用户名: 密码: 验证码:
冀北接坝山区沙化土地动态与生态工程模式研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
冀北接坝山区地处农牧交错带,生态系统具有其特有的脆弱性,是京津地区的生态屏障和重要水源地,同时是影响京津地区的主要沙源地和风沙通道。由于特殊的地质地貌和自然条件,加上长期以来人类不合理的过度开垦和放牧,该地区生态环境破坏严重,严重威胁着京津地区生态安全和人民生产生活。研究该区域土地沙化动态规律、植被类型及演替规律,对生态工程项目实施成效进行评价,显得极为重要,同时其研究成果在理论和实践方面具有重要的指导意义。
     本研究以丰宁县小坝子乡为主要试验区,从2006到2009年,应用恢复生态学和生态工程学等研究方法,通过卫星遥感图像解译与地面判读相结合,点上试验和重点踏查相结合,系统研究了小坝子沙化土地来源、成因和变化规律,植被类型和演替规律,土地利用类型变化,生物结皮的分布特征,研究了不同工程措施对该地区生态恢复的影响。研究结果如下:
     (1)初步探明了小坝子地区风沙运动和沙地形成的因素。即受地质地貌和气候因子的影响在小坝子和其上部坝上地区产生沙源—狭管地形、气候因子、人为不合理的经济活动、洪水加速风沙流的形成—受地形、地貌因素影响阻挡沙流,产生沉积或堆积汇。小坝子土地沙化既有本地沙,同时浑善达克沙地和坝上地区也是小坝子沙地形成的重要因素。
     (2)小坝子地区沙化土地遥感解译和调查结果表明,该地区土地利用类型中从增加耕地面积、广种薄收、毁林开荒、超载过牧的状态转变为以退耕还林还草、恢复和增加林草植被的变化,有林地、疏林地和未成林造林地、人工草地面积增加。沙化面积从迅速扩大到逐步稳定和缩减;沙化程度也由加重到逐步减轻,体现了土地利用方式对沙化的形成和变动的作用。
     (3)小坝子地区植被分为寒温带针叶林、落叶阔叶林、落叶阔叶灌丛和半灌丛、草原4种植被型和15种群系。植物种类丰富,成分复杂,过渡性明显,是典型的森林—草原过渡型植被。
     (4)生态工程措施可以明显的促进植被的恢复。作为对照的放牧地的植物种数、盖度、生物多样性、群落均匀度均明显的低于实施各项工程措施的地区。而且封育造林短期内对植被恢复的促进效果比沙地封育明显。
     (5)在小坝子沙化地的植被恢复过程中,土壤肥力与土壤水分含量是植被生长的限制因素。土壤有机质和速效养分以及土壤水分表现出较大的因子负荷量,是该区域植被恢复的主导因子。
     (6)土壤生物结皮的形成和发育与其介质种类、坡向、枯落物盖度相关。生物结皮改变了沙地表面和其下的土壤机械组成、化学组成,减少了雨水向土壤中的入渗,深层土壤含水量降低,但由于生物结皮强大的持水力使表层土壤含水量明显增加。结皮下土壤温度降低,使其蒸散量低于裸沙。
     (7)植被能够有效的降低风速,减少风蚀。不同下垫面平均气温观测值相差较大,其中裸沙地的温度最高;不同植被的平均温度也有明显的差异,植被具有明显的降低空气温度的作用,不同植被对降低气温的功能顺序为:人工乔木林>天然灌木林>人工草地>天然草地。地表温度与下垫面类型和植被盖度密切相关。植被具有明显的调节土壤温度的功能,天然灌木林对土壤温度的调节功能明显高于人工乔木林、人工草地和天然草地三种植被。水分是干旱、半干旱地区植物生存与生长的主要限制因子。土壤含水量与植被的耗水明显相关。林间土壤含水量低于其它植被下的土壤含水量,而放牧地的土壤含水量则始终处于最高值。
Jieba region which is located in ecotone between agriculture and animal husbandry, has its unique ecosystem vulnerability. It's the ecological barrier and an important water source area for Beijing and Tianjin. Meanwhile, It's also the major sand source area and sand channel of Beijing-Tianjin area. Due to the special geology geomorphology and natural conditions along with long-term excessive reclamation and over grazing, the ecological environment of this region became worse and worse. This is a serious threat to ecological security and production and life of local people in Beijing and Tianjin area. Therefore, it has a great significance to study the dynamic law of land desertification, vegetation types and its succession law for evaluating the implementation of ecological engineering project in this region. The results of this research would be laid an important guiding role in theory and practice of this research field.
