce R.B., Mitchell R.L., PhotosynthesisAmes: Iowa State University Press, In:Physiology of Crop Plant.1985,3-30.
    118. Grassini P., Thorburn j., Burr C., Cassman K.G., High–yield irrigated maize in the western U.S.corn belt: Ⅰ. On-farm yield, yield potential, and impact of agronomic practices. Field Crops Res.2010,120:142-150.
    119. Grassini P., Yang H., Cassman K.G., Limits to maize productivity in Western Corn-Belt: Asimulation analysis for fully irrigated and rainfed conditions. Agric. Forest Meteorol.2009,149:1254-1265. doi:10.1016/j.agrformet.2009.02.012.
    120. Grassini P., Yang H., Irmak S., Thorburn J., Burr C., Cassman K.G., High-yield irrigated maize inthe Western U.S. Corn Belt: II. Irrigation management and crop water productivity. Field CropsRes.2011b,120:133~141.
    121. Gregory S., Accumulated temperature maps of the British Isles. Transactions and Papers,1954,20:59–73.
    122. Hegyi Z., Spitko T., Szoke C., Racz F., Berzy T., Pinter J., Marton L. C., Studies on theadaptability of maize hybrids under various ecological conditions. Cereal Res. Commun.2005,33:689-696. doi:10.1556/crc.33.2005.2-3.136.
    123. Hesketh J.D., Chase S.S., Nanda D.K., Environmental and genetic modification of leaf number inmaize. sorghum. and Hungarian millet. Crop Sci.1969,9:460-463.
    124. Hodges T., Predicting Crop Phenology.1991, Boca Raton: CRC Press.
    125. Hou P., Gao Q., Xie R., Li S., Meng Q., Kirkby E.A., R mheld V., Müllere T., Zhang F., Cui Z.,Chen X., Grain yields in relation to N requirement: Optimizing nitrogen management for springmaize grown in China. Field Crops Res.2012,129:1-6. doi:10.1016/j.fcr.2012.01.006.
    126. Howell T.A., Enhancing water use efficiency in irrigated agriculture. Agron. J.2001,93:281-289.
    127. Huang Y., Gao L., Jin Z., Chen H., Simulating the optimal growing season of rice in the YangtzeRiver Valley and its adjacent area, China. Agric. Forest Meteorol.1998,91:251-262.
    128. Hunter R.B., Tollenaar M., Breuer C.M., Effects of photoperiod and temperature on vegetativeand reproductive growth of a maize (Zea mays) hybrid. Can. J. Plant Sci.1977,57:1127-1133.
    129. Iannucci A., Terribile M.R., Martiniello P., Effects of temperature and photoperiod on floweringtime of forage legumes in a Mediterranean environment. Field Crops Res.2008,106:156-162.
    130. IPCC, Climate Change2001:Impacts, adaption, and vulnerability. Summary for Policymakers. AReport of Working Group Ⅱof the Intergovernmental Panel on Climate Change. Geneva,Switzerland,2001.
    131. IPCC, Climate Change2007, The Physical Science Basis. Contribution of Working Group I to theFourth Assessment Report of the Intergovernmental Panel on Climate Change.2007,Cambridge University Press, Cambridge, UK.
    132. Jones C.A., Kiniry J.R., Subroutine Structure. In: CERES-Maize, a simulation model of maizegrowth and development. Texas A and M Univ. Press,1986,194pp.
    133. Juan J.A., Fazli M., Climate change, weather variability and corn yield at a higher latitude locale,Southwestern Quebec. Climatic Change2008,88:187-197.
    134. Kadio lu M., aylan L., Trends of Growing Degree-Days in Turkey. Water, Air,&Soil Pollution2001,126:83-96.
    135. Kamara A.Y., Menkir A., Badu-Apraku B., Ibikunle O., The influence of drought stress ongrowth, yield and yield components of selected maize genotypes. J. Agric. Sci.2003,141:43-50.
    136. Kiniry J.R., Maize phasic development. In: Hanks, R.J., Ritchie, J.T. eds. Modeling Plant and SoilSystems. Madison, WI: ASA, CSSA, and SSSA.1991,55-69.
