用户名: 密码: 验证码:
北方地区重大迁飞性害虫的监测与种群动态分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国地处东亚季风区,农作物重要害虫大部分都具有远距离迁飞的习性。迁飞性害虫以其突发性、暴发性、毁灭性的特点始终威胁着我国的粮食安全。近年来,由于全球气候异常与耕作方式变更等原因,近年来,新发害虫二点委夜蛾连年暴发成灾,重大迁飞性害虫草地螟、小地老虎和黏虫等也呈现间歇性、局部大面积暴发的态势。为了提高迁飞性害虫的监测预警水平,及时开展有效防控,减少农业损失和药剂防治带来的一系列问题,本文利用自行设计的高空诱捕器和自动分时段取样的探照灯诱虫器等监测设备,在北京延庆、吉林公主岭和内蒙古锡林浩特等多个监测点获得的多年野外虫情,对我国北方多种夜行性昆虫的探照灯诱虫数量与高空取样结果之间的关系,多种昆虫的扑灯类型和迁飞性昆虫的上灯节律及其对轨迹分析的潜在影响进行了研究。针对新发害虫二点委夜蛾和重大迁飞性害虫小地老虎和黏虫,除分析探照灯下的种群动态以外,又结合垂直监测昆虫雷达获得空中虫情、卵巢解剖数据、地面和空中气象资料、全国农技推广中心收集的各地虫情数据等,综合运用GrADS、HYSPLIT、ArcMap等图形处理与统计分析软件,重点研究了种群动态与各种气象因素之间的关系,系统分析了种群波动与空中风场之间的关系,并探讨了二点委夜蛾的虫源性质及其迁飞的可能性。本文主要获得了以下几方面的结果:
     1.新设计的空中诱捕器可在空中风力不足以张开拖网的情况下进行空中取样,并可有效防止诱捕昆虫的逃脱。试验表明,该诱捕器在200~400m高度可捕获隶属于半翅目Hemiptera、鳞翅目Lepidoptera、鞘翅目Coleoptera等7目的多种昆虫;高空取样结果证实了探照灯诱虫器在辅助雷达进行迁飞目标识别中的作用。
     2.探照灯分时段诱捕数据表明,直翅目的东方蝼蛄、北京油葫芦和鞘翅目步甲类等优势种属于非整夜扑灯型,脉翅目的大草蛉和丽色草蛉,鳞翅目的草地螟、玉米螟、甜菜白带野螟、小菜蛾和大多数夜蛾科种类都属于整夜扑灯型。不同种类其扑灯节律明显不同,迁飞习性是影响其在探照灯诱捕器内出现节律的最重要因素之一。当轨迹模拟限制在10h以内时,分时段参数化所得的结果并不是传统方法所得结果在距离上的简单缩短,而是涉及更多的虫源地、可能的降落地点和运转路径。但随着轨迹模拟时间的延长,两种方法得到的虫源地信息基本相同。
     3.综合分析表明,二点委夜蛾可以在北京延庆地区越冬。二点委夜蛾在河北栾城1年发生4代,北京延庆1年发生3代,两地的雄虫诱集总量均极显著高于雌性,实际性比显著或极显著小于1的天数,在两地所占的比例分别达到了58%和30%。种群波动影响性比变化,当种群处于上升期时,二点委夜蛾成虫的性比极显著高于1,当种群进入平缓期后,性比接近于1或极显著小于1。北京延庆探照灯诱集的一代成虫数量不符合正态分布,一代成虫出现两个明显高峰,高峰期诱虫数量与空中925hPa的偏南气流密切相关。北京周边地区的监测数据也表现出不同程度的同期增长,初步判断二点委夜蛾是一种兼性迁飞昆虫,北京延庆一代成虫除包含本地种群外,还包括从河北和天津迁飞或扩散而来的个体。
     4.室内饲养和吊飞发现,小地老虎的发育历期和飞行能力可能导致性比发生变化。一代发生区,3-4月份的温度和降水对当年小地老虎的发生程度具有重要影响,4月份温度偏高,降水量较大的年份小地老虎发生重,反之较轻;6月下旬小地老虎迁飞高峰期的雷达回波高度主要在500m以下,300~400m是其主要的飞行高度。垂直雷达监测和夜间定时取样均表明小地老虎可以整夜迁飞。风场分析表明,有利的天气系统可促进小地老虎的迁飞与危害。
     5.2008-2012年,各年累计诱集黏虫量分别为5,105头、3,981头、11,385头和50,584头,诱集数量在年度间存在极显著差异,2012年是黏虫诱集数量最高的一年。气象分析表明,适宜黏虫繁殖的气象条件是导致2012三代黏虫大暴发的直接原因。7月份适宜黏虫扩散的天气系统是三代黏虫暴发的外在动力。北京延庆监测点二代黏虫成虫诱集数量与空中气流的运转方向密切相关,轨迹分析显示华北北部地区三代黏虫大暴发的虫源大部分是从周边地区迁飞扩散而来,是迁入种群和本地种群在适宜气象条件下共同繁殖的结果,与东北黏虫种群关系不大。东北地区三代黏虫的虫源大部分来自本地,受偏西气流和降雨的影响,东北地区二代成虫不能有效迁出,黑龙江北部二代成虫在偏南气流的运载下向南迁飞,受锋面天气影响降落在黑龙江、吉林交界处,与东北地区北部和华北地区迁入的成虫汇集后,造成了东北局部地区的严重发生。三代黏虫回迁期,由于受东北和华北地区地形和季风的影响,很难形成合适的偏北气流,9月中下旬,华北、华中及华南地区农作物接近成熟期,基于上述因素,预测4代黏虫不会在全国大面积暴发,后期实际发生情况与预期结果基本一致。
China is located in the East Asian monsoon area, where many key crop pests are migrants.Irregular outbreaks of these migratory pest insects cause severe damages to crop, and therefore, threatenagricultural production and food security. There was a sudden outbreak of Proxenus lepigone a new pestinsect of maize in China in2011, and intermittent heavy occurrence of the meadow moth Loxostegesticticalis L., black cutworm Agrotis ypsilon Rottemberg, armyworm Mythimna seperata in recent years,due to the anomalies of global climate and changes in tillage practices, etc. This study aims to improvethe level of monitoring and forecasting on migratory pest insects and benefit integrated management,and also to prevent losses in agriculture and reduce many social problems caused by chemical control.In the former part, catches from aerial samples by the self-designed aerial trap and by searchlight trapwere compared, and whether the nocturnal insects could be trapped during the whole night were test onmany species based on the data of many years obtained through searchlight traps with automatictime-switches that have been deployed in Yanqing Beijing, Gongzhuling Jilin and Xilinhaote InnerMongolia, Also, the dynamics of catch sizes during the whole night and related potential effect on thetrajectory analysis were studied. Focusing on the black cutworm and armyworm, this study integratedthe data from searchlight traps with the data obtained by vertical-looking radar, included condition ofovarian development, ground and aerial meteorological data from weather station or internet, and pestinformation from the National Agro-Technical Extension and Service Centre. Then we integratedapplication of the wind field analysis, trajectory simulation and geographic information system softwaresuch as GrADS, HYSPLIT and ArcMap to analyze these data and investigate the influence of variousmeteorological factors on the population dynamics and the relationship between population fluctuationsand wind field. Also, this study explored the possibility of be migrantion of P. lepigone, and its sourceplace based on the data mentioned above. The results were as follows:
     1. this newly designed aerial trap for high-flying insects could function when wind speed is notstrong enough to open the tow net, and is able to prevent the catches from escaping. Aerial samplingtests showed that this aerial trap could catch many individuals from7orders such as Hemiptera,Lepidoptera, Coleoptera etc. at the height of200~400m above the ground level. For the migratory pestinsects including L. sticticalis, M. separatar, Helicoverpa armigera Hubner, that were trapped in aerialsamples, the catch sizes in searchlight trap were consistently in peaked periods, which confirmed thatsearch light trap could be a practicable tool assisting radar in identification of the high-flying targets.