     The research was mainly conducted in Xiaobazi Village of Fengning County from 2006 to 2009. In this study, the methods of satellite remote sensing image interpretation combining with ground recognition, and experimentation in plot combining with field investigation with the theory of restoration ecology and ecological engineering etc. were used to systematically analyze the source, causes and variation of desertified land, vegetation types and succession law, the change of land use, the distribution of soil biological crusts and the influence of different project methods on ecological restoration in Xiaobazi region.
     The results are as follows:
     (1) The laws and mechanisms of sand movement and formation of sand deposition in Xiaobazi.
     By geological features and climate factors, there are more and more sand sources and deposition or accumulation in Xiaobazi and its upper mountainous region. The land topography:narrow topography and climatic factors with irrational human economic activities and flood accelerate the formation of sand flow.
     (2) The great changes of land desertification and land use occurred in Xiaobazi.
     The type of land use which used to the arable land:extensive cultivation, deforestation and over grazing has been turned to the forest or grassland. The area of wood land, stocked land, young forest land and artificial grass land increased year by year. On the other hand, desertified land areas were under control or even decreased gradually from being widely expanded before. The degrees of desertification are gradually reduced now. This indicated that the changes of land use have affected positively the formation of sand and land desertification.
     (3) The forest communities in Xiaobazi can be divided into 4 vegetation types and 15 formations.
     Four vegetation types in the vertical structure of forest communities are boreal forest, deciduous broad-leaved forest, shrub and semi-deciduous shrub and grassland vegetation separately. It is an typical forest-grass transitional vegetation with rich vegetation types, complex plant composition and a significant transition.
     (4) Ecological engineering measures could significantly promote the recovery of vegetation.
     As a comparison, grazing land had significant lower plant species, coverage, biological diversity and community evenness than which in the region with engineering measures. Furthermore, fencing enclosure for afforestation promoted significantly better than sandy enclosure in the short term.
     (5) Soil fertility and soil moisture content were main limiting factors for the vegetation growth in the process of vegetation restoration of desertified land in Xiaobazi.
     Soil organic matter, soil available nutrients and soil moisture which showed a greater factor loading were the dominant factors for vegetation restoration in this region.
     (6) The formation and development of soil crusts was related to its media types, slope aspect and litter coverage.
     Soil crusts changed the soil mechanical composition and the chemical composition of the sandy surface and the soil under it. It also reduced rainwater infiltration to the soil and deep soil moisture decreased, but the powerful retention ability of soil crusts made surface soil moisture increased significantly. Thus, the soil temperature under soli crusts decreased which made the evapotranspiration of it much less than the bare sand.
     (7) Vegetation can effectively reduce wind speed and reduce wind erosion.
     The average temperatures were large difference and which in bare sand was the highest among different underlying surface. The average temperature of different vegetation was also different. The vegetation had a significant role to reduce the air temperature.
     The sequence that different vegetation reducing the temperature was:artificial forest>natural bush forest>artificial grassland>natural grassland. Ground surface temperature was closely related to land surface type and vegetation coverage. Vegetation has an obvious function in regulating soil temperature. The regulatory function of soil temperature in natural bush forest was greater than which in the artificial forest, artificial grassland and artificial grassland. Water is the major limiting factor for plant survival and growth in arid and semi arid areas. Soil moisture was significantly related to vegetation water consumption. The soil moisture in forest land was lower than which in other types of vegetation land and the soil moisture in grazing land was always keeping the highest value.
引文
1. 阿拉木萨,蒋德明,范士香,等.人工小叶锦鸡儿灌丛土壤水分动态研究[J].应用生态学报,2002,13(12):1533-1540.
    2. 白雪峰,王国晨,张日盛,等.章古台沙地樟子松人工林土壤水分动态研究[J].辽宁林业科技,2004,(2):11-29.
    3. 慈龙骏,吴波.中国荒漠化气候类型划分与中国荒漠化潜在发生范围的确定[J].中国沙漠,1997,17(2):107-112.