    137. Kiniry J.R., Ritchie J.T., Musser R.L., Flint E.P., Iwig W.C., The photoperiod sensitive interval inmaize. Agron. J.1983,75:687-690.
    138. Kiniry J.R., Williams J.R., Vanderlip R.L., Atwood J.D., Reicosky D.C., Mulliken J., Cox W.J.,Mascagni H.J., Hollinger S.E., Wiebold W.J., Evaluation of two maize models for nine USlocations. Agron. J.1997,89:421-426.
    139. Kobata T., Uemuki N., High temperatures during the grain-filling period do not reduce thepotential grain dry matter increase of rice. Agron. J.2004,96:406-414.
    140. Kropff M.J., van Laar H.H., Modelling Crop–Weed Interactions. CABI, Wallingford, UK.1993.
    141. Leff B., Ramankutty N., Foley J.A., Geographic distribution of major crops across the world.Global Biogeochem. Cycle2004,18. doi:Gb1009
    142. Liang W.L., Peter C., Wang G.Y., Lu R.H., Lu H.Z., Xia A.P., Quantifying the yield gap inwheat-maize cropping systems of the Hebei Plain, China. Field Crops Res.2011,124:180-185.
    143. Liang W.L., Peter C., Wang G.Y., Lu R.H., Lu H.Z., Xia A.P., Quantifying the yield gap inwheat-maize cropping systems of the Hebei Plain, China. Field Crops Res.2011,124:180–185.
    144. Licker R., Johnston M., Foley J.A., Barford C., Kucharik C.J., Monfreda C., Ramankutty N.,Mind the gap: how do climate and agricultural management explain the 'yield gap' of croplandsaround the world? Global Ecol. Biogeogr.2010,19:769–782.
    145. Liu D.L., Kingston G., Bull T.A., A new technique for determining the thermal parameters ofphenological development in sugarcane, including suboptimum and supra-optimum temperatureregimes. Agric. Forest Meteorol.1998,90:119-139.
    146. Liu S., Mo X., Lin Z., Xu Y., Ji J., Wen G., Richey J., Crop yield responses to climate change inthe Huang-Huai-Hai Plain of China. Agric. Water Manage.2010,97:1195-1209.doi:10.1016/j.agwat.2010.03.001.
    147. Liu Y., Hou P., Xie R., Li S., Zhang H., Ming B., Ma D., Liang S., Spatial adaptabilities of springmaize to variation of climatic conditions. Crop Sci.2013a Accepted.
    148. Liu Y., Wang E.L., Yang X.G., Wang J., Contributions of climatic and crop varietal changes tocrop production in the North China Plain, since1980s. Global Change Biol.2010,16:2287-2299.
    149. Liu Y., Xie R., Hou P., Li S., Zhang H., Ming B., Long H., Liang S., Phenological responses ofmaize to changes in environment when grown at different latitudes in China. Field Crops Res.2013b,144:192-199. http://dx.doi.org/10.1016/j.fcr.2013.01.003.
    150. Liu Z., Yang X., Chen F., Wang E., The effects of past climate change on the northern limits ofmaize planting in Northeast China. Climatic Change.2012a, DOI10.1007/s10584-012-0594-2.
    151. Liu Z., Yang X., Hubbard K.G., Lin X., Maize potential yields and yield gaps in the changingclimate of northeast China. Global Change Biol.2012b,18:3441-3454.
    152. Lobell D.B., Asner G.P., Climate and management contributions to recent trends in USagricultural yields. Science2003,299:1032-1032. doi:10.1126/science.1077838.
    153. Lobell D.B., Cassman K.G., Field C.B., Crop yield gaps: their importance, magnitudes, andcauses. Annu. Rev. Environ. Resour.2009,34:179–204.
    154. Loomis R.S., Conner D.J., Crop Ecology. Productivity and Management in Agricultural Systems.Cambridge: Cambridge Univeristy Press,1992.