     2. Dominant species of Orthoptera and Coleoptera only appeared in some time-sections at night,but Sympetrum Croceolum and Chrysopa formosa from Neuroptera, L. sticticalis, Pyrausta nubilalis,Hymenia recurvalis, Plutella xyllostella and many noctuids from Lepidoptera could be trapped duringthe whole night. Dynamic rhythm of catch sizes differed in different species. Distant migratory behaviorwas one of the most important factor the dynamic of specific species. When limiting the function timefor only1night, the trajectory simulation showed that the results obtained as parameterized withdifferent starting time involved more insect source place and possible landing sites, not simply thetruncated distance as generated by the traditional methods. Howerver, source places obtained by bothmethods tend to be similar with the extension of the function time.
     3. In2012, the minimum temperature in Yanqing of Beijing was higher than the supercooling point(-25.35℃) of the mature larvae with cocoon. With other evidences taken into consideration, theresultsindicate that the mature larvae with cocoon of P. lepigone could therefore overwinter in YanqingBeijing. Monitoring data confirm that P. lepigone has occurred4generations per year in LuanchengHebei province and3generations per year in Yanqing Beijing. the total amount of trapped males wassignificantly higher than that of female in both sites. Nights when sex ratio of P. lepigone wassignificantly smaller than or close to1accounted for58%and30%in Yanqing and Luanchengrespectively. Variation in population sizes influences the sex ratio that changes in same trend for bothsites, that is, the sex ratios were significantly higher than1when population size rise, but close to1orsignificantly smaller than1in the the steady periods. The first generation of trapped P. lepigone adultsdid not form the normal distribution in Yanqing, and two obvious peaks appeared in the this generation.Variations in population sizes were related to the wind field at925hPa. With comprehensiveconsideration of the synchronous spurts in other light traps around Beijing, we conclude that the trappedfirst generation was composed not only the local individuals, but also the migrants or dispersers fromHebei and Tianjin,therefore, P. lepigone is a facutrative migratory species.
     4. Indoors feeding observation showed that there were no significantly differences in the totaldevelopment duration between sexes. Tests on potential flight ability indicated that the males are ofmore powerful flight ability. So, total development duration and flight ablilty may lead to the changes insex ratioes. In the regions where first generation occurred, temperature and precipitation in March andApril had heavy influences on the occurrence of A. ypsilon, and it seemed that higher temperature andmore rains benefit the development of A. ypsilon. In the late June, the observation with entomologicalradar confirmed that most moths of A. ypsilon generally flew below500m, ant that the biggest densitywas at height of300~400m. The observation that moths of A. ypsilon can fly during the whole nightwere approved by both radar observation and timely samples of the catches from searchlight trap.Migrants of A. ypsilon could be windborne in that every peaks in trapped moths were alwaysaccompanied with favorable wind field and velocity, furthermore, the northern cyclones frontal weatherand heavy rainfall would cause massive landing.
     5. In2008~2012, total trapped moths of armyworm were5105,3981,11385and50584,respectively, among which a significantly difference was identified. For armyworm, the biggest catchsizes was in2012and more than7300moths were trapped at one night which had nerver occurredbefore since this monitoring station has functioned. In conclusion, favorable weather condition were themain factors leading to the outbreak of larvae of3rd generation. Taken the relationship between catchsizes and wind fields, most of trapped moths were thought to be immigrants from surrounding regions.Therefore, appropriate weather condition for migrants in July promoted the outbreak of the3rd-generation larvae in2012. In North China, the outbreaks were mainly the result of the jointreproduction of immigrants and the local adults under the favorable environment condition and littleconcerned with adult population in Northeast China. For northeast China, the source moths of3rd-generation larvae in Northeast China were mainly from the local, because the local2nd-generationmoths in Northeast China failed to immigrate into the North China and had to stay in the natal areas ormake short southern migration due to westerly flow and rainfall in late July. The southward 2nd-generation moths in Heilongjiang mainly landed at the junction of Heilongjiang and Jilin provincesas a result of wind shear associated with heavy precipitation, lead to the serious outbreak at possiblelanding places, together with the immigrants from the North China. During the return migration seasonof3rd-generation adults, considering the influence of the terrain and monsoon in Northeast and NorthChina, we determined that only on some occasion the wind field can carry moths into North China fromNortheast China. In addition, almost all fall crops were in harvest at that time. Combining theseconsiderations together, we forecasted there was little chance for4th-generation larvae causing heavydamage to crop, which was proved to be true by the actual occurrence of4th larvae.
引文
1.白雪峰,李国强,刘书义等.二点委夜蛾的生物学特性研究初报.中国植保导刊,2012,32(1):16,31~32.
    2.包云轩,程极益,程遐年等.中国盛夏褐飞虱北迁过程的动态数值模拟.昆虫学报,2000,43(2):176~183.
    3.边磊,孙晓玲,高宇等.昆虫光趋性机理及其应用进展.应用昆虫学报,2012,49(6):1677~1686.
    4.曹卫菊.草地螟不同地理种群的遗传多样性及迁飞轨迹分析[学位论文].扬州大学,2006.
    5.曹雅忠.小地老虎飞翔行为的观察.昆虫知识,1994,31(2):71~73.
    6.曹雅忠,李光博,胡毅.光周期对黏虫生殖与飞翔影响的初步研究.生态学报,1997,17(4):402~406.
    7.曹雅忠,黄葵,李光博.空气相对湿度对黏虫飞翔活动的影响.植物保护学报,1995,22(2):134~138.
    8.曹雅忠,李裕嫦,贾佩华.小地老虎迁出与迁人区成虫种群动态的分析.昆虫知识,1990,27(2):90~92.
    9.曹雅忠.小地老虎飞翔行为的观察.昆虫知识,1994,31(2):71~73.