    4. 常学礼,高玉葆.区域沙漠化研究中的沙漠化数量表征[J].中国沙漠,2003,23(2):106-110
    5. 陈广庭.沙害防治技术[M].北京,化学工业出版社,2003
    6. 陈建平,王功文.北京荒漠化演化模拟与评价[M].北京:地质出版社,2004
    7. 陈立标,于广深,王福星,等.河北省沿坝地区土地沙化动态试验研究[J].河北林业科技,2001,2:1-6
    8. 董朝阳,樊胜岳,钟方雷,等.中国沙漠化过程中人文作用研究进展[J].中国沙漠,2006,26(4):657-663.
    9. 董光荣,等.中国沙漠形成演化气候变化与沙漠化研究[M].北京:海洋出版社,2002.560-568.
    10.董治宝,陈渭南,李振山,等.风沙土水分抗风蚀性研究[J],水土保持通报,1996,16(2):17-23.
    11.董治宝,陈渭南,李振山,等.风沙土开垦中的风蚀研究[J],土壤学报,1997,34(1):74-80.
    12.董治宝,董光荣,陈广庭.风沙物理学研究进展与展望[J].大自然探索,1995,14(3):30-38
    13.董治宝,郑晓静.中国风沙物理50a(Ⅱ)[J].中国沙漠,2005,25(6):795-815.
    14.董治宝.中国风沙物理研究五十年(Ⅰ)[J].中国沙漠,2005,25(3):293-305.
    15.丰宁县地方志办公室,丰宁满族自治县志[M].河北科学技术出版社,2001
    16.丰宁县地方志办公室,丰宁满族自治县志(1991-2000)[M].世界文艺出版社,2005:102-107
    17.冯学赞,张万军,曹建生,等.接坝地区沙地植被恢复与重建技术研究[J],水土保持研究,2004,19(3):73-75
    18.葛会波.河北省可持续发展林业战略研究[M].石家庄:河北科学技术出版社,2008
    19.国家林业局,第三次全国荒漠化和沙化监测报告.2004
    20.哈斯,陈渭南.耕作方式对土壤风蚀的影响[J].土壤侵蚀与水土保持学报,2(1)1996:10-16
    21.韩辉,白雪峰,周凤艳,等.彰武北部沙地不同植被覆盖下土壤水分状况研究[J].防护林科技,2006,1:19-22.
    22.韩太平,樊文颖.乌兰布和沙漠区水土资源开发现状与持续性发展对策[J].水土保持通报,1998,18(6):39-41
    23.河村龙马.飞砂の研究[J].东北理工研究所报告,1951,5:95-112
    24.贺大良,申建友,刘大有.风沙运动的三种形式及其测量[J].中国沙漠,1990,10(4):9-17
    25.贺大良,邹本功,李长治.地表风蚀过程风洞实验的初步研究[J].中国沙漠,1986,6(1):25-31
    26.赫晓慧,常庆瑞,温仲明,等.农牧交错带不同人工植被下荒漠化土壤肥力的变化[J].2006, 26(6):915-919.
    27.胡孟春,赵爱国.沙坡头铁路防护体系阻沙效益风洞实验研究[J].中国沙漠,2002,6(22):598-601
    28.黄富祥,王明星,王跃思.植被覆盖对风蚀地表保护作用研究的某些新进展[J].植物生态学报,2002,26(5):627-633.
    29.黄利江,于卫平,张广才,等.盐池沙地水分与植被恢复关系的研究[J].林业科学研究,2004,17(增刊):148-151.
    30.黄妙芬,周宏飞.荒漠绿洲交界处近地面层风速和温度的铅直变化规律[J].干旱区地理,1991,14(2):60-65
    31.黄培佑.干旱生态学[M].乌鲁木齐:新疆大学出版社,1993
    32.姬宝霖.治理开发乌兰布和沙地,建立新型的沙产业经济开发区[J].干旱区资源与环境,1999,13(2):74-75
    33.贾宝全,慈龙骏.干旱区绿洲研究回顾与问题分析[J].地球科学进展,2000,15(4):381-388
    34.贾宝全,阎顺.绿洲—荒漠生态系统交错带环境演变过程初步研究[J].干旱区资源与环境,1995,9(3):58-64
    35.贾铁飞,何雨,裴冬.乌兰布和沙漠北部沉积物特征及环境意义[J].干旱区地理,1998,21(2):36-42
    36.蒋德明,刘志民,曹有成,等.科尔沁沙地荒漠化过程及生态恢复[M].中国环境科学出版社.2003
    37.姜凤歧,曾德慧.人工固沙林经营管理基础[J].中国沙漠,17(3):250-254
    38.焦树仁.1987.辽宁省章古台樟子松人工林水分动态的研究[J].植物生态学与地植物学学报,11(4):296-307
    39.景爱.中国北方沙漠化的原因与对策[M],山东科学拄术出版社,1996
    40.李红丽,董智,王林何.浑善达克沙地流沙与四种主要植物群落土壤水分时空变化的研究[J].干旱区资源与环境,2006,20(3):169-174.