    155. Major D.J., Brown D. M., Bootsma A., Dupuis G., Fairey N.A., Grant E.A., Green D.G.,Hamilton R.I., Langille J., Sonmor G., Smeltzer G.C., White R.P., An evaluation of the corn heatunit system for the short-season growing regions across Canada. Can. J. Plant Sci.1983,63:121-130.
    156. McMaster G.S., Wilhelm W.W., Growing degree-days: one equation, two interpretations. Agric.and. Forest Meteorol.1997,87:291-300. doi:10.1016/s0168-1923(97)00027-0.
    157. Meng Q., Hou P., Wu L., Chen X., Cui Z., Zhang F. Understanding production potentials andyield gaps in intensive maize production in China. Field Crops Res.2012a,http://dx.doi.org/10.1016/j.fcr.2012.09.023.
    158. Meng Q.F., Sun Q.P., Chen X.P., Cui Z.L., Yue S.C., Zhang F.S., R mheld V., Alternativecropping systems for sustainable water and nitrogen use in the North China Plain. Agriculture,Ecosystems and Environment2012b,146:93-102.
    159. Muchow R.C., Sinclair T.R., Bennett J.M., Temperature and solar radiation effects on potentialmaize yield across locations. Agron. J.1990,82:338-343.
    160. Naab J.B., Singh P., Boote K.J., Jones J.W., Marfo K.O., Using the CROPGRO-peanut model toquantify yield gaps of peanut in the Guinean Savanna Zone of Ghana. Agron. J.2004,96:1231–1242.
    161. Nesmith D.S., Ritchie J.T., Maize Zea-mays L. response to a sever soil water-deficit duringgrain-filling. Field Crops Res.1992,29:23-35. doi:10.1016/0378-4290(92)90073-i.
    162. Neumann K., Verburg P.H., Stehfest E., Mueller C., The yield gap of global grain production: Aspatial analysis. Agric. Syst.2010,103:316-326.
    163. Olesen J.E., Bindi M., Consequences of climate change for European agricultural productivity,land use and policy. Eur. J. Agron.2002,16:239-262. doi:Pii s1161-0301(02)00004-7.
    164. Olesen J.E., Carter T.R., Diaz-Ambrona C.H., Fronzek S., Heidmann T., Hickler T., Holt T.,Minguez M.I., Morales P., Palutikov J., Quemada M., Ruiz-Ramos M., Rubaek G.H., Sau F.,Smith B., Sykes M.T. Uncertainties in projected impacts of climate change on Europeanagriculture and terrestrial ecosystems based on scenarios from regional climate models. ClimaticChange2007,81:123-143.
    165. Olivier F.C., Annandale J.G., Thermal time requirements for the development of green pea(Pisum sativum L.). Field Crops Res.1998,56:301-307.
    166. Otegui M.E., Ruiz R.A., Petruzzi D., Modelling hybrid and sowing date effects on potential grainyield of maize in a temperate humid region. Field Crops Res.1996,47:169-178.
    167. Polerecky O., Yield and yield components of newly-bred high-yielding grain maize hybrids. Rostl.Vyroba1976,22:1021-1027.
    168. Porter J.R., Gawith M., Temperatures and the growth and development of wheat: a review. Eur. J.Agron.1999,10:23-36. doi:10.1016/s1161-0301(98)00047-1.
    169. Ramankutty N., Foley J.A., Norman J., McSweeney K., The global distribution of cultivablelands: current patterns and sensitivity to possible climate change. Global Ecol. Biogeogr.2002,11:377–392.
    170. Rattalino Edreira J.I., Budakli Carpici E., Sammarro D., Otegui M.E., Heat stress effects aroundflowering on kernel set of temperate and tropical maize hybrids. Field Crops Res.2011,123:62-73. doi:10.1016/j.fcr.2011.04.015.
    171. Ritchie S.W., Hanway J.J., Benson G.O., How a corn plant develops. Special Report1992, No.48.Iowa State University, Cooperative Extension Service, Ames, IA.
    172. Ritchie T.T., NeSmith D.S., Temperature and crop development. In: Hanks, J., Ritchie J.T., eds.Modeling Plant and Soil Systems, Agronomy Monograph1991, No.31, Madison, WI: ASA,CSSA, and SSSA.5-29.