    10.柴同海,梅成彬,翟晖等.二点委夜蛾化学防治方法研究.植物保护,2012,38(2):167~170.
    11.陈辉. RFLP和RAPD遗传标记技术及其在昆虫学中的应用.陕西林业科技,1999,1:49~52.
    12.陈惠祥,陈小波,刘立春.灯光诱杀在害虫无公害治理中的作用.昆虫知识,1999,36(01):58-59.
    13.陈瑞鹿.黏虫发生规律研究中几个有关问题的研讨.中国农业科学,1962,7:12~16.
    14.陈瑞鹿.迁飞害虫的雷达监测.病虫测报,1990,2:36~41.
    15.陈瑞鹿,暴祥致,王素云等.草地螟迁飞活动的雷达观测.植物保护学报,1992,19(2):171~174.
    16.陈若篪,丁锦华,谈涵秋等.迁飞昆虫学,北京:农业出版社,1989.
    17.陈若篪,吴家荣,祝树德等.褐飞虱的飞翔能力.昆虫学报,1984,27(2):121~127.
    18.陈小波,顾国华,韩娟等.几种害虫夜间上灯节律分析与应用研究.南京农专学报,2001,17(3):39~43.
    19.陈晓,陈继光,薛玉等.东北地区草地螟1999年大发生的虫源分析.昆虫学报,2004,47(5):599~606.
    20.陈晓,翟保平,宫瑞杰等.东北地区草地螟(Loxostege sticticalis)越冬代成虫虫源地轨迹分析.生态学报,2008,28(4):1521~1535.
    21.陈阳,姜玉英,刘家骧等.标记回收法确认我国北方地区草地螟的迁飞.昆虫学报,2012,55(2):176~182.
    22.陈永年,文礼章,潘桐.小地老虎测报和防治的体会.病虫测报,1990(3):62~65.
    23.程登发,封洪强,吴孔明.扫描昆虫雷达与昆虫迁飞监测.北京,科学出版社,2005.
    24.程登发,田喆,孙京瑞等.禾缢管蚜在不同温度条件下的飞行能力.昆虫学报,1997,40(增刊):180~185.
    25.程登发,田喆,李红梅等.温度和湿度对麦长管蚜飞行能力的影响.昆虫学报,2002,45(1):80~85.
    26.程极益.褐飞虱迁飞的雷达观测与轨迹研究.遥感学报,1994,9(1):51~56.
    27.程极益,包云轩,樊多琦等.褐飞虱迁飞轨迹研究.南京农业大学学报,1995,18(3):60~67.
    28.程极益,樊多琦,包云轩等.冀东稻飞虱暴发的轨迹分析.中国农业气象,1994,15(1):2~5.
    29.程文杰,郑霞林,王攀等.昆虫趋光的性别差异及其影响因素.应用生态学报,2011,22(12):3351~3357.
    30.程遐年.中国迁飞昆虫的研究进展.昆虫知识,1992,29(3):146~149.
    31.戴小枫,郭予元.1992年棉铃虫暴发危害的特点及成因分析.中国农学通报,1993,9(5):38~43.
    32.戴小枫,郭予元.棉铃虫大暴发的成因初析.植物保护,1993,19(4):35~38.
    33.戴小枫,叶志华,曹雅忠.浅析我国农作物病虫草鼠害成灾特点与减灾对策.应用生态学报,1999,10(1):119~122.
    34.单绪南,杨普云,赵中华等.2011年玉米田二点委夜蛾发生原因及防治对策.中国植保导刊,2011,31(8):20~22.
    35.党志红,李耀发,潘文亮等.二点委夜蛾发育起点温度及有效积温的研究.河北农业科学,2011,15(10):4~6.
    36.邓望喜,许克进,荣秀兰等.飞机网捕稻飞虱及白背飞虱的研究初报.昆虫知识,1980,17(3):97~102.
    37.封洪强.华北地区空中昆虫群落及昆虫季节性迁移的雷达观测[学位论文].北京:中国农业科学院,2003.
    38.封洪强.雷达昆虫学40年研究的回顾与展望.河南农业科学,2009,(9):121~126.
    39.封洪强.雷达在昆虫学研究中的应用.植物保护,2011,37(5):1~13.
    40.高月波,翟保平.飞行过程中棉铃虫对温度的主动选择.中国科技论文在线(http://www.paper.edu.cn).
    41.高月波,翟保平.昆虫定向机制研究进展.昆虫知识,2010,47(6):1055~1065.
    42.耿济国.迁飞昆虫标记释放方法的应用.昆虫知识,1982,(4):34~35.
    43.耿济国,张建新,张孝羲等.海捕回迁稻纵卷叶螟轨迹分析.南京农业大学学报,1990,13(3):48~53.
    44.龚和.我国昆虫分子生物学研究的回顾和展望.昆虫知识,2000,37(1):32~36.
    45.顾国华,葛红,陈小波等.几种夜出性昆虫夜间扑灯节律研究及应用.湖北农学院学报,2004,24(3):174~177.
    46.广东省农科院植保所.飞机捕捉迁飞稻飞虱试验初报.广东农业科学,1978,(5):32~35.
    47.广东省农科院植保所.利用靶机捕捉迁飞性昆虫初获成效.昆虫知识,1979,16(6):270~271.
    48.桂连友,黄秀琴,李传仁.昆虫谐波雷达的发展和利用.应用昆虫学报,2011,48(3):732~738.
    49.郭予元.我国近年植保研究工作的重大进展.植物保护,2004,30(2):7~13.
    50.郭予元.我国农作物病虫害生态调控实例分析.植物保护,2006,32(2):1~4.
    51.国伟,沈佐锐.微卫星DNA标记技术及其在昆虫学上的应用.生物技术,2004,14(2):60~61.
    52.韩兰芝,翟保平,戴率善等.江苏丰县甜菜夜蛾田间种群虫源性质分析.生态学报,2004,24(7):1388~1398.
    53.郝纪华,李绍文,林昌善..不同地区黏虫群体的同工酶变异.昆虫学报,1992,35(1):33~38.
    54.贺虹,袁锋.现代生物技术在昆虫生态学中的应用.西北林学院学报,2003,18(2):72~76.
    55.胡高,包云轩,王建强等.褐飞虱的降落机制.生态学报,2007,27(12):5068~5075.
    56.胡继超,程极益,储长树等.褐飞虱在我国东部地区秋季回迁的三维轨迹研究.中国农业气象,1997,18(5):1~18.
    57.胡梅操,敖秋春.南昌郊区主要夜出性昆虫扑灯规律的探讨.江西林业科技,1984,(1):24~32.
    58.黄秀琴,李传仁,王福莲等.昆虫谐波雷达的电子标签研究进展.环境昆虫学报,2012,34(4):504~514.
    59.贾佩华.小地老虎远距离迁飞标记回收结果简报.植物保护,1985,(2):20.