    41.李加洪,蒋卫国,武建军.基于遥感与GIS的北方农牧交错带生态环境背景状况评价与分析[J].中国沙漠,2007,27(1):71-75.
    42.李君,谭利华,邱维理,等.黄羊滩沙地的形成及其对北京沙尘暴天气的影响[J].北京师范大学报(自然科学版),2002,38(2):279-284.
    43.李令军,高庆生.2000年北京沙尘暴源地分析[J].环境科学研究,2001(2):1-5
    44.厉青,段沂春,王功文,等.北京及周边地区沙漠化动态监测研究[J].地学前沿,2002,9(1)
    45.李新.塔里木盆地绿洲边缘农田小气候特征分析[J].干旱区地理,1992,15(2):25-30
    46.李新荣,马凤云,等.沙坡头地区固沙植被土壤水分动态研究[J].中国沙漠,2001,21(3):218-222.
    47.李新荣,马凤云,龙立群,等.沙坡头地区固沙植被土壤水分动态研究[J].中国沙漠,2001,21(3):217-222.
    48.刘树林,王涛,郭坚.浑善达克沙地春季风沙活动特征观测研究[J].中国沙漠,2005,26(3):356-361.
    49.刘拓,张克斌,林琼.中国土地沙漠化防治策略[M].北京:中国林业出版社,2006
    50.刘小平,董志宝.空气动力学粗糙度的物理与实践意义[J].中国沙漠,2003,23(4):337-346.
    51.刘新民,赵哈林,赵爱芬.1996.科尔沁沙地风沙环境与植被[M].北京:科学出版社
    52.刘玉璋,董光荣,李长治.影响土壤风蚀主要因素的风洞实验研究[J].中国沙漠,1992,12(4):41-49.
    53.刘震.水土保持监测技术[M].北京:中国大地出版社,2004
    54.马世威.风沙流结构的研究[J].中国沙漠,1988,8(3):18-22.
    55.齐善忠,罗芳,王涛.人为因素在沙漠化过程中作用程度的定量化研究[J].水土保持研究,2006,13(4):4.-5.
    56.申建友,李胜功.关于奈曼地区沙漠化过程与小气候变化特征研究[A].奈曼站论文集(1)[C]兰州:甘肃科学技术出版社,1993.
    57.苏永中,赵哈林,张铜会.几种灌木、半灌木对沙地土壤肥力影响机制研究[J].应用生态学报,2002,13(7):802-806.
    58.孙保平.荒漠化防治工程学[M].北京:中国林业出版社,2000.
    59.孙海红,刘广,韩辉,等.章古台地区樟子松人工林土壤水分物理性质的研究[J].防护林科技,2003,(1):15-17.
    60.孙宏义,李芳,杨新民,等.保水剂处理土壤的抗风蚀性能研究.中国沙漠,2005,25(4):618-622.
    61.孙儒泳,李庆芬,牛翠娟,等.2002.基础生态学[M].北京:高等教育出版社
    62.妥德宝,段玉,赵沛义.带状留茬间作对防治干旱地区农田风蚀沙化的生态效应[J].华北农学报2002,17(4):63-67
    63.田魁祥,马七军.草业恢复与荒漠化防治[M].北京:气象出版社.2001
    64.王葆芳,贾宝全,杨晓辉.干旱区土地利用方式对沙漠化土地恢复能力的评价[J].生态学报,2002,22(12):2030-2035.
    65.王葆芳,贾宝全,杨晓辉.干旱区土地利用方式对沙漠化土地恢复能力的评价[J].生态学报,2002,22(12):2030-2035.
    66.王兵,崔向慧,白秀兰,等.荒漠化地区土壤水分时空格局及其动态规律研究[J].林业科学研究,2002,15(2):143-149.