    173. Rosegrant M.W., Ringler C., Zhu T., Water for agriculture: maintaining food security undergrowing scarcity. Annu. Rev. Environ. Resour.2009,34:205-222.
    174. Ruget F., Contribution of storage reserves during grain filling of maize in northern Europeanconditions. Maydica1993,38:51-59.
    175. Ruiz Corral J.A., Puga N.D., Sanchez Gonzalez J.d.J., Parra J.R., Gonzalez Eguiarte D.R.,Holland J.B., García G. M., Climatic adaptation and ecological descriptors of42Mexican maizeraces. Crop Sci.2008,48:1502-1512. doi:10.2135/cropsci2007.09.0518.
    176. Rweyemamu C.L., Mpulila T., Maize growth and development under different ecologicalscenarios. Annex B23of the Final Technical Report of project R8088A:32-44,2005.
    177. Sacks W.J., Kucharik C.J., Crop management and phenology trends in the U.S. Corn Belt:Impacts on yields, evapotranspiration and energy balance. Agric. Forest Meteorol.2011,151:882-894.
    178. Sala R.G., Westgate M.E., Andrade F.H., Source/sink ratio and the relationship betweenmaximum water content, maximum volume, and final dry weight of maize kernels. Field CropsRes.2007,101:19-25. doi:10.1016/j.fcr.2006.09.004.
    179. Scapim C.A., Oliveira V.R., Braccini A.D.E., Cruz C.D., Andrade C.A.B., Vidigal M.C.G., Yieldstability in maize (Zea mays L.) and correlations among the parameters of the Eberhart andRussell, Lin and Binns and Huehn models. Genet. Mol. Biol.2000,23:387-393.
    180. Slafer G.A., Rawson H.M., Sensitivity of wheat phasic development to major environmentalfactors: A re-examination of some assumptions made by physiologists and modellers. Aust. J.Plant Physiol.1994,21:393-426.
    181. Stevenson J.C., Goodman M.M., Ecology of exotic races of maize.1. Leaf number and tilleringof16races under four temperatures and two photoperiods. Crop Sci.1972,12:864-868.
    182. Stewart D.W., Dwyer L.M., Carrigan L.L., Phenological Temperature Response of Maize. Agron.J.1998,90:73-79.
    183. Stone P.J., Sorensen I.B., Jamieson P.D., Effect of soil temperature on phenology, canopydevelopment, biomass and yield of maize in a cool-temperate climate. Field Crops Res.1999,63:169-178.
    184. Sun H., Zhang X., Chen S., Pei D., Liu C., Effect of harvest and sowing time on the performanceof the rotation of winter wheat-summer maize in the North China Plain. Industrial Crops andProducts.2007,25:239-247.
    185. Tanaka W., Angel Maddonni G., Maize Kernel Oil and Episodes of Shading during theGrain-Filling Period. Crop Sci.2009,49:2187-2197. doi:10.2135/cropsci2009.05.0238.
    186. Tao F., Yokozawa M., Xu Y., Hayashi Y., Zhang Z., Climate changes and trends in phenologyand yields of field crops in China,1981-2000. Agric. Forest Meteorol.2006,138:82-92.doi:10.1016/j.agrformet.2006.03.014.
    187. Tao F.L., Zhang Z., Adaptation of maize production to climate change in North China Plain:Quantify the relative contributions of adaptation options. Eur. J. Agron.2010,33:103-116.
    188. Tataryn J.H., Evaluation of the corn heat unit in southwestern Manitoba, M.Sc. Thesis, Universityof Manitoba, Winnipeg, Man,1974.
    189. Tester M., Langridge P., Breeding Technologies to Increase Crop Production in a ChangingWorld. Science.2010,327:818-822.
    190. The Syngenta Agronomy Research Bulletin,2011(www.goldenharvestseeds.com).
    191. Thill, D.C., Witters, R.E., Papendick, R.I., Interactions of early-and late-planted winter wheatwith their environment. Agron. J.1978,70:1041-1047.