    60.江广恒,谈涵秋,沈婉贞等.褐飞虱远距离向北迁飞的气象条件.昆虫学报,1981,24(3):251~261.
    61.江广恒,谈涵秋,沈婉贞等.褐飞虱远距离向南迁飞的气象条件.昆虫学报,1982,25(2):147~155.
    62.江幸福,罗礼智.昆虫迁飞的调控基础及展望.生态学报,2008,28(6):2834~2842.
    63.江幸福,罗礼智,姜玉英等.二点委夜蛾发生为害特点及暴发原因初探.植物保护,2011a,37(6):130~133.
    64.江幸福,姚瑞,林珠凤等.二点委夜蛾形态特征及生物学特性.植物保护,2011,37(6):134~137.
    65.姜京宇,席建英.河北省2005年农作物病虫新动态概述.中国植保导刊,2006,26(7):45~47.
    66.姜京宇,李秀芹,刘莉等.二点委夜蛾的监测技术初报.植物保护,2011,37(6):141~143.
    67.姜玉英,龚一飞,姜京宇.二点委夜蛾测报技术初探.中国植保导刊,2011,31(8):17~19.
    68.蒋春先,齐会会,孙明阳等.2010年广西兴安地区稻纵卷叶螟发生动态及迁飞轨迹分析.生态学报,2011,31(21):6495~6504.
    69.蒋春先,齐会会,孙明阳等.稻纵卷叶螟种群动态变化的探照灯诱虫器监测.植物保护学报,2011,38(03):193~201.
    70.蒋月丽,武予清,段云等.吸虫塔诱捕的昆虫种类及对麦蚜的监测效果研究.应用昆虫学报,2011,48(6):1708~1714.
    71.金翠霞.黏虫发生数量与降雨量及相对湿度的关系.昆虫学报,1979,22(4):404~412.
    72.李光博.我国黏虫研究概况及主要进展.植物保护,1993,19(4):2~4.
    73.李光博,王恆祥,胡文绣.黏虫季节性迁飞为害假說及标記回收試驗.植物保护学报,1964,3(2):101~110.
    74.李光博,王鸿,赵圣菊等.麦田小气候对第一代黏虫发生数量影响的研究.植物保护学报,1963,2(1):57~62.
    75.李立涛,王新玉,杨利华等.二点委夜蛾成虫夜间活动规律及对不同杀虫灯管的趋性反应.中国植保导刊,2012,32(5):21~22.
    76.李世良,张凤海.梁家荣等.遥控航模机捕捉空中昆虫.植物保护,1984,(2):37~39.
    77.李世良,张凤海.梁家荣等.空中昆虫的航捕观察.昆虫知识,1986,(02)53~56.
    78.李玉泉,张兵.八通道昆虫飞速、飞行里程微机检测系统.南京农业大学学报,1987,(3):127~133.
    79.廖顺源.二化螟雌蛾生殖系统和卵巢发育观察.昆虫知识,1988,25(6):363~365.
    80.林昌善,孙金如,陈瑞鹿等.黏虫发生规律的研究—Ⅰ.东北春季黏虫发生与风的关系.昆虫学报,1963,12(3):243~261.
    81.林明智,杨克明.我国北方气旋的天气气候分析.气象,1992,18(5):20~25.
    82.刘浩光,刘振杰,王乾超等.东海网捕褐稻虱研究初.昆虫知识,1980,(5):193~196.
    83.刘浩光,刘振杰,祝为华.我国海上网捕褐稻虱的结果.昆虫学报,1983,26(1):109~113.
    84.刘立春,朱月英.四种蛾类灯下行为特点初步研究.昆虫知识,1997,34(2):96~99.
    85.刘中芳.草蛉的迁飞生物学研究[学位论文],北京:中国农业科学院,2011.
    86.芦芳,齐国君,秦冉冉等.褐飞虱卵巢发育的形态变化过程及分级标准.应用昆虫学报,2011,48(5):1394~1400.
    87.罗礼智.昆虫迁飞行为的发生与调控.科学,1998,50(3):32~35,32.
    88.罗礼智,黄绍哲,江幸福等.我国2008年草地螟大发生特征及成因分析.植物保护,2009,35(1):27~33.
    89.罗礼智,屈西锋.我国草地螟2004年危害特点及2005年一代危害趋势分析.植物保护,2005,31(3):69~71.
    90.马继芳,李立涛,王玉强等.二点委夜蛾形态特征的初步观察.应用昆虫学报,2011a,48(6):1869~1873.
    91.马继芳,王玉强,李立涛等.二点委夜蛾过冷却点测定及越冬虫态分析.河北农业科学,2011b,15(9):1~3.
    92.苗进,武予清,郁振兴等.麦红吸浆虫随气流远距离扩散的轨迹分析.昆虫学报,2011,54(4):432~436.
    93.潘蕾,翟保平.2002年我国华北三代黏虫大发生的虫源分析.生态学报,2009,29(11):6248~6256.
    94.齐国君,芦芳,胡高等.2007年广西早稻田褐飞虱发生动态及虫源分析.生态学报,2010,30(2):0462~0472.
    95.齐国君,芦芳,胡高等.卵巢解剖在我国迁飞昆虫研究中的应用.中国植保导刊,2011,31(7):18~22.
    96.齐会会,张云慧,程登发等.褐飞虱2009年秋季回迁的雷达监测及轨迹分析.昆虫学报,2010,53(11):1256~1264.
    97.齐会会,张云慧,孙京瑞等.迁飞性昆虫的研究方法.中国植物保护学会2009年学术年会—粮食安全与植保科技创新,2009:400~406.
    98.齐会会,张云慧,蒋春先等.广西东北部稻区白背飞虱早期迁入虫源分析.中国农业科学,2011,44(16):3333~3342.
    99.乔海娟,郑哲民,芦荣胜.夜蛾科昆虫同工酶研究概况.昆虫知识,2000,37(6):374~377.
    100.全国小地老虎科研协作组.小地老虎越冬与迁飞规律的研究.植物保护学报,1990,17(4):337~342
    101.上海市川沙县植保植检站.雌虫生殖系统的水盘解剖法.昆虫知识,1977,06:185.
    102.沈慧梅,陈晓,胡高等.2008年广西北部湾稻区稻飞虱初迁入过程分析.应用昆虫学报,2011,48(5):1268~1277.
    103.沈慧梅,孔丽萍,章霜红等.福建省白背飞虱前期迁入虫源分析.昆虫学报,2011,54(6):701~713.
    104.石洁,王振营,姜玉英等.二点委夜蛾越冬场所调查初报.植物保护,2011,37(6):138~140.
    105.孙立德.二代黏虫发生与气象条件的关系.昆虫知识,1986,23(3):107~110.
    106.孙雅杰,高月波,陈瑞鹿.吉林省春季黏虫发生预测模式研究.吉林农业科学,2003,28(1):23~26.
