用户名: 密码: 验证码:
可控串补及特高压线路故障与保护的仿真研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着我国电网建设的全面推进,“西电东送、南北互供、全国联网”的格局正在形成,越来越多的新型输电技术与更高电压等级的输电方式正在我国逐步得到应用。本文主要对新型输电技术——可控串联补偿(TCSC)和更高电压等级的输电方式——特高压交流输电的故障暂态过程和保护进行研究和论述。
     可控串联补偿(TCSC)作为柔性交流输电技术(FACTS)中的一项重要内容在电力系统中逐步应用,它可以在很多方面改善电力系统的性能。目前有关可控串补系统继电保护的仿真研究中,主要问题是串补设备的非线性元件、本体保护等元件脱离工程实际,线路保护内部环节常被忽略,不能满足工程实际应用要求。本文在改进TCSC设备仿真模型的同时,以东北伊冯串补工程为原型,按工程实际建立了电网模型(含同杆并架与三回平行线路),模拟了实际可能发生的各种故障形式(包括跨线故障),从而建立了更为完善的可控串补电网故障暂态仿真平台,更深入地分析了继电保护的动作行为,获得了保护可用性等问题的工程结论,提出了该系统串补线路继电保护的运行建议。
     为满足长距离、大容量输电和大电网建设的需求,我国正在大力发展特高压(UHV)输电技术。正在兴建的晋东南-南阳-荆门1000kV特高压交流试验示范工程是目前世界上电压等级最高、最具挑战性的电网工程,其安全和保护方面的问题,备受研究者的关注。本文以上述特高压交流输电工程为原型对线路故障暂态过程进行了仿真研究,主要研究了送端等值电源运行方式(参数)、电力设备(高压并联电抗器,低压电抗器,低压电容器)的状态以及故障时刻等因素对故障暂态过程的影响。并提出了特高压线路安全运行的建议。
     此外,本文还针对特高压动模试验中输电线路模型采用π型还是用T型链形网络问题进行了研究,通过建立输电线路模型,对π型和T型链形线路的输电线模型的特性差异进行了对比研究,根据研究结论提出了动模试验线路模型形式的建议,为建立特高压线路的物理模型奠定了基础。
     论文的最后对全文进行了总结,指出了下一步需要进行的工作。
With the development of huge electric power grid in China, the scale and structure of power grid construction, especially the planning on sending power from west to east, North-South supplementation and nationwide interconnection are coming into being, and more and more new types of transmission technology and modes in the power grid in China are applied. This paper presents the research on the fault and protection of Thysistor Controlled Series Compensators (TCSC) and ultra-high-voltage transmission lines.
     Thysistor Controlled Series Compensator (TCSC) is one of the important members of Flexible AC Transmission System (FACTS), having a lot of advantages in improving performances of power systems. Now, in the research on the simulation of protection and control schemes of series compensation system, the models of nonlinear component and compensation device protection are ivory-towered, the inner taches of line protective relay are neglected, and the simulation system is different from the engineering practice. This paper improves the TCSC simulation model, takes the YiFeng series compensation project as the prototype , builts the simulation model according with the engineering practice(including Common-Tower Double-Transmission Line and three circuit line), and simulates the actual forms of fault (including inter-line fault). So it establishes the transient simulation platform of the TCSC network,further analyzes the characteristics of the protective relay, gets the engineering results and presents some operation advices.
     Nowadays ultra-high-voltage (UHV) transmission technology has been developing to the demand of long-distance, large-capacity transmission grid and the construction of large power grids in China. Under construction now,the 1000kV UHVAC transmission testing project from Jindongnan to Jingmen via Nanyang is the world's highest voltage grade, the most challenging of network engineering, the safety and protection issues have been receiving researchers' attention. This paper takes this UHVAC transmission testing project as the prototype, studies the line fault transient process, mainly researches on the influence of the sending-end equivalent power source’s Operation Mode (parameters), condition of the electric equipments(high-voltage shunt reactor, low-voltage reactor and low-voltage capacitor) and the fault moment on electromagnetic transient, and presents some operation advices.
     In addition, the paper also studies on the problem whether chose using PI-type or T-type network model in transmission line model of UHV dynamic simulation test, establishes simulation model, Compares characteristic differences of PI-type and the T-type circuit transmission line model. According the simulation results, it presents the advice about the form of line’s model in dynamic simulation test, which is helpful for the establishment of the physical network model of UHV.
     At last, the paper gives the summaries and points out the further work.
