用户名: 密码: 验证码:
气体超声波谱的构建及其在气体探测中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
气体探测的应用领域非常广泛,覆盖了工业、农业、环保、国防、航天航空及日常生活等各方面。相比其他传统气体探测技术,声学气体探测具有诸多优点:无需标定、重复性强、实时性强、可同时检测多种气体、无需预处理气体、不损耗气体等,已成为气体信息传感与检测领域中的前沿技术和重要方法。
     气体超声波谱由气体声吸收谱和声速谱组成,分别对应气体声吸收系数和声速随声波频率的变化曲线。构建气体超声波谱的方法是声学气体探测的重要基础,故深入分析气体的声弛豫过程以构建气体超声波谱是声学气体探测要解决的关键问题之一。而利用信号处理技术完成基于超声波谱的气体探测理论及其研究方法,是声学、量子物理、信号处理等学科交叉的前沿研究。
     本论文根据声在气体中的传播特征,结合气体在声波扰动下的声波方程,在研究气体声吸收理论、气体声速理论和超声信号处理理论的基础上,得出了气体声弛豫过程的分解对应模型和复合弛豫时间模型,并完成了气体超声波谱的构建,最终利用小波多分辨率分析和支持向量机对气体声弛豫吸收谱进行分析,实现了混合气体成分识别。
     本论文进行的研究工作主要有以下几个方面:
     1.通过研究气体声弛豫过程中振动自由度与平动自由度(V-T)以及振动自由度之间(V-V)的分子能量转移模型,给出了有效比热容与弛豫时间的分解对应关系及其通用获得方法。该分解模型与现有的声弛豫模型相比,反映了分解后的V-T和V-V弛豫过程中振动比热容与弛豫时间的对应关系,并发现了较高能级是引起对应声弛豫过程的决定因素。将基于该分解模型获得的气体声弛豫吸收谱经碰撞直径微调改进后,其结果比现有理论更接近实验数据,证明了该分解对应关系的正确性和合理性。
     2.提出了复合弛豫时间的倒数和模型,并利用其与有效定容比热的关系构建气体的弛豫声吸收谱。混合气体的有效弛豫频率可以直观地从弛豫声吸收谱上得到,有效弛豫时间可以通过和有效弛豫频率的关系得到。利用这种方法得到的混合气体的弛豫声吸收谱与已有实验数据相比较,误差小,且与谱的变化趋势一致,论证了该方法的正确性。同时将该方法得到的弛豫声吸收谱的数据与多个已有理论对应的声弛豫吸收谱比较,数据的变化规律一致,证明了该方法的有效性。利用该方法构建了空气及其含碳气体的声弛豫吸收谱,为后续的气体识别提供基础。
     3.通过统计已发表文献中关于气体超声波谱的理论和实验数据,并利用本文提出的有效比热容与弛豫时间的分解对应关系的理论模型扩展这些数据,建立了不同成分和浓度下N2、O2、H2O2、CH4、H2、CO2等多种混合气体和空气的超声波谱数据库。重点研究和提取了气体超声波谱线上的核心信息点——主弛豫点的声吸收系数及其对应声频率,通过统计气体超声波谱数据库的核心信息点数据,建立了常见气体超声波谱作用区统计图;发现了利用气体超声波谱作用区定性探测气体成分的理论方法,并初步形成了利用主弛豫点的吸收系数变化幅度和声频率变化幅度定量检测气体成分的理论方法。该研究利用统计学方法从物理上证明了基于超声波谱的气体探测的正确性和可行性。
     4.将小波多分辨率分析和支持向量机分类等经典信号处理方法引入超声波谱气体探测。声弛豫吸收谱线的数值化分析是基于超声波谱的气体探测的关键,利用小波多分辨率分析提取声弛豫吸收谱的特征,并通过计算特征参数各自的识别率选出同时具有高识别率和低计算代价的特征参数,用于多分类支持向量机的训练和检验。使用训练后的支持向量机,完成了对空气、空气和CO、空气和CO2、以及空气和CH4等四种混合气体的多分类识别,仿真结果表明识别率达到100%。从而实现了从多元混合气体和空气等复杂背景中探测一氧化碳、二氧化碳和甲烷等一种和多种气体信息的传感方法,完成了基于超声波谱的气体探测的理论研究工作。
     本论文工作得到了国家自然科学基金项目“基于超声波谱的气体探测”(编号:60971009)和“基于有效弛豫时间的气体探测方法研究”(编号:61001011)的资助。本论文的研究成果不仅从微观上深入分析了气体声弛豫过程,得出了有效比热容与弛豫时间的分解对应关系,结合平动弛豫时间和振动弛豫时间得出了复合弛豫时间倒数和的理论模型,并将其应用于构建宏观气体超声波谱;通过大量统计文献中的气体超声波谱的理论和实验数据,构建了气体超声波谱的数据库,从物理基础上证明了基于超声波谱的气体探测的可行性;在此基础上,利用小波理论和支持向量机理论进行声学气体探测,提供了一种新的超声气体探测的思路和方法。
Gas detection has been used in many areas:industry, agriculture, environmental industry, national defense, aerospace industry, and daily life. Compared with traditional technologies of gas sensing, acoustic-based gas sensing has many advantages:no calibration, strong repeatability, real-time response, simultaneously detecting several kinds of gas, no need to preprocess gas, and no loss of gas. Acoustic gas detