用户名: 密码: 验证码:
农田土壤空气中CO_2变异特征及移动的动力学机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
温室效应气体的产生与释放导致气候变暖,己是当前世界范围内最受人们关注的问题之一。其中农田土壤中碳循环是自然界碳循环系统研究的重要组成部分,受到学术界关注。此外,土壤呼吸释放CO2不只是大气温室气体中CO2的重要来源,也是维持近地层空气中碳含量平衡,保证农作物光合作用正常进行的基本条件。土壤内部空气中CO2是反映土壤生物活性和土壤肥力的重要指标。为此科学家们在不同生态系统中碳释放问题研究作了卓有成效的研究工作,取得了丰硕的研究成果,尽管如此,仍然遗留了许多亟待研究和解决的重要科学问题。目前研究各生态系统中碳释放量的工作较多,究其土壤CO2来源与分析剖面上CO2浓度梯度变异研究相对较少,尤其对旱地农田生态系统中土壤剖面上CO2基本变化规律研究工作显得很欠缺,基于这样一个背景,本论文采用碱液吸收法(饱和Ba(OH)2),以休闲土壤为对照,对黄土高原陕西关中地区冬小麦—玉米轮作农田土壤剖面C02通量、土壤—大气界面及近地层大气中CO2浓度变化过程、土壤剖面上空气压力梯度的动态变化等情况进行了连续的定位观测与研究,企图为揭示农田土壤CO2动态变化和释放规律,分析农作物对于碳循环的作用与贡献提供重要科学依据,也为改善大气环境质量和促使农业生产可持续发展提供理论依据。通过分析与研究得到如下结论:
     1.2007年10月到2008年10月对休闲田和作物田块两种处理土壤剖面上CO2释放通量进行定位监测,结果表明,塿土0-150cm剖面空气中CO2浓度具有明显的季节性变化和剖面层次变化。土壤CO2通量的季节变化与作物生长发育规律和外界环境因素的变化具有密切的联系,剖面上CO2通量均出现了不同程度的峰谷变化;在0-150cm剖面范围内各层土壤CO2浓度呈现出表层低-中部高-底层低的趋势,其中耕作区土壤剖面CO2通量大小、动态变化剧烈程度表现得更为明显,充分体现了影响土壤内部空气质量的因素是作物根系。
     进一步分析影响土壤空气中CO2含量的环境因素发现,土壤含量和土壤温度均具有明显的影响。土壤CO2浓度与温度的关系可以用指数函数Y=aebx较好的拟合,与土壤含量的关系可以用二次多项式Y=ax2+bx+c较好的拟合。土壤CO2浓度对温度反映要比对土壤分含量反映敏感,耕作区的相关性明显要高于休闲区,证明农田作物起到了向土壤深层传递地表环境信息的作用。
     2.农田土壤剖面CO2累积释放量有着明显的季节变化规律,在农田剖面上CO2累积释放量均在在夏季最高,在空间上又以50cm处为最高,0cm处最低;春秋两季基本相当,低于夏季;而冬季CO2累积释放量最低,而此时150cm剖面深度处最高,0cm处最低。;夏季塿土剖面CO2累积释放量大约是冬季的1.34-3.91倍(耕作区)和1.18-2.16倍(休闲区)。农田土壤内部在周年始终维持着较高的CO2释放潜势,即构成了土壤向大气排放CO2的动力,事实上,农田土壤真正从土壤表层排放到大气中的CO2只是土壤内部释放潜势1/3-1/2,证明土壤具有“封存CO2作用”。
     二次多项式均能较好的拟合土壤剖面CO2累计释放量和平均土壤含量的关系,在一个较长的时期内,平均土壤含量的变化能够解释土壤CO2累计释放量变化的50-92%,平均土壤含量与田间土壤剖面CO2累计释放量之间有极显著相关关系。土壤有机质是土壤所释放的CO2的来源之一,在表层50cm范围有机质对CO2年释放量的贡献大于底层,而碳酸盐对CO2年释放量的贡献底层大于表层。
     3.土壤-大气连续系统中始终存在从土壤向近地层扩散释放CO2的动力学梯度,近地层土壤空气中CO2浓度受下垫面土壤状况的影响,表现为作物田块近地层空气中CO2浓度是休闲区的2倍,而农田土壤内部空气中CO2的浓度又是近地层空气中CO2的3-4倍左右,CO2浓度梯度使得土壤成为大气CO2的“源”。
     土壤-大气界面CO2通量存在明显的季节差异,在夏季最高(耕作区为1.60 mmol.m-2.d-1 ,休闲区为1.12 mmol.m-2.d-1);春秋两季基本相当,低于夏季;而冬季CO2释放通量很低(耕作区为0.50 mmol.m-2.d-1 ,休闲区为0.49 mmol.m-2.d-1);夏季土壤-大气界面CO2释放通量大约是冬季的3.18(耕作区)和2.31(休闲区)倍。
     土壤含量对CO2释放通量的影响没有明显的趋势,在土壤-大气界面CO2释放通量的总变异中,能够用土壤含量变化解释的部分在10-20%之间;温度对土壤-大气界面CO2释放通量是有着明显影响,指数模型能够很好的描述温度和土壤-大气界面CO2释放通量(r2为0.5384和0.5779),土壤-大气界面CO2释放通量的总变异中,能够用温度变化解释的部分在50%以上。
     近地层1m大气CO2浓度季节变化有着明显的峰谷规律,垂直高度不同,CO2浓度也出现不同的变化。CO2浓度的变化剧烈程度上,耕作区更为明显,而休闲区在垂直高度上的变化较之耕作区其变化更为复杂和无规律性。
     4.为了探明土壤内部空气移动状况,均以大气压为参照,监测了各层次土壤空气的压力变化情况后得出,一般情况下耕作区塿土剖面空气压力梯度呈不规则的波浪型季节变化特征。而休闲区塿土剖面空气压力梯度季节变化与耕作区相似,但耕作区空气压力梯度变化的复杂性远大于休闲区。两者最大的差异在于土壤空气正压状态(即气体由土壤内向外运动)和负压状态(即气体由外向内运动)时间的长短。
     休闲区在整个观测期间塿土剖面空气压力梯度有较为复杂的剖面变化。耕作区塿土剖面空气压力梯度有着清晰的规律性剖面变化,塿土剖面上40-60cm土层范围存在着一个明显的压力势峰脊,构成土壤内部空气传递的“源层”。
Global temperature warming caused by greenhouse effects is one of the most important environment problems that human being concerned now. In which the academic pay attention to the soil carbon cycle which is an important part of the carbon circulatory system in nature. In addition, the CO2 release of soil respiration is not only an important source of greenhouse gases in the atmosphere, but also maintain the carbon content of the balance in the bottom of air and ensure normal crop photosynthesis. The CO2 is an important index of soil fertility and soil biological activity in the soil internal air. So scientists has been a very fruitful research results in different ecosystem carbon release studies, however, a number of important scientific problems need to study and solve urgently. The more current study focus on