    67.王继和,马全林,杨自辉,等.干旱区沙漠化土地逆转植被的时空格局及其机制研究[J].中国沙漠,2004,24(6):729-733:
    68.王涛,陈广庭,赵哈林,等.中国北方沙漠化过程及其防治研究的新进展[J].中国沙漠,2006,26(4):507-516.
    69.王涛,赵哈林.中国沙漠科学五十年[J].中国沙漠,2005,25(2):145-165:
    70.王涛主编.中国沙漠与沙漠化[M].石家庄:河北科学技术出版社,2003
    71.王新平,张景光,李新荣,等.沙坡头地区多年降水分布特征、趋势及其变率[J].中国沙漠,2001,21(3):260-264.
    72.王新平,张志山,张景光,等.荒漠植被影响土壤水文过程研究述评[J].中国沙漠,2005,25(2):196-201.
    73.吴锡麟,叶功富,范少辉,等.滨海沙地土壤水分季节变化与木麻黄生长的关系[J].林业勘察设计(福建)2005,(1):7-11.
    74.吴正.风沙地貌与治沙工程学[M].北京,科学出版社,2002
    75.肖洪浪,李新荣,段争虎,等.流沙固定过程中土壤—植被系统演变[J].中国沙漠,2003,23(6):605-611.
    76.肖嗣荣.河北省沙尘暴时空分布特征及其防治对策研究[J].地理学与国土研究,2000(3):21-26
    77.徐伟.北京市典型风沙危害区景观动态及驱动力研究[博士学位论文],2006
    78.阎德仁,杨文斌.沙漠化土地治理程度等级指标的探讨[J].中国沙漠,2006,26(5):698-703.
    79.杨维西.试论我国北方地区人工植被的土壤干化问题[J].林业科学,32(1):78-85
    80.杨文斌,肖洪浪,阎德仁.沙化土地治理程度等级分类指标[M].中国荒漠化和沙化动态研究.北京:中国农业出版社.2005
    81.杨志国,赵秀海,周效明,等.北京西部小型沙地不同演替阶段植物群落结构特征[J].林业科学研究,2008(21):188-193
    82.姚洪林,阎德仁,杨文斌,等.内蒙古沙漠化土地与植被演替规律的研究[J].内蒙古林业科技,2001,(4):
    83.姚正毅,陈广庭,韩致文,等.机械防沙体系防沙功能的衰退过程.中国沙漠,2006,26(2):226-231.
    84.叶冬梅,秦佳棋,韩胜利,等.乌兰布和沙漠流动沙地土壤水分动态、土坡水势特征的研究{J}.干旱区资源与环境,2005,19(3):126-130.
    85.移小勇,赵哈林,李玉霖,等.科尔沁沙地不同风沙土的风蚀特征[J].水土保持学报,2006,20(2):10.-13.
    86.岳德鹏,刘永兵,徐伟,等.北京市永定河沙地人工植被防风阻沙效益分析[J].北京林业大学学报,2004,26(2):21-24.
    87.曾德慧,姜凤岐.1995.从水量平衡角度探讨沙地樟子松人工林的合理密度[J].防护林科技,(1):4-7
    88.张春来,邹学勇,董光荣,等.耕作土壤表面的空气动力学粗糙度及其对土壤风蚀的影响[J].中国沙漠,2002
    89.张春来,邹学勇,董光荣,等.植被对土壤风蚀影响的风洞实验研究[J].水土保持学报,2003,17(3):32-33.
    90.张福锁,龚元石,李晓林.土壤与植物营养研究新动态[M].北京:中国农业出版社,1995.1-16.
    91.张继义,赵哈林,崔建恒,等.科尔沁沙地沙丘植被发育过程及物种组成变化[J].干旱区研究,2004,24(1):72-75.:
    92.张继义,赵哈林,崔建恒,等.科尔沁沙地樟子松人工林土壤水分动态的研究[J].林业科学,2005,41(3):1-6.