    107.万年峰,蒋杰贤,季香云等.设施菜田频振式杀虫灯诱杀效果及害虫扑灯节律初报.上海农业学报,2009,24(4):65~68.
    108.王洪平,胡振东.昆虫吊飞数据采集与处理新技术的研究.沈阳农业大学学报,1999,30(3):281~284.
    109.王荫长.小地老虎与黏虫发蛾期同步现象的探讨.植物保护学报,1980,7(4):247~251
    110.王振营,石洁,董金皋.2011年黄淮海夏玉米区二点委夜蛾暴发危害的原因与防治对策.玉米科学,2012,20(1):132~134.
    111.吴家荣.小型昆虫悬吊飞行装置的研制和应用.南京农业大学学报,1983,(1):112~115.
    112.吴孔明,翟保平,封洪强等.华北北部地区二代棉铃虫成虫迁飞行为的雷达观测.植物保护学报,2006,33(2):163~167.
    113.吴孔明,郭予元.棉铃虫的飞翔活动.生态学报,1996,16(6):612~617.
    114.吴孔明,徐广.棉铃虫一代成虫在渤海海面迁飞的考察.植物保护学报,1998,25(4):335~340.
    115.仵均祥主编.农业昆虫学[M].北京中国农业出版社:5~7,2002.
    116.武俊杰,蒋春先,张云慧等.2011年广西兴安地区白背飞虱种群发生动态及迁飞轨迹分析.植物保护,2012.38(5):51~57.
    117.武向文.我国东北地区昆虫迁飞场的Pied piper效应[学位论文]南京农业大学,2001.
    118.武予清,段云,蒋月丽.害虫的灯光防治研究与应用进展.河南农业科学,2009,(9):127~130.
    119.夏曾铣,蔡晓明,邓小山.黏虫发生规律的研究——Ⅱ.中国渤海和黄海海面黏虫迁飞的观察.昆虫学报,1963,12(5-6):552~564.
    120.向玉勇,杨康林,廖启荣等.温度对小地老虎发育和繁殖的影响.安徽农业大学学报,2009,36(3):365~368
    121.肖悦岩.介绍一种计算有效积温的方法——根据日最高最低气温.植物保护,1983,2(5):43~45.
    122.徐广,郭予元,吴孔明.棉铃虫成虫携带花粉的分析.中国农业科学,1999,32(6):63-68.
    123.徐广,郭予元,吴孔明.棉铃虫地理种群的等位酶变异.昆虫学报,2000,43(1):63~69.
    124.杨帆,郑大兵,赵运等.白背飞虱的迁飞生物学:安徽潜山个例分析.应用昆虫学报,2011,48(5):1231~1241.
    125.杨建全,陈乾锦,陈家骅,张玉珍.不同温度对小地老虎实验种群的影响.福建农业大学学报2000,29(3):337~341.
    126.杨秀丽,陈林,程登发.毫米波扫描昆虫雷达空中昆虫监测的初步应用.植物保护,2008,34(2):31~36.
    127.曾娟,姜玉英,刘杰.2012年黏虫暴发特点分析与监测预警建议.植物保护,2012,39(2):117~121.
    128.翟保平.昆虫吊飞试验的微机记录系统介绍.昆虫知识,1987,24(4):242~243.
    129.翟保平.也谈褐飞虱的再迁飞问题.中国植保导刊,1992,12(3):36~39.
    130.翟保平.追踪天使——雷达昆虫学30年.昆虫学报,1999,42(3):315~326.
    131.翟保平.昆虫雷达:从研究型到实用型.遥感学报,2001,5(3):231~240.
    132.翟保平.昆虫雷达让我们看到了什么?昆虫知识,2005,42(2):217~226.
    133.翟保平,程家安.2006年水稻两迁害虫研讨会纪要.昆虫知识,2006,43(4):585~588.
    134.翟保平,张孝羲.昆虫迁飞行为的参数化Ⅱ.模式与检验.生态学报,1997,17(2):190~199.
    135.翟保平,张孝羲.迁飞过程中昆虫的行为.应用生态学报,1993,4(4):440~446.
    136.翟保平,张孝羲,程遐年.."昆虫迁飞行为的参数化Ⅰ.行为分析."生态学报1997,17(1):8~17.
    137.张广学,郑国,李学军等.从保护生物多样性角度谈频振式杀虫灯的应用.昆虫知识,2004,41(6):532~535.
    138.张丽,张云慧,曾娟等.2010年牧区2代草地螟成虫迁飞的虫源分析.生态学报,2012,32(8):2371~2380.
    139.张尚印.春季我国北方气旋的活动与降雨的关系.大气科学,1989,13(2):247~251.
    140.张孝羲,陆自强,耿济国.稻纵卷叶螟雌蛾解剖在测报上的应用.昆虫知识,1979,(3):97~99.
    141.张孝羲,周立阳,程极益.江淮稻区稻纵卷叶螟轨迹分析参数的推算.南京农业大学学报,1994,17(1):32~38.
    142.张云慧,乔红波,程登发等.垂直监测昆虫雷达空中昆虫监测的初步应用.植物保护,2007,33(3):23~26.
    143.张云慧,陈林,程登发等.旋幽夜蛾迁飞的雷达观测和虫源分析.昆虫学报,2007,50(5):494~500.
    144.张云慧,陈林,程登发等.步甲夜间迁飞的研究.中国农业科学,2008,41(1):108~115.
    145.张云慧,陈林,程登发等.草地螟2007年越冬代成虫迁飞行为研究与虫源分析.昆虫学报,2008,51(7):720~727.
    146.张云慧.东北与华北地区迁飞昆虫的垂直昆虫雷达监测与虫源分析[学位论文].北京:中国农科院研究生院,
    2008.
    147.张云慧,杨建国,金晓华等.探照灯诱虫带对迁飞草地螟的空中阻截作用.植物保护,2009,35(6):104~107.
    148.张云慧,程登发,姜玉英等.北京地区越冬代旋幽夜蛾迁飞的虫源分析.中国农业科学,2010,43(9):1815~1822.
    149.张云慧,张智,姜玉英等.2012年三代黏虫大发生原因初步分析.植物保护,2012,38(5):1~8.
    150.张志涛.昆虫吊飞装置.植物保护,1982,8(6):305~332.
    151.张智,张云慧,姜玉英等.垂直监测昆虫雷达研究进展.昆虫学报,2012,55(7):849~859.
    152.郑大兵,杨帆,赵运等.白背飞虱回迁种群的形成:2009年安徽潜山的个例分析.应用昆虫学报,2011,48(5):1242~1252.
    153.周立阳,张孝羲,程极益.江淮稻区稻纵卷叶螟的轨迹分析.南京农业大学学报,1995,18(2):53~58.
    154.朱彦彬,马继芳,董立等.基于线粒体COⅠ基因序列的中国二点委夜蛾遗传多态性分析.昆虫学报,2012,55(4):457~465.
    155. Atlas D., Harris F.I., Richter J.H. Measurement of point target speeds with incoherent non-tracking radar: insectspeeds in atmospheric waves. Journal of Geophysical Research,1970a,75(36):7588~7595.
    156. Atlas D., Metcalf J., Richter J.H., et al.. The Birth of "CAT" and Microscale Turbulence. Journal of AtmosphericSciences,1970b,27:903~913.
    157. Bachmann S.&Zrnic D. Spectral density of polarimetric variables separating biological scatterers in the VADdisplay." Journal of Atmospheric and Oceanic Technology,2007,24(7):1186~1198.
    158. Battaglia A., Sturniolo O., Prodi F. Analysis of polarization radar returns from ice clouds. Atmospheric research,2001,59:231~250.
    159. Beerwinkle K.R., Lopez J.D, Schleider P.G., et al.."Annual patterns of aerial insect densities at altitudes from500to2400meters in East-Central Texas indicated by continuously-operating vertically-oriented radar. Southwesternentomologist,1995, Supplement (18):63~79.
    160. Beerwinkle K.R, Witz J.A, Schleider P.G., et al. An automated, vertical looking, X-band radar system forcontinuously monitoring aerial insect activity. Transactions of the ASAE,1993,36(3):965~970.
    161. Boiteau G.&Colpitts B.. Electronic tags for the tracking of insects in flight: effect of weight on flight performanceof adult Colorado potato beetles. Entomologia experimentalis et applicata,2001,100(2):187~193.
    162. Boiteau G.&Colpitts B. The potential of portable harmonic radar technology for the tracking of beneficial insects.International Journal of Pest Management,2004,50(3):233~242.
    163. Brown E.&Swaine G. New evidence on the migration of moths of the African armyworm. Bulletin ofentomological research,1966,56(04):671~684.
    164. Brydegaard M., Guan Z., Wellenruther M., et al. Insect monitoring with fluorescence lidar techniques: feasibilitystudy. Applied optics,2009,48(30):5668~5677.
    165. Chapman J.W., Reynolds D.R., Smith A.D., et al. High-altitude migration of the diamondback moth Plutellaxylostella to the UK: a study using radar, aerial netting, and ground trapping. Ecological Entomology,2002,27(6):641~650.
    166. Chapman J. W., Reynolds D.R., Smith A.D. Vertical-looking radar: a new tool for monitoring high-altitude insectmigration. Bioscience,2003,53(5):503~511.
    167. Chapman J.W., Reynolds D.R., Brooks A.D., et al. Seasonal variation in the migration strategies of the greenlacewing Chrysoperla carnea species complex. Ecological Entomology,2006,31(4):378~388.
    168. Chapman J.W., Reynolds D.R., Hill J.K., et al. A seasonal switch in compass orientation in a high-flying migrantmoth. Current Biology,2008,18(19): R908~R909.
    169. Chapman J.W., Bell J.R., Burgin L.E., et al. Seasonal migration to high latitudes results in major reproductivebenefits in an insect. Proceedings of the National Academy of Sciences,2012,109(37):14924~14929.
    170. Chapman J.W., Nesbit R.L., Burgin L.E., et al. Flight orientation behaviors promote optimal migration trajectoriesin high-flying insects. Science,2010,327(5966):682~685.
    171. Chapman J.W., Drake V. A., Reynolds R.D. Recent insights from radar studies of insect flight. Annual Review ofEntomology,2011,56:337~356.
    172. Chapman J.W., Smith A.D., Woiwod I.P., et al. Development of vertical-looking radar technology for monitoringinsect migration. Computers and electronics in agriculture,2002,35(2-3):95~110.
    173. Chapman J.W., Reynolds D.R., Smith A.D., et al. An aerial netting study of insects migrating at high altitude overEngland. Bulletin of Entomological Research,2004,94(2):123~136.
    174. Chapman R.F. Entomology in the twentieth century. Annual Review of Entomology,2000,45(1):261~285.
    175. Chen R.L., Bao X.Z., Drake V.A., et al. Radar observations of the spring migration into northeastern China of theoriental armyworm moth, Mythimna separata, and other insects. Ecological Entomology,1989,14(2):149~162.
    176. Cheng D.F, Wu KM., Tian Z et al. Acquisition and analysis of migration data from the digitised display of ascanning entomological radar." Computers and electronics in agriculture,2002,35(2-3):63-75.
    177. Colpitts B.G.&Boiteau G. Harmonic radar transceiver design: miniature tags for insect tracking. IEEETransactions on Antennas and Propagation,2004,52(11):2825~2832.
    178. Contreras R.F.&Frasier S.J. High-Resolution Observations of Insects in the Atmospheric Boundary Layer.Journalof Atmospheric and Oceanic Technology,2008,25(12):2176~2187.
    179. Crawford A. Radar reflections in the lower atmosphere. Proceedings of Institute of Radio Engineers,1949,37:404~405.
    180. Dent, D. Insect pest management, CABI,2000.
    181. Dingle H.&Drake V. A. What is migration? Bioscience,2007,57(2):113~121.
    182. Domino R. P., Showers W.B., Taylor S.E., et al. Spring weather pattern associated with suspected black cutwormmoth (Lepidoptera: Noctuidae) introduction to Iowa. Environmental Entomology,1983,12(6):1863~1872.
    183. Drake V.A. Target density estimation in radar biology. Journal of Theoretical Biology,1981,90(4):545~571.
    184. Drake V.A. Collective orientation by nocturnally migrating Australian plague locusts, Chortoicetes terminifera(Walker)(Orthoptera Acrididae): a radar study. Bulletin of Entomological Research,1983,73:679~692.
    185. Drake V.A. Insect-monitoring radar: a new source of information for migration research and operational pestforecasting. Pest Control and Sustainable Agriculture,1993,452~455.
    186. Drake V.A.&A.G. Gatehouse. Insect migration: tracking resources through space and time. Cambridge,Cambridge University press,1995.
    187. Drake V.A., Gregg P.C.,Harman I.T., et al. Characterizing insect migration systems in inland Australia with noveland traditional methodologies." in I.P Woiwod,D.R. Reynolds,&C.D. Thomas(eds) insect movement: Mechanismsand consequences. Proceedings of the royal entomological society's20th Symposium. CABI Publishing:Wallingford, UK,2001. pp:207~233.
    188. Drake V.A&Farrow R.A. The nocturnal migration of the Australian plague locust, Chortoicetes terminifera(Walker)(Orthoptera: Acrididae): quantitative radar observations of a series of northward flights. Bulletin ofentomological research,1983,73(04):567~585.
    189. Drake V.A&Farrow R.A. A radar and aerial trapping study of an early spring migration of moths (Lepidoptera) ininland New South Wales. Australian journal of ecology,1985,10(3):223~223.