ecosystem carbon release, the less study focus on exploring the sources of soil CO2 and analysis the CO2 concentration gradient of soil profile, particularly the research of the fundamental changes of CO2 in the soil profile in dry-land agro-ecosystem is very lacking. based on such a background, this paper use alkali absorption method (saturated Ba(OH)2), to fallow soil as a control, for the C02 flux of soil profiles, the changing process of CO2 concentration on soil-air interface and surface layer of atmospheric, the season dynamic of air pressure gradient in soil profile with long-term observe and survey with wheat-corn rotation of Guanzhong area in Shaanxi on the Loess Plateau. The object of this article was to obtain useful information for the dynamic changing process and release law of soil CO2, analysis the role and contribution of crops for the carbon cycle, and protect the atmosphere environment pollution and keep the agriculture sustained development. The results are as follows:
     1.Soil CO2 release flux was observed and surveyed for fallow fields and crops Field in soil profiles from October 2007 to October 2008, the results show that soil air CO2 concentration of 0-150cm Lou soil profile has obvious seasonal variation and profile-level changes. The seasonal variation of soil CO2 flux was relation to the laws of crop growth and development and the changes of external environment factors, that the CO2 flux appear varying changes of peak and valley in soil profiles; the soil CO2 concentration show a trend of surface low-Central High-the bottom low in the range 0-150cm profile, in which the CO2 flux of soil profile was more evident in size and the intensity dynamic changes in crops cultivated field, and fully reflects the impact factor of soil air quality within is root crops.
     Further analysis the environmental factors of the impact of soil air CO2 concentration found that soil moisture and soil temperature have a significant effect for soil air CO2 concentration. Exponential function Y =aebx can be better curve fitting the relationship between soil CO2 concentration and temperature, and quadratic polynomial Y=ax2+bx+c can be better curve fitting the relationship of soil moisture content. Soil CO2 concentration on temperature reflects was more sensitive than on soil moisture content, the relativity of cultivation field is obviously much higher than fallow field, that crop has played important role for the soil surface environmental information pass to deep.
     2.The CO2 cumulative release of soil profile have significant seasonal changes, The highest CO2 cumulative release of Lou soil profile in the summer, 50cm highest and 0cm lowest in the space; equal spring and autumn, lower than in the summer; and the lowest CO2 cumulative release of Lou soil profile in winter, while the 150cm section highest, 0cm lowest. The CO2 cumulative release of Lou soil profile in the summer is about 1.34-3.91 times (cultivation) and 1.18-2.16 times (fallow) in winter. Annual of the soil CO2 release has remained a high potential within the soil, it constitutes the driving force that the soil CO2 release to the atmosphere. In fact, it is only 1/3-1/2 of soil CO2 release potential from the soil into the atmosphere, to prove the soil with "the role of CO2 storage".