引文
[1]李明磊,王玉丽.新世纪的电力系统技术.林业机械与木工设备, 2003, 31(3):8~10
    [2]卢凯明.可控串补TCSC特性分析及其研究与实现,华北电力大学工程硕士专业学位论文, 2006
    [3]李广凯,李庚银.电力系统仿真软件综述.电气电子教学学报, 2005, 27(3):61~65
    [4]王为国,尹项根,余江等. FSC对输电线路继电保护影响的综述.电网技术, 1998, 22(11):18~21
    [5] G.E.Alexander, S.D.Rowe, J.G.Andrichak, S.B.Wilkinson. Series Compensated Line Protection: Evalution and Solutions.GER-3736
    [6]解大,刘晓冬,杨勇等.可控串联补偿装置动态模拟实验研究(下)——潮流控制和电磁暂态过程.电力系统自动化, 1999, 23(5):14~17
    [7] R.J.Marttila. Evaluation and Testing of Line Protections for Series-Compensated Transmission Lines. Sixth International Conference on Developments in Power System Protection, 1997, 434:155~158
    [8]王为国,尹项根,余江等. FSC对工频故障分量继电保护的影响.电力系统自动化, 1998, 22(12):31~33
    [9]喻伟军.串补电容不对称击穿对接地距离的影响.继电器, 1999, 4:25~28
    [10]王为国,尹项根,余江等.TCSC动态基频阻抗对故障分量保护的影响.电力系统自动化, 1999,23(17):13~14
    [11] Damir Novosel, Arun Phadke, Murari Mohan Saha et al. Problems and Solutions for Microprocessor Protection of Series Compensated Lines. Sixth International Conference on Developments in Power System Protection, 1997, 434: 18~23
    [12] Gerald E.lee, Daniel L.Goldsworthy. BPA’s Pacific AC Intertie Series Capacitor: Experience, Equipment and Protection. IEEE Trans. On Power Delivery, 1996, 11(1):253~259
    [13] T.S.Sidhu, M.Khederzadeh. Series compensated line protection enhancement by modified pilot relaying schemes. IEEE Trans. On Power Delivery,2006,21(3): 1191~ 1198
    [14] Stan Wilkinson. Series Compensated Line Protection Issues. GER-3972
    [15]李钢,钱锋,刘平.大房双回500kV线路加串补对距离保护的影响.华北电力技术,2002, 2:6~7
    [16]柯宁,苏建设,陈陈等.用可控串补提高暂态稳定性的仿真研究.华东电力, 2004, 32(5):17~20
    [17]吴小建,郁帷镛,高翔等.阳城—淮阴500kV串补电容线路对继电保护的影响.华东电力, 1998, 5:12~18
    [18] Charies Gagnon, Pierre Gravel. Extensive Evaluation of High Performance Protection Relays for the Hydro-Quebec Series Compensated Network. IEEE Trans. On Power Delivery, 1994, 9(4):1799~1811
    [19]郑玉平,朱声石.晋-苏500kV串补线路的继电保护问题.江苏电机工程, 1998, 17(2):17~22
    [20]王向平.串联电容补偿线路的继电保护设计研究.电力系统自动化, 1999, 23(13):41~44
    [21] P.G.Mclaren SM, R .Kuffel, A.Castro et al. On Site Relay Transient Testing For A Series Compenstion Upgrade. IEEE Trans.on Power Delivery, 1994, 9(3):1308~1315
    [22]郭征,贺家李.有串补电容输电线纵联差动保护原理.天津大学学报, 2005, 38(3):195~200
    [23]贺家李,郭征.有串补电容输电线分相电流差动保护的新原理.继电器, 2005, 33(1):1~9
    [24] Murari.M.Saha, Bogdan. Kasztenny, Jan Jzykowski. First Zone Algorithm for Protection of Series Compensated Lines. IEEE Trans. On Power Delivery, 2001, 16(2):200~207
    [25] J.A.S.B Jayasinghe, R.K.Aggarwal, A.T.Johns et al. A Novel Non-unit Protection for Series Compensated EHV Transmission lines Based on Fault Generated High Frequency Voltage Signals. IEEE Transaction on Power Delivery, 1998, 13(2): 405~413
    [26] A.T.Johns, R.K.Aggarwal, Z.Bo. Non-unit Protection Technique for EHV Transmission Systems Based on Fault-generated Noise. Part I: Signal Measurement. IEE Proceeding, 1994, 141(2):133~140