    190. Drake V.A&Farrow R.A. The influence of atmospheric structure and motions on insect migration. Annual Reviewof Entomology,1988,33(1):183~210.
    191. Drake V.A., Wang H.K., Harman I.T. Insect monitoring radar: remote and network operation. Computers andelectronics in agriculture,2002b.35(2-3):77~94.
    192. Drake V.A Harman I.T., Wang H.K. Insect monitoring radar: stationary-beam operating mode. Computers andelectronics in agriculture,2002a,35(2-3):111~137.
    193. Draxler R.&G. Hess (2004). Description of the HYSPLIT4Modeling System (NOAA Technical MemorandumERL ARL-224). NOAA Air Resources Laboratory, Silver Spring, MD.
    194. Farrow R.A&Dowse J.E. Method of using kites to carry tow nets in the upper air for sampling migrating insectsand its application to radar entomology. Bulletin of Entomological Research,1984,74(1):87~95.
    195. Feng H.Q., Wu K.M., Cheng D.F., et al. Radar observations of the autumn migration of the beet armywormSpodoptera exigua (Lepidoptera: Noctuidae) and other moths in northern China. Bulletin of entomological research,2003,93(02):115~124.
    196. Feng H.Q., Wu K.M., Cheng D.F., et al. Northward migration of Helicoverpa armigera (Lepidoptera: Noctuidae)and other moths in early summer observed with radar in northern China. Journal of Economic Entomology,2004a,97(6):1874~1883.
    197. Feng H.Q., Wu K.M., Cheng D.F., et al. High-altitude windborne transport of Helicoverpa armigera (Lepidoptera:Noctuidae) in mid-summer in northern China. Journal of Insect Behavior,2005,18(3):335~349.
    198. Feng H.Q., Wu K.M., Ni Y.X., et al. Nocturnal migration of dragonflies over the Bohai Sea in northern China.Ecological Entomology,2006,31(5):511~520.
    199. Feng H.Q., Zhao X.C., Wu X.F., et al. Autumn Migration of Mythimna separata (Lepidoptera: Noctuidae) over theBohai Sea in Northern China. Environmental Entomology,2008,37(3):774~781.
    200. Feng H.Q., Zhang Y.H., Wu K.M., et al. Nocturnal windborne migration of ground beetles, particularlyPseudoophonus griseus (Coleoptera: Carabidae), in China. Agricultural and Forest Entomology,2007,9(2):103~113.
    201. Feng H.Q., Wu K.M., Cheng D.F., et al. Spring migration and summer dispersal of Loxostege sticticalis(Lepidoptera: Pyralidae) and other insects observed with radar in northern China. Environmental Entomology,2004b,33(5):1253~1265.
    202. Feng H.Q., Wu. X.F., Wu B. et al. Seasonal migration of Helicoverpa armigera (lepidoptera: Noctuidae) over thebohai sea. Journal of Economic Entomology,2009,102(1):95~104.
    203. Gordon W.E. A theory on radar reflections from the lower atmosphere. Proceedings of the I.R.E,1949,37(1):41~43.
    204. Hagler J.R.&Jackson C.G. Methods for marking insects: current techniques and future prospects. Annual Reviewof Entomology,2001,46(1):511~543.
    205. Holland R.A., Wikelski M., Wilcove D.S. How and why do insects migrate? Science,2006,313(5788):794~796.
    206. Houri A.,&Doughan D. Behaviour Patterns of the Pine Processionary Moth (Thaumetopoea wilkinsoni Tams;Lepidoptera: Thaumetopoeidae). American Journal of Agricultural and Biological Sciences,2006,1(1):01~05.
    207. Kiss M., NOWINSZKY L.,Puskas J. Examination of female proportion of light trapped turnip moth (Scotiasegetum Schiff.). Acta phytopathologica et entomologica hungarica,2002,37(1-3):251~256.
    208. Lang T.J., Rutledge S.A., Stith J.L. Observations of quasi-symmetric echo patterns in clear air with theCSU-CHILL polarimetric radar." Journal of Atmospheric and Oceanic Technology,2004,21(8):1182-1189.
    209. Leskinen M., Markkula I., Koistinen J., et al. Pest insect immigration warning by an atmospheric dispersion model,weather radars and traps. Journal of applied entomology,2011,135(1-2):55~67.
    210. Luke E.P., Kollias P., Johnson K.L., et al.. A Technique for the Automatic Detection of Insect Clutter in CloudRadar Returns. Journal of Atmospheric and Oceanic Technology,2008,25(9):1498~1513.
    211. Magor J. Forecasting migrant insect pests In Drake VA&Gatehouse AG (eds) Insect migration: tracking resourcesthrough space and time, Cambridge University Press, Cambridge, UK,1995:399~426.
    212. Mascanzoni D.&Wallin H. The harmonic radar: a new method of tracing insects in the field. EcologicalEntomology,1986,11(4):387~390.
    213. Mei L., Guan Z.G., Zhou H.J., et al. Agricultural pest monitoring using fluorescence lidar techniques.AppliedPhysics B: Lasers and Optics,2012,(106):1~8.
    214. Nieminen M., Leskinen M., Helenius J. Doppler radar detection of exceptional mass-migration of aphids intoFinland. International Journal of Biometeorology,2000,44(4):172~181.
    215. Nowinszky L.&Puskás J. Possible Reasons for Reduced Light Trap Catches at a Full Moon: Shorter CollectingDistance or Reduced Flight Activity? Advances in Bioresearch,2010,1(1):205~220.
    216. Nowinszky L., Kiss O., Szentkiralyi F., et al. Influence of illumination and polarized moonlight on light-trap catchof caddisflies (Trichoptera). Research Journal of Biology,2012,2(3):79-90.
    217. Rainey R.C. Observation of Desert Locust Swarms by Radar. Nature,1955,175(4445):77~77.
    218. Rennie S.J., Dance S.L., Illingworth A.J., et al.3D-Var Assimilation of Insect-Derived Doppler Radar RadialWinds in Convective Cases Using a High-Resolution Model. Monthly weather review,2010,139(4):1148~1163.
    219. Rennie S., Illingworth A., Dance S.L., et al. The accuracy of Doppler radar wind retrievals using insects as targets.Meteorological Applications,2010,17(4):419~432.
    220. Resurreccion A.N., Showers W.B., Rowley W.A., et al. Microcomputer-interfaced flight mill system for largemoths such as black cutworm (Lepidoptera: Noctuidae). Annals of the Entomological Society of America,1988,81(2):286~291.
    221. Reynolds D.R., Chapman J.W., Edwards A.S. et al. Radar studies of the vertical distribution of insects migratingover southern Britain: the influence of temperature inversions on nocturnal layer concentrations.Bulletin ofentomological research,2005,5(3):259~274.
    222. Reynolds D.R, Mukhopadhyay S., Riley J.R., et al.1999. Seasonal variation in the windborne movement of insectpests over northeast India. International Journal of Pest Management,1999,45(3):195~205.