     Quadratic polynomial can be better curve fitting the relationship between the CO2 cumulative release and soil average moisture content. In a longer period of time, the changes of the average moisture content could explain the 50-92% changes of soil CO2 cumulative release, the average soil moisture content and the CO2 cumulative release of soil profile have most significant correlation.
     Soil organic matter is one of the sources of the soil CO2 released, the contribution of CO2 release in the surface 50cm scope is greater than in the bottom floor, and carbonates of the contribution of CO2 release in the surface is greater than the bottom.
     3.It always has a kinetics gradient from the soil to the surface layer of the CO2 release on the soil-atmosphere system, surface layer of soil air CO2 concentration was affected by the soil conditions, the performance is the CO2 concentration of the surface layer air Field in cultivation field 2 times in fallow field, and CO2 concentration of the internal soil air is the surface layer air about 3 to 4 times, the CO2 concentration gradient allow the soil to become the "source" of atmospheric CO2.
     There is an obvious seasonal difference in soil-atmosphere interface CO2 flux, highest in summer (farming area 1.60 mmol.m-2.d-1, fallow field for the 1.12 mmol.m-2.d-1); basic considerable in spring and autumn , lower than in summer; and very low in winter (farming area 0.50 mmol.m-2.d-1, leisure areas for the 0.49 mmol.m-2.d-1); summer soil-atmosphere interface CO2 release flux is about 3.18 in winter (farming) and 2.31 (leisure district) times.
     The impact that soil moisture flux to the release of CO2 does not have a clear trend, in the total variance of soil-atmosphere interface release CO2 flux ,the content that between 10-20% can be explained by changes in soil moisture; temperature has a significant effect on the soil-atmosphere CO2 released ,the index model can well describe temperature and soil-atmosphere interface release CO2 flux (r2 for the 0.5384 and 0.5779), in the total variance of soil-atmosphere interface release CO2 flux ,the content that can be explained by changes of temperature is more than 50%.
     Seasonal variations of 1m surface layer atmospheric CO2 concentration shows an obvious peak valley law , CO2 concentrations changes in the different vertical height, in CO2 concentration degree changes, the farming areas has an more obvious acute change, and leisure areas has a more complex and non-regularity in the vertical height changes than that of farming areas .
     4. In order to discover the air movement within the soil conditions, using atmospheric pressure for the reference, we monitor the various levels of air pressure changes in the soil and draw out: under normal circumstances, the air pressure gradient profile of Lou soil from tillage zone was irregular seasonal variation of wave, which is similar to that of soil from leisure zone. but farming changes in air pressure gradient is much more complexity than that of leisure areas. The largest difference between them is the length of time. Taken by the state of pressure (that gas moving from the inside to the outside of the soil) and the negative pressure state (the opposite movement of gas) of the soil air During the observation, the air pressure gradient of Lounge Lou in the whole soil profile shows a more complex changes in the profile. The air pressure gradient of Lou soil in the farming areas has a clear and disciplinary profile of changes, on the 40-60cm scope of Lou soil profiles layer there is an obvious potential peak pressure ridges, which forms the internal soil air transmission, "the source layer".
引文
[1]王明星,张仁健,郑循华.温室气体的源与汇.气候与环境研究, 2000,5(1),75~79
    [2]欧阳自远.我们只有一个地球[R].见:共同走向科学—百名院士科技系列报告集(下) [C].北京:新华出版社, 1997.
    [3]贝费尔等著.周传槐译.土壤物理学.北京:农业出版社,983. 234~240
    [4]汪业勖,赵士洞,牛栋.陆地土壤碳循环的研究动态[J].生态学杂志,1999,18(5):29~35.
    [5]Raich J W, Schlesinger W H. The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate [J] .Tellus,1992 ,44B:81~89.
    [6]Musselman R C , Fox D G. A reviewof the role of temperate forests in the global CO2 balance [J].Air Waste Manage Assoc,1991,41:798~807.
    [7]李玉宁,王关玉,李伟.土壤呼吸作用和全球碳循环[J].地学前缘,2002,9(2):351~357.
    [8]崔骁勇,陈佐忠,陈四清.草地土壤呼吸研究进展[J].生态学报,2001,21(2):316~325.