    192. Tollenaar M., Bruulsema T.W., Efficiency of maize dry matter production during periods ofcomplete leaf area expansion. Agron. J.1988,80:580-585.
    193. Tollenaar M., Duration of the grain-filling period in maize is not affected by photoperiod andincident PPFD during the vegetative phase. Field Crops Res.1999,62:15-21.
    194. Tollenaar M., Lee E.A., Yield potential, yield stability, and stress tolerance in maize. Field CropsRes.2002,75:161–169.
    195. Tollenaar M., Physiological basis of genetic improvement of maize hybrids in ontario Canda from1959to1988. Crop Sci.1991,31:119-124.
    196. van Diepen C.A., Wolf J., van Keulen H., Rappoldt C., WOFOST: a simulation model of cropproduction. Soil Use Manage1989,5:16~24.
    197. van Ittersum M.K., Leffelaar P.A., van Keulen H., Kropff M.J., Bastiaans L., Goudriaan J. Onapproaches an applications of the Wageningen crop models. Eur. J. Agron.2003,18:201-234.
    198. Van Wart J., Kersebaum K.C., Peng S., Milner M., Cassman K.G., Estimating crop yield potentialat regional to national scales. Field Crops Res.2013, http://dx.doi.org/10.1016/j.fcr.2012.11.018
    199. Wallace J.S., Batchelor C.H., Gregory P., Sinclair F.L., Valentin C., Lal R., Kijne J., SivakumarM.V.K., Riley R., Billing D.W., Managing water resources for crop production and discussion.Philos. Trans. R. Soc. Lond. B.1997,352:937-947.
    200. Wang J., Wang E., Yang X., Zhang F., Yin H., Increased yield potential of wheat-maize croppingsystem in the North China Plain by climate change adaptation. Climatic Change2012,113:825-840.
    201. Wang J.Y., A critique of the heat unit approach to plant response studies. Ecology1960,4:785-790.
    202. Wani S.P., Pathak P., Sreedevi T.K., Singh H.P., Singh P., Efficient management of rainwater forincreased crop productivity and groundwater recharge in Asia. In: Kijne, J.W., Barker, R. andMolden, D. Eds., Water Productivity in Agriculture: Limits and Opportu-nity for Improvement.CABI Publishing and International Water Management Institute, Wallingford,2003,56.
    203. Warrington I.J., Kanemasu E.T., Corn growth response to temperature and photoperiod: I.Seedling emergence, tassel initiation and anthesis. Agron. J.1983a,75:749-754.
    204. Warrington I.J., Kanemasu E.T., Corn growth response to temperature and photoperiod. II.Leaf-initiation and leaf-appearance rates. Agron. J.1983b,75:755-761.
    205. Wilson J.H., Clowes M.S.J., Allison J.C.S., Growth and yield of maize at different altitudes inRhodesia. Ann. Appl. Biol.1973,73:77-84.
    206. Winter, S.R., Musick, J.T., Wheat planting date effects on soil water extraction and grain yield.Agron. J.1993,85:912-916.
    207. Wu D.R, Yu Q., Lu C.H, Hengsdijk H., Quantifying production potentials of winter wheat in theNorth China Plain. Europ. J. Agron.2006,24:226-235.
    208. Yan M.H., Liu X.T., Zhang W., Li X.J., Liu S., Spatio-temporal changes of≥10°C accumulatedtemperature in northeastern China since1961. Chin. Geograph. Sci.2011,21:17-26.
    209. Yang H. S., Dobermann A., Cassman K. G., Features, applications, and limitations of theHybrid-Maize simulation model. Agron. J.2006,98(3):737-748.
    210. Yang H.S., Dobermann A., Lindquist J.L., Walters D.T., Arkebauer T.J., Cassman K.G.,Hybrid-maize-Amaize simulation model that combines two crop modeling approaches. FieldCrops Res.2004,87:131-154.
    211. Zaidi P.H., Rafique S., Rai P.K., Singh N.N., Response of maize (Zea mays L.) genotypes toexcess soil water stress: Morpho-physiological efforts and basis of tolerance. Eur. J. Agron.2003,19:383-399.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700