    [27] R.K.Aggarwal, A.T.Johns, Z.Bo. Non-unit Protection Technique for EHV Transmission Systems Based on Fault-generated Noise. Part II: Signal Processing. IEE Proc.Gener. Transm. Distrib, 1994, 141(2):141~147
    [28] J.Y.Heo, C.H.Kim, K.H.So et al. Realization of Distance Relay Algorithmn Using EMTP Models. IPST 2003 New Orleans
    [29]林集明,郑健超,吴承琦等. TCSC的基本控制与过压保护数字仿真.电力系统自动化, 2000, 24(8):26~28
    [30]田杰. TCSC的稳态及暂态仿真.浙江电力, 1997, 1:10~14
    [31]刘振亚.特高压电网.中国经济出版社, 2005
    [32]贺以燕.意、日、俄、乌、特高压输电设备科研、制造及输电系统简介(上).变压器, 2003, 40(1):26-30
    [33] El-fikky, N.T. Comparison study between [AC and DC] {extra & ultra} High Vltages Over Head Transmission Lines for Interconnection. 2001 IEEE/PES Transmission and Distribution Conference, 2001, 1(28):37~46
    [34] Akapian, A.A. The 750kV Experimental-Commercial Tranmission Line Konokovo-Moscow. CIGRE, 1964:413
    [35] I.M.Dudurych, T.J.Gallagher, E.Rosolowski. Arc Effect on Single-Phase Reclosing Time of a UHV Power Transmission Line. IEEE Transactions on Power Delivery, 2004, 19( 2):854~860
    [36] B.L.Sheng, L.van der Sluis. A New Synthetic Test Circuit for Ultra-High-Voltage Circuit Breakers. IEEE Transactions on Power Delivery, 1997, 12( 4):1514~1519
    [37]刘振亚.特高压输电知识问答.中国经济出版社, 2005
    [38]韩启业,张湘南.日本东京电力的1000kV特高压输变电系统.华中电力, 1999, 12(4): 63~65.
    [39]舒印彪. 1000kV交流特高压输电技术的研究与应用.电网技术, 2005, 29 (19): 1~6
    [40]常美生.特高压输电的现状和发展方向.电力学报, 1997, 12 (3): 29~31
    [41]张运洲.对我国特高压输电规划中几个问题的探讨.电网技术, 2005, 29 (19):11 ~14
    [42]周浩,余宇红.我国发展特高压输电中一些重要问题的讨论.电网技术, 2005, 29(12):1~9
    [43] Shu Yinbiao. Current Status and Development of National Grid of China. IEEE/PES T&D Conference and Exhibition, Dalian, 2005:1~2
    [44]易辉,熊幼京. 1000kV交流特高压输电线路运行特性分析.电网技术, 2006, 30(15):1~7
    [45] Xu Zheng, Gao Zhi, Zhou Changchun. EHV/UHV AC Transmission Capability Analysis. IEEE, Power Engineering Society Winter Meeting, 2002, 2:1344~1349
    [46]徐政.超、特高压交流输电系统的输送能力分析.电网技术, 1995, 19(8):7~12
    [47]陈水明,许伟,何金良. 1000kV交流输电线路的工频暂态过电压研究.电网技术, 2005, 29(19): 1~5
    [48] Manoel Afonso de Carvalho Jr, Luiz Antonio Magnata da Fonte. Steady State and Transient Voltage Control on Long EHV Transmission lines. IEEE, 2001, 9(1):409~414
    [49]许伟,陈水明,何金良. 1000kV交流输电线路的故障激发过电压研究.电网技术, 2005, 29(21): 10~13
    [50]魏东.特高压可控电抗器模型在沈变集团研制成功.电力系统装备, 2005(10):3~4
    [51] Tiebing Lu, Han Feng, Xiang Cui. Analysis of the Electric Field and Ion Current Density under Ultra High-voltage Direct-current Transmission Lines Based on Finite Element Method. IEEE Transactions on Magnetics, 2007,43(4):1221~1224
    [52]胡毅.特高压输电试验线段及相关技术问题的探讨.高电压技术, 2004, 30(12): 37~39
    [53]舒印彪,刘泽洪,袁骏等. 2005年国家电网公司特高压输电论证工作综述.电网技术, 2006, 30(5): l~8
    [54]倪学锋,林浩,盛国钊. 1000kV特高压输电系统无功补偿若干问题.电力设备, 2005, 6(12):29~30
    [55]盛鹍,李永丽,李斌等.特高压输电线路过电压的研究和仿真.电力系统及其自动化学报, 2003,15(6):13~18
    [56]国家电网公司.关于抓紧开展交流特高压试验示范工程二次系统工作的通知. 2006
    [57]束洪春,陈学允,许承斌. n相传输线的π、T型等值电路及其应用.哈尔滨工业大学学报, 1998, 30(6):130~136
    [58]戴方涛,唐勇,江世芳等.集中参数模型模拟输电线行波过程出现的误差及解决办法.电力系统及其自动化学报, 1996,3:44~49

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700