    [9]Neilson J W.and L .Pepper.Soil respiration as an index of soil aeration . Soil Sci.Soc.Am.J.1990.54;428-432
    [10]Reiners, W A.Carbon dioxide evolution from the floor of three Minnesota forests.Ecology.1968.49;471-483
    [11]SUNDQUIST E T. The global carbon budget [ J ] .Science ,1993 , 259 : 9342-9411
    [12]KEVENBOLDEN K. Gas hydrates—geological perspective and global change [J ]. Reviews of Geophysics ,1993 , 31 :17321871
    [13] CIAIS P , TANS P P , TROL IER M , et al. A large northern hemisphere terrestrial CO2 sink indicated by the 12C/ 13C ratio of atmospheric CO2[J ].Science ,1995 ,269
    [14]周广胜,王玉辉.全球生态学. China Meteorological Press , Beijing , 200 -218. [15]Granier A , Ceschia E , Damesin C , Dufrene E , Epron D , Gross P ,Lebaube S , Le Dantec V , Le Goff N , Lemoine D (2000) . The carbon balance of a young Beech forest. Functional Ecology ,14 , 312 - 325
    [16]Buchmann N (2000) . Biotic and abiotic factors controlling soil respiration rates in Picea abies stands. Soil Biology &Biochemistry ,32 , 1625 - 1635
    [17]Schlesinger WH , Andrews JA ( 2000) . Soil respiration and the global carbon cycle. Biogeochemistry ,48 ,7-20 .
    [18]Sánchez ML , Ozores MI , López MJ , Colle R , Torre BD , García MA , Pérez I (2003) . Soil CO2 fluxes beneath barley on the central Spanish plateau. Agricultural and Forest Meteorology , 118 ,85 - 95 .
    [19] FAO ( 2001) . Agriculture : Towards 2015/ 30. Technical InterimReport April 2000. Rome , Food and Agriculture Organization.
    [20]林而达.气候变化与农业可持续发展. Beijing Press , Beijing , 2001).1 - 32.
    [21]赵生才. The development mechanism and trendof soil carbon pool in Chinese farmland ecosystem.地球科学进展.2005.20:587-590.
    [22]李长生等. Greenhouse gases emission from Chinese farmland.第四纪研究, 23 , 493-503.
    [23]韩广轩,周广胜,许振柱.中国农田生态系统土壤呼吸作用研究与展望.植物生态学报2008 ,32(3)719~733
    [24]Buyanovsky, G A,C L.Kucera, and G H.Wagner. Comparative analyses of carbon dynamics in native and cultivated ecosystems.Ecology.1987.68:2023-2031
    [25]Anderson. J M. The effects of climate change on decomposition processes in grassland and coniferous forests. Ecological Applications.1991,1:326-347
    [26]Brumme, R. and F, Bees. Effects of limiting and nitrogen fertilization on emissions of CO2 and N2O from a temperate forest.[J]. Geophys. Res. 1992.97: 12851-12858
    [27]Nakayama, F S. Soil respiration. Remote Sensing Reviews.1990.5:311-321
    [28]蔡祖聪.分类型对土壤排放的温室气体组成和综合温室效应的影响.土壤学报.1999,36:484-491
    [29]Akinremi. O O.,S M.McGinn, and H D J.McLean. Effects of soil temperature and moisture on soil respiration in barley and fallow plots.Can.J.Soil Sci.1999,79:5-13
    [30]戴万宏等.土剖面CO2浓度的动态变化及其受环境因素的影响.土壤学报. 2004年9月第41卷第5期
    [31]Neilson J W. Soil respiration as an index of soil aeration. Soil Sci. Sco. Am.[J].1990,54:428-432
    [32]Amador,J A.,R D.Jones.Nitrient limitations on microbial respiration in peat soils with different totle phosphorous content.Soil Boil.Biochem.1993,25:793-801
    [33]Chapin III,F S.,and R W.Ruess. The roots of the matter.Nature.2001,41:749-752
    [34]Bouma, T J.,K L. Nielsen, D M. Eissenstat, and J P. Lynch. Estimating respiration of roots in soil: interacions with soil CO2,soil temperature and soil water content. Plant and Soil.1997,195:221-232
    [35]Rochette,P., and L B. Flanagan. Quantifying rhizosphere respiraion in a corn crop under field conditions. Soil Sci.Sco.Am.J.1997.61:466-474
    [36]Mathes, K., and T. Schrirfer. Soil respiration during secondary success- ion: Influence of temperature and moisture. Soil Biol.Biochem.1985.17:205-221
    [37]Bowden, R D.,K J. Nadelhoffer, and R D.Boone,et al.Contributions of above-ground litter,below-ground litter,and root respiration to total soil respiration in a temperate mixed hardwood forest.Can.J.Forest Res.1993.23:1402-1407
    [38]Gansert,D.Root respiration and its importance for the carbon balance of beech seedlings(Fagus sylvatica L.)in a montane beech forest.Plant and Soil.1994.167: 109-119
    [39]Grace,J.,and M.Rayment.Respiration in the balance.Nature.2000.404:819-820
    [40]Kucera,c L.,and D R.Kirkham.Soil respiration studies in tallgrass prairie in Missouri.Ecology.1971.52:912-915
    [41]Ben-Asher,J.,G.Cardon,and D.Peters,et al.Determiing root activity distribut- ion by measuring surface carbon dioxide fluxes.Soil Sci.Soc.Am.J.1994.58:926-930
    [42]Boone ,R D.,K J.Nadelhoffer,J D.Canary,and J P.Kaye.Roots rxert a strong influence on the temperature sensitivity of soil respiration.Nature.1998.396: 570-572
    [43]Hanson,P J.,N T.Edwards,C T.Gaaren,and J A.Andrews.Separating root and soil microbial contributions to soil respiraion:a review of methods and observations. Biogeochemistry.2000.48:115-146
    [44]Allen,S D.,and T D.Brock. The adaptation of hetertrophic microcosms to different temperatures.Ecology.1968.49:343-346
    [45]Burton,A J.,K S.Pregitzer,G P.Zogg,and D R.Zak. Drought reduces root respiration in suggar maple forests.Ecological Applications.1998.8:771-778
    [46]Ball,A S.,E.Milne,and B G.Dark. Elevated atmospheric-carbon dioxide concentration increases soil respiration in a mid-successional lowland forest.Soil Biol.Biochem.2000.32:721-723
    [47]Bunce,J A.Short and long-term inhibition of respiration of carbon dioxide efflux by elevaed carbon dioxide.Annals of Botany.1990.65:637-642
    [48]Liebig M A , Doran J W, Gardner J C. Evaluation of a field test kit for measuring selected soil quality indicators[J ] . Agro. J .1996 , 88 (4) : 683~686.
    [49]崔骁勇,王艳芬,杜占池.内蒙古典型草原主要植物群落的初步研究[J ] .草地学报, 1999 ,7(3) :245~250.
    [50]黄承才,葛滢,常杰,等.中亚热带东部三种主要木本群落土壤呼吸的研究[J ] .生态学报,1999 ,19(3) : 324~328.
    [51]陈述悦,李俊,陆佩玲,等.华北平原麦田土壤呼吸特征[ J ].应用生态学报, 2004, 15 (9) : 1552 - 1560.
    [52]骆土寿,陈步峰,李意德,等.海南岛尖峰岭热带山地雨林土壤和凋落物呼吸研究[ J ].生态学报, 2001, 21 ( 12) : 2013 -2017.
    [53]张宪洲,刘允芬,钟华平,等.西藏高原农田生态系统土壤呼吸的日变化和季节变化特征[ J ].资源科学, 2003, 25 ( 5 ) :103 - 107.
    [54]Grahammer,K.,M D.Jawson,and J.Skopp.Day and night soil respiration from a grassland. Soil Biol.Biochem.1991.23:77-81
    [55]Krzysch,G.Zur dynamik der bodenatmung wahrend der vegetation szeit.Zeitschrift fur Acherund Pflanzenbau.1965.122:108-140
    [56]黄承才,葛滢,常杰,等.中亚热带东部三种主要木本群落土壤呼吸的研究[ J ].生态学报, 1999, 19 (3) : 324 - 328.
    [57]王立刚,邱建军,李维炯.黄淮海平原地区夏玉米农田土壤呼吸的动态研究[ J ].土壤肥料, 2002 (6) : 13 - 17.
    [58]牟守国.温带阔叶林、针叶林和针阔混交林土壤呼吸的比较研究[ J ].土壤学报, 2004, 41 (4) : 564 - 570.
    [59]唐凯,丁丽佳,陈往溪.土壤呼吸研究概述.广东气象. 2008年6月第30卷第3期
    [60]姜国宝.土壤空气与土壤肥力的关系.土壤通报.1986,17(7):89-93
    [61]程云生.土壤空气研究概况.土壤学报.1965,13(3):6-12
    [62]De Jong,E.,and J V,Schapper.Calculation of soil respiration and activity from CO2 profiles in the soil.Soil Sci.1972.113:328-333
    [63]黄看看,李吉跃.土壤呼吸影响因素研究进展.防护林科技. 2008年5月第3期(总84期)
    [64]Clark,M D.,and J T.Gilmour.The effect of temperature on decomposition at optimun andsaturated soil water conents.Soil Sci.Soc.Am.J.1983.47:927-929
    [65]Skopp,J.,M D.Jawson,and J W.Doran.Steady-state aeroboc miccrobial activity as a function of soil water content.Soil Sci.Soc.Am.J.1990.54:1619-1625
    [66]Luken,J O.,and W D.Billings.The influence of microtopographic heterogeneity on carbon dioxide efflux from a subarctic bog.Holarctic Ecol.1985.8:306-312
    [67]Magnusson,T.studies of the soil atmosphere and related physical characteristics in mineral forest soils.J.Soil Sci.1992.43:767-790
    [68]McGinn,S M.,and K M.King.Simultaneous measurements of heat ,water vapour and CO2 fluxes above alfalfa and maize.Agric.For.Meteorol.1990.49:331-349
    [69]Griffin,D M.Water and microbial stress .Advances in Microbail Ecology. 1981. 5:91-136
    [70]Killham.K.,A.Amoto,and J A.Ladd.Effect of substrate location in soil and soil pore-water regime on carbon turnover.Soil Biol.Biochem.1993.25:57-62
    [71]Skujins,J J.,and A D.McLaren.Enzyme reaction rates at limited water activities.Science.1967.158:1569-1570
    [72]West.A W.,G P.Sparling,C W.Feltham,and J.Reynolds.Microbial activity and survival in soil dried at different rates.Australian J.Soil Res.1992.30:209-222
    [73]Yamaguchi,M.,W J.Flocker,and F D.Howard.Soil atmophere as influenced by temperature and moisture.Soil Sci.Soc.Am.J.1967.31:164-167
    [74]Wilson,J M.,and D M.Griffin.Water potential and the respiration of microorganisms in the soil.Soil Biol.Biochem.1975.7:199-204
    [75]Zak,D R.,W E.Holmoes,N W.MacDonald,and K S.Pregitzer.Soil temperature,matric potential,and the kinetics of microbial respiration and nitrogen mineraliza- tion.Soil Sci.Soc.Am.J.1999.63:575-584
    [76]Greave.J E.,and E O.Carter.Influence of moisture on the bacterial activity of soil.Soil Scci.1920.10:361-398
    [77]Linn.D M.,and J W.Doran.Effect of water-filled pore space on carbon dioxide and nitrous oxide production in tilled and non-tilled soils.Soil Sci.Soc.Am.J.1984. 48:1267-1272
    [78]Mallik,A U.,and D.Hu.Soil respiration following site preparation treatments in boreal mixed wood forest.Forest Ecology and Manamement.1997.97:265-275
    [79]Tate,K R.,and D J.Ross.Elevated CO2 and moisture effect on soil carbon storage and cycling in temperate grasslands.Global Change Biology.1997.3:225-235
    [80]Fernandez,I J.,and P A.Kosian.Soil air carbon dioxide concentrations in a New England spruce-fir forest.Soil Sci.Soc.Am.J.1987.51:261-263
    [81]Wildung,R E.,T R.Garland,annd R L.Buschbom.The interdependent effect of soil temperature and water conent on soil respiration rate and plant root decomposition in arid grassland soil.Soil Biol.Biolchem.1975.7:373-378
    [82]Schlenter,R E.and K.Van Cleve.Relationships between CO2 evlution from soil, substrate temperature,and substrate moisture in four mature forest types in interior Alaska.Can.J.For.Res.1985.15:97-106
    [83]Kowalenko,C G.,K C.Ivarson,and D R.Cameron.Effect of moisture content, temperature and nitrogen fertilization on carbon dioxide evolution from field soils.Soil Biol.Biochem.1978.10:417-423
    [84]Castelle,A J.and J N.Galloway.Carbon dioxide dynamics in acid forest soils in Shenandoah National Park,Virginia.Soil Sci.Soc.Am.J.1990.54:252-257
    [85]Bajracharya.R M.,R.Lai,and J M.Kimble.Erosion effects on carbon dioxide concentration and carbon flux from an Ohio Alfisol.Soil Sci.Soc.Am.J.2000. 64:694-700
    [86]Tesarova M,Gloser J . Total CO2 output from alluvial soils with two types of grassland communities[J ] . Pedobiologia , 1976 ,16 :364~372.
    [87]Anderson J P E. Soil respiration[C] . In : Page L et al (eds) . Methods of Soil Analysis, Chemical and microbiological properties , Am SOC[M] . Agron Monogr , 1982 , 92 : 831~871.
    [88]Holt J A. Soil respiration in the seasonally dry tropics near Town sville , North Queensland[J ] . Aust J Soil Res , 1990 , 28 : 737~745.
    [89]Kucera C, Kirkham D. Soil respiration studies in tall grass prairie in Missouri [J ] . Ecology , 1971 , 52 :912~915.
    [90]刘绍辉,方精云,清田信.北京山地温带森林的土壤呼吸[J ] .植物生态学报,1998 , 22(2) : 119~126.
    [91]黄承才,葛滢,常杰,等.中亚热带东部三种主要木本群落土壤呼吸的研究[J ] .生态学报,1999 ,19(3) : 324~328.
    [92]Andrews,J A.R. Matamala,K M. Westover,and W H. Schlesinger,Temperature effects on the diversity of soil heterotrophs and the 13C of soil-respired CO2.Soil Biol. Biochem.2000. 32:699-706
    [93]Buchmann,N. Biotic and abiotic factors controlling soil respiration rates in Picea abies stands .Soil Biol.Biochem.2000.32:1625-1635
    [94]Carlyle JC , and UBA. Than. A biotic controls of soil respiration between an eighteen-year-old Pinns rediata stand in south-eastern Australia. The Journal of Ecology,1988.76:654-662
    [95]Peterjohn,WT. and JM. Melillo,et al. Soil warming and trace gas fluxes: Experimental design and preliminary flux results.Oecologia.1993.93:18-24
    [96]Davidson,EA,E. Belk,and RD,Boone. Soil water content and temperature as independent or confounded factors controlling soil respiration in a temperate mixed hardwood forest. Global Change Biology.1998.4:217-227
    [97]李凌浩,王其兵,白永飞,等.锡林河流域羊草草原群落土壤呼吸及其影响因子的研究[J ] .植物生态学报,2000 ,24(6) :680~686.
    [98]陈全胜,李凌浩,韩兴国,等.热条件对锡林河流域典型草原退化群落土壤呼吸的影响[J ] .植物生态学报,2003 ,27
    [99]Park, L W.,J Miller, Y Steinberger, and W G. Whittord. Soil Biol.Biochem. 1983.15:303-309
    [100]McClaugherty, C A., and A E. Linkins. Temperature responses of enzymes in two forest soils. Soil Biol.Biochem.1990.22:29-33
    [101]Campbell, CA. R J K. Myers. And K L. Weier. Potentially mineralizable nitrogen, decomposition rates and their relationship to temperature for five queensland soils.Aust J.Soil Res.1981.19:323-332
    [102]Standford, G., and S J. Smith. Nitrogen mineralization potentials of soils. Soil Sci. Soc. Am. 1972.36:465-472
    [103]Stallford,G.,M H. Frere, and D H. Schwaninger. Temperature coefficient of soil Nitrogen mineralization. Soil Sci. 1973.115:321-323
    [104]戴万宏,刘军,王益权,赵磊,不同培肥措施下土壤C02释放及其动力学研究,植物营养与肥料学报.2004.
    [105]Ellert,BH.,and JR. Bettany. Comparison of kinertic models for describing net sulfur and nitrogen mineralization. Soil Sei. Soc. Am,J.1988.52:1692-1702
    [106]Zogg,G P. DR. Zak, and DB. Ringelberg, et al. Compositional and runctional shifts in microbial communities due to soil warming. Soil Sci. Soc. Sm. J.1997. 61:475-481
    [107]Raich, J W .,and Sehlesinger,W H.The global carbon dioxide fiux in soil respiration and its relationship to vegetation and climate. Tellus.1992,44B:81-99
    [108]Motavalli, P P,Palm C A,Parton W J.et al. Comparison of laboratory and modeling simulation methods for estimating soil carbon pools in tropical forest soil. Soil Biology and Biochemistry,1994,26(8):935~944
    [109]崔玉亭,韩纯儒,卢进登.集约高产农业生态系统有机物分解及土壤呼吸动态研究.应用生态学报,1997,8(l):59-64
    [110]孟凡乔.高产农田生态系统土壤有机碳研究:[博士学位论文].北京:中国农业大学,1999
    [111]王立刚.黄淮海平原地区农业生态系统土壤碳氮循环规律的初步研究:[博士学位论文.北京:中国农业大学,2002
    [112]Owensby C E , Auen L M, Coyne P I. Biomass production in a nitrogen - fertilized , tallgrass pririe ecosystem exposed to ambient and elevated levels of CO2 [J ] . Plant Soil , 1994 , 165 :105~114.
    [113]Berntson GM, Bazzaz F A. Belowground positive and negative feedbacks on CO2 growth enhancement [J ] . Plant and Soil , 1996 ,187 : 119~131.
    [114]Wood C W, Westfall D G, Peterson GA. Soil carbon and nitrogen changes on initiation of no~till cropping system [J ] . Soil Science Society of America Journal , 1991 , 55 : 470~476.
    [115]Hungate B A , Holland E A , Jackson R B , et al. The fate of carbon in grasslands under carbon dioxide enrichment [J] . Nature ,1997 , 388 : 576~579.
    [116]Yin C ,Huang D. A model of litter decomposition and accumulation in grassland ecosystems[J ] . Ecol Mod , 1996 , 84 : 75~80.
    [117]Schimel D S , Braswell B H , Holland E A , et al. Climatic , edaphic , and biotic controls over storage and turnover of carbon in soils[J] . Global Biogeochemistry Cycles , 1994 , 8 : 279~293.
    [118]McGuire A D , Melillo J M, Kicklighter D W,et al. Equilibrium responses of soil carbon to climate change : Empirical and processsbased estimates[J ] . Journal of Biogeography , 1995 , 22 : 785~796.
    [119]李玉宁,王关玉,李伟.土壤呼吸作用和全球碳循环[J ] .地学前缘,2002 , 9(2): 351~357.
    [120]Oechel W C , Hastings S J , Vourlitis C , et al. Recent change of arctic tundra ecosystemsfrom a net carbon sink to a source [J ] .Nature , 1993 , 361 : 520~523.
    [121]Goulden ML , Wofsy S C , Harden J W, et al. Sensitivity of forest carbon balance to soil thaw[J ] . Science , 1998 , 279 :214~217.
    [122]李永宏,钟文勤,康乐,等.放牧对草原生物多样性及其环境的影响[C] .草原生态系统研究(第5集) [M] .北京:科学出版社,1997 :1~70.
    [123]Singh J S ,Gupta S R. Plant decomposition and soil respiration in terrestrial ecosystems[J ] . Bot Rev , 1997 , 43 : 449~528.
    [124]Moore T R ,Knowles R. The influence of water table levels on methane and carbon dioxide emissions from peatland soils[J ] . Can JSoil Sci , 1989 , 69 : 33~38.
    [125]李凌浩,陈佐忠.草地群落的土壤呼吸[J ] .生态学杂志,1998 ,17(4) : 45~51.
    [126]Asman W A H ,Sutton M A ,Schjorring J K. Ammonia : emission , atmospheric transport and deposition[J ] . New Phytologist ,1998 ,139 (1) : 27~48.
    [127]李凌浩.武夷山甜槠林生态系统的养分平衡研究[J ] .植物生态学报, 1998,22(3):193~201.
    [128]耿远波,章申,董云社,等.草原土壤的碳氮含量及其与温室气体能量的相差性[J ] .地理学报,2001 , 56 (1) : 44~53.
    [129]Schimel D S. Terrestrial ecosystems and the carbon cycle[J ] . Global Change Biology , 1995 ,1 :77~91
    [130]苏永红,冯起,朱高峰,司建华,常宗强.土壤呼吸与测定方法研究进展.中国沙漠.2008年1月第28卷第1期
    [131]王天龙,杨宁,任万辉.清远地区晚稻田甲烷排放的实验[J].广东气象,2007,29 (3): 42-44.
    [132]中国科学院西北土保持研究所编.武功土壤.西安:陕西科学技术出版社, 1987. 1~15 ,38~65
    [133]西安市土壤普查办公室,西安市土壤肥料工作站.西安土壤.1988.
    [134]Ohash M, Gyokusen K, Salto A. Contribution of root respiration to total soi1 respiration in Japanese cedarartificial forest[J]. Ecological Research, 2000, 15, (3) : 323 - 333.
    [135]杨玉盛,董彬,谢锦升.森林土壤呼吸及其对全球变化的响应[J].生态学报,2004,24 (3):583 - 591.
    [136]Liu Ying, Han Shi - jie, LI Xue - feng. The contribution of root respiration of Pinus- koraiensis seedlings total soil respiration under elevated CO2 concerntrationns[J]. Journal of Forest Research, 2004, 15(3) : 187 - 191.
    [137] Van Breemen N, Feijtel T C J. Soil processes and properties involved in the production of greenhouse gases, with special relevance to soil taxonomic system[A] .Bouwman A F. Soil and Greenhouse Effect [C] . Chichester :John Wiley and Sons ,1990. 195 - 224.
    [138]Amundson R G, Davidson E A. Carbon dioxide and nitrogenous gases in the soil atmosphere. J. Geochem. Explor. , 1990 , 38 :13~41
    [139]Buyanovsky G A, Wagner G G. Annual cycles of carbon dioxide level in soil air. Soil Sci. Soc. Am. J.1983 , 47 :1 139~1 145
    [140]Bajracharya R M, Lai R, Kimble J M. Erosion effects on carbon dioxide concentration and carbon flux from an Ohio Alfisol. Soil Sci .Soc. Am. J. 2000 , 64 :694~700
    [141]刘再华,何师意,袁道先等.土壤中的CO2及其对岩溶作用的驱动[J].文地质工程地质, 1998(4): 42- 45.
    [142]Trumbore, S E, Age of soil organic matter and soil respiration : Radiocarbon constraints on belowground C dynamics in a Pinus sylvestris forest , Soil Biology and Biochemistry , 2000 , 31 , 757~7671
    [143]郎红东,杨剑虹土壤CO2浓度变化及其影响因素的研究.西南农业大学学报(自然科学版)2004年12月第26卷第6期
    [144]贾金生,李俊,张永强.夏玉米生长盛期农田土壤CO2排放的研究.中国生态农业学报.2003,11(3):1~4
    [145]梁福源,宋林华,王静.土壤CO2浓度昼夜变化及其对土壤CO2排放量的影响.地理科学进展.2003,22(2):170~175
    [146]蔡祖聪.土壤痕量气体研究进展[J ] .土壤学报,1993 ,30 (2) :117 - 124
    [147]Jenkison. D S., D E. Adams, and A . Wild. Model estimates of CO2 emissions from soil in response to global warming. Nature(London)1991.351.304-306
    [148]杜宝华.作物冠层内二氧化碳源、流研究现状与展望.中国农业气象.1994,15;44-48
    [149]罗辑,杨忠,杨清伟.贡嘎山东坡峨嵋冷杉林区土壤CO2排放.土壤学报.2000,37:402-409

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700