    93.张继义,赵哈林,张铜会,等.科尔沁沙地植被恢复系列上群落演替与物种多样性的恢复动态[J].植物生态学报,2004,28(1):86-92.:
    94.张继义,赵哈林,张铜会,等.科尔沁沙地植物群落恢复演替系列种群生态位动态特征[J].生态学报,2003,23(12):2741-2746.:
    95.章家恩,徐琪.生态退化的形成原因探讨[J].生态科学,1999,18(13):27-32
    96.张力,北京市重点风沙区人工植被恢复机制与生态特性研究.北京林业大学博士论文,2006
    97.张铜会,赵哈林,常学礼,等.科尔沁沙地采用人工植被对流沙治理的技术[J].中国沙漠,2000,20(增刊)::48-52:
    98.赵存玉,赵文智.河北丰宁坝上土地沙漠化现状及其综合整治的研究[J],干旱区资源与环 境,1994,8(1):80-85
    99.赵成义,王玉朝.荒漠—绿洲边缘区土壤水分时空动态研究[J].水土保持学报,2005,19(1):124-127.
    100.赵哈林,刘新民,李胜功.1998.科尔沁沙地脆弱生态环境的基本属性特征和成因分析[J].中国沙漠,18(supp.2):10-16
    101.赵哈林,苏永中,周瑞莲.我国北方沙区退化植被的恢复机理[J].中国沙漠,2006,26(3):323-28.:
    102.赵哈林,赵学勇,张铜会,等.北方农牧交错区沙漠化的生物过程研究[J].中国沙漠,2002,22(4):309-314.
    103.赵哈林,赵学勇,张铜会,等.沙漠化的生物过程及退化植被的恢复机理[M].北京:科学出版社.2007
    104.赵丽娅,赵哈林.我国沙漠化过程中的植被演替研究概述[J].中国沙漠,2000,20(增刊):7-14:
    105.赵文智.科尔沁沙地人工植被对土壤水分异质性的影响[J].土壤学报,2002,39(1):113-119.
    106.赵学勇,左小安,赵哈林,等.科尔沁不同类型沙地土壤水分在降水后的空间变异特征[J].干旱区地理,2006,29(2):275-281.
    107.赵学勇,左小安,赵哈林,等.科尔沁沙地沙质草场土壤水分对干旱和降雨响应的空间变异性[J].水土保持学报,2005,19(1):140-143.
    108.郑云普,赵建成,张丙昌,等.荒漠生物结皮中藻类和苔藓植物研究进展[J].植物学报,2009,44(3):113-119
    109.中国科学院兰州冰川冻土沙漠研究所沙漠研究室.中国沙漠概论[M].北京:科学出版社,1974.
    110.中国治沙暨沙业学会.中国治沙暨沙产业研究[M].北京:石油工业出版社,2003
    111.周广胜.气候变化对生态脆弱地区农牧业生产力影响机制与模拟[J].资源科学,1999,21(5)46-52.
    112.周永斌,殷有,罗东明,等.论干旱半干旱地区植被恢复的限制因素及调控措施[J].辽宁林业科技,2001,(3):20-22
    113.朱震达,陈广庭.中国土地沙质荒漠化[M].北京:科学出版社.1994.
    114.朱震达,刘恕,邱醒民.我国沙漠研究的历史回顾与若干问题[J].中国沙漠,1984,4(2):3-7.
    115.祝列克.中国荒漠化和沙化动态研究[M].北京:中国农业出版社.2005
    116.邹学勇,张奎壁.治沙原理与技术[M].北京:中国林业出版社,1991.
    117. Abdulkasimov. Zonal differentiation and structure of oasis landscape in Central Asia[J].Mapping Sciences and Remote Sensing,1991,28(1):77-89.
    118. A bd EI-Ghani M M. Flora and vegetation of Gara oasis, Egypt [J]. Phytocoenologia,1992,21(1):1-14.
    119. Anthes R.A. Enhancement of convective precipitation by mesoscale in vegetative coverage in semi-arid regions [J].Climate. Appl.Meteorol,1984,3(4):541-551.
    120. Aranbeav M P. The effect of soil cover structure and minerals nutrition leaels on biogocal productivity of agriculture ecosystem inirrition zone of Soviet Central Asia (In Russian) [J]. Izv A kad Nauk Turkm SSR Ser Biol Nauk,1977, (2).
    121. Bressolier C., Thorns Yves F. Studies on wind and plant interactions on French Atlantic coastal dunes [J]. Journal of sedimentary petrology,1979,47(1):331-338.
    122. Baker, W.L., A review of models of landscape change. Landscape Eool,1989,2:111-113.
    123. ICCD.China country paper to combatdesertification [M]. Beijing:China Forestry Publishing House, 2002.
    124. Loehle C. and Wein G. Landscape habitate dirersity:a multiscale information theory approach.Eandscape Eool,1994,73:311-329.