    223. Riley J.R. Collective orientation in night-flying insects. Nature,1975,253:113~114.
    224. Riley J. R. Remote sensing in entomology. Annual Review of Entomology,1989,34(1):247~271.
    225. Riley J.R. A millimetric radar to study the flight of small insects. Electronics&communication engineering journal,19924(1):43~48.
    226. Riley J.R&Reynolds D.R. Radar-based studies of the migratory flight of grasshoppers in the middle Niger area ofMali. Proceedings of the Royal Society of London. Series B. Biological Sciences,1979,204(1154):67~82.
    227. Riley J.R&Reynolds D.R. Vertical-looking Radar as means to improve forecasting and control of desert locusts.New strategies in locust control,1997,47~52.
    228. Riley J.R., Reynolds D.R., Mukhopadhyay., et al. Long-distance migration of aphids and other small insects innortheast India. European Journal of Entomology1995,92(4):639~653.
    229. Riley J.R, Smith A.D., Reynolds D.R., et al.. Tracking bees with harmonic radar.Nature,1996,379(6560):29~30.
    230. Riley J.R., Cheng X.N., Zhang X.X., et al.. The long distance migration of Nilaparvata lugens (Delphacidae) inChina: radar observations of mass return flight in the autumn. Ecological Entomology,1991,16(4):471~489.
    231. Riley J.R, Reynolds D.R., Edwards A.S., et al. Observations of the autumn migration of the rice leaf rollerCnaphalocrocis medinalis (Lepidoptera: Pyralidae) and other moths in eastern China. Bulletin of entomologicalresearch,1995,85(3):397~414.
    232. Rowley W.A., Graham C.L., Williams R.E. A flight mill system for the laboratory study of mosquito flight. Annalsof the Entomological Society of America,1968,61(6):1507~1514.
    233. Schaefer G. Radar observations of insect flight. In: Rainey R.C.(eds.) Insect Flight (Symposia of the RoyalEntomological Society of London. No.7, July1976).Blackwell,Oxford.157~197.
    234. Smith A.D&Riley J.R. Signal processing in a novel radar system for monitoring insect migration. Computers andelectronics in agriculture,1996,15(4):267~278.
    235. Smith A.D., Reynolds D.R., Riley J.R. The use of vertical-looking radar to continuously monitor the insect faunaflying at altitude over southern England. Bulletin of entomological research,2000,90(03):265~277.
    236. Smith A.D, Riley J.R., Gregory R.D.. A method for routine monitoring of the aerial migration of insects by using avertical-looking radar. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences,1993,340(1294):393~404.
    237. Southwood T. Migration of terrestrial arthropods in relation to habitat. Biological reviews,1962,37(2):171~211.
    238. Stefanescu C.I., Alarcon M., Avila A. Migration of the painted lady butterfly, Vanessa cardui, to north-easternSpain is aided by African wind currents." Journal of animal ecology,2007,76(5):888~898.
    239. Steinbauer M.J. Using ultra-violet light traps to monitor autumn gum moth, Mnesampela privata (Lepidoptera:Geometridae), in south-eastern Australia. Australian Forestry,2003.66(4):279~286.
    240. Steinbauer M.J., Haslem A., Edwards E.D. Using meteorological and lunar information to explain catch variabilityof Orthoptera and Lepidoptera from250W Farrow light traps. Insect Conservation and Diversity,2011,5(5):367~380.
    241. Taylor L.R., French R.A., Macaulay.E.D.M. Low-altitude migration and diurnal flight periodicity; the importanceof Plusia gamma L.(Lepidoptera: Plusiidae). Journal of animal ecology,1973,42(3):751~760.
    242. Taylor R.A.J., Nault L.R., Styer W.E., et al. Computer-monitored,16-channel flight mill for recording the flight ofleafhoppers (Homoptera: Auchenorrhyncha). Annals of the Entomological Society of America,1992,85(5):627~632.
    243. Wada T., Seino H., Ogawa Y., et al. Evidence of autumn overseas migration in the rice planthoppers, Nilaparvatalugens and Sogatella furcifera: analysis of light trap catches and associated weather patterns. EcologicalEntomology,1987,12(3):321~330.
    244. Williams C. The influence of moonlight on the activity of certain nocturnal insects, particularly of the familyNoctuidae, as indicated by a light trap. Philosophical Transactions of the Royal Society of London. Series B,Biological Sciences1936,226(537):357~389.
    245. Williams C. An analysis of four years captures of insects in a light trap. Part I. General survey; sex proportion;phenology; and time of flight. Transactions of the Royal Entomological Society of London,1939,89(6):79~131.
    246. Williams C. Insect migration. Annual Review of Entomology,1957,2(1):163~180.
    247. Wilson J.W., Weckwerth T.M., Vivekanandan J., et al. Boundary Layer Clear-Air Radar Echoes: Origin of Echoesand Accuracy of Derived Winds. Journal of Atmospheric and Oceanic Technology,1994,11(5):1184~1206.
    248. Wolf R.A., Pedigo L.P., Shaw R.H., et al. MigrationTransport of the Green Cloverworm, Plathypena scabra(F.)(Lepidoptera: Noctuidae), into Iowa as Determined by Synoptic-scale Weather Patterns. EnvironmentalEntomology1987,16(5):1169~1174.
    249. Wood C.R., O'Connor E.J., Hurley R.A., et al. Cloud‐radar observations of insects in the UK convective boundarylayer. Meteorological Applications,2009,16(4):491~500.
    250. Wood C.R., Chapman J.W., Reynolds J.F., et al. The influence of the atmospheric boundary layer on nocturnallayers of noctuids and other moths migrating over southern Britain. International Journal of Biometeorology,2006,50(4):193~204.
    251. Wood C.R., Clark S.J., Barlow J.F., et al. Layers of nocturnal insect migrants at high-altitude: the influence ofatmospheric conditions on their formation. Agricultural and Forest Entomology,2010,12(1):113~121.
    252. Wu H., Wu K.M., Wang D., et al. Flight potential of pink bollworm, Pectinophora gossypiella Saunders(Lepidoptera: Gelechiidae). Environmental Entomology,2006,35(4):887~893.
    253. Yu H., Zhang Y., Wu K.M., et al. Flight potential of Microplitis mediator, a parasitoid of various lepidopteran pests.BioControl,2009,54(2):183~193.
    254. Zhai B.P.,&Zhang X.X. Numerical simulation of the pathways of migrating insects. Insect Science,1999,6(1):83~91.
    255. Zhang Y.H., Chen L., Cheng D.F. et al. Nocturnal Migration of Coleoptera: Carabidae in North China. AgriculturalSciences in China,2008,7(8):977~986.
    256. Zrnic D.S.&Ryzhkov A.V. Observations of insects and birds with a polarimetric radar. IEEE Transactions onGeoscience and Remote Sensing,1998,36(2):661~668.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700