    125. Osterhoorn M.,Kappelle M.Vegetation structure and compositional along an interior-edge-exterior gradient in a Costa Rican montane cloud forest [J].Forest Ecology and Management,2000,126:291-307.
    126. Wang H. Study on the effects of construction in windbreak and sandfixation system in Jing tai irrigated area [J]. Journal of Gansu Agricultural Univeersity,1997,32(3):238-243.
    127. Yu X. Z., Qu B.S., Shen X. D. Wind tunnel simulation of sheltering effect of shelterbelts on sand [J]. Aerodynamic Experiment and Measurement & Control,1991,5(4):46-52.
    128. Faragalla A. Impact of agro desert on a desert ecosystem [J].Journal of arid environment,1988, 15(1):99-102.
    129. Frank, A.B. etal. Influnce of windbreaks on crop per formance and Snow management in North Dakota, Shelterblets on the GreatPlains [M]. Proceeding of the Synposium. Denver. colorado.1976,41.
    130. Erdas, Inc., Erdas Field Guide-3rd edition,1994.
    131. Fryear D W. Soil cover and wind erosion [J].Transactions of the ASAE,1985,28(3):781-784
    132. Frich SJ. Field windbreaks:Design criteria. Agric Ecosys Environ.l988,22/23:215-228
    133. Wight B. Farmstead windbreaks. Agric Ecosys Environ.1988,22/23:261-280
    134. Dronen SI. Layout and design criteria for livestock windbreaks. Agr Ecosys Environ. 1988.22/23:231-240
    135. George EJ, Brober D, Worthington EL. Influence of various types of field windbreaks on reducing wind velocities and depositing snow. J For,1963.61(4):345-349
    136. Fan Z.P., et al. Indices and criteria of highly effective and milti-functional management of windbreak. China J Appl Ecol,2001.12(5):701-705
    137. Wasson R J., Nanninga P M. Estimating wind transport of sand on vegetated surface [J]. Earth surface Processes and Landforms,1986, 11(4):505.
    138. Jensen J. L, Sorensen M. Estimation of some saltation transport paramenters:are analysis of Williams data [J]. Sedi-mentology,1986,33:547-555
    139. Iversen J. D., White B. R. Saltation threshold on Earth, mars and Venus [J]. Sedimentology, 1982,29:111-116
    140. Buckely R. The effect of spare vegetation on the transport of dune sand by wind [J]. Nature, 1987,325:426-428
    141. Eimern, J.Van etal. Windbreaks and shelterbelts, W M O Technial Note,1964, (59).
    142. Bagnold, R. A. The Physics of Blown Sand and Desert Dunes [M], Methuen, London,1943.
    143. Taichi Maki,1985,Micrometeoroloical improvement of paddy fields by using windbreak nets,Jarq., 19(2):98-102
    144. Caborn, J.M. Shelterbelts and microclimate [M], Bull.For.Comm,1957,29.
    145. Hayakawa, S.et al. Study on the wind ward and leeward of windbreak structure (1):characteristics of horizontal flow patterns obtained from the simulation of idealized horizontal windbreak structure, J.Agr.Met,1985,41(1):31-38.
    146. Jensen, M. Shelter effect. Danish Techical Press:Gopenhagen,1961.
    147. Rogers, C. A.1993. Describing landscapes:indices of structure. M.S. Thesis, Simon Fraser University, Burnaby, British Columbia.170 pp.
    148. Skidmore, E.L.et al., Aeria environment andenergy budget as influened by slat-fence windbreak, paper presented before division of climatology, American Society of Agro.Metting, Arizona,1970,47-61.
    149. Plate, E.J., The aerodynamics of shelter Belts, Agro.Met,1971,8:203-222.
    150. Seginer, I., Windbreak drag calculated from thehorizontal velocity field. Boundary-layer.Met.,1972, (3):87-97
    151. Xue, J.K.&Y.Q.Hu. Numercial simulation of oasis-desert interaction. Progress in Natural Seience,2001, 11:675-680.
    152. Wilson,J.D., Numerical studies of flow through windbreak,17th Conference Agricalture and Forest Meterology and Seventh Conference Biometerology and Agribiolog
    153. Zhu J J., Jiang F Q. Matsuzaki T. Spacing interval between principal tree windbreaks--Based on the relationship between windbreak structure and wind reduction. J.For Res.2002,13(2):83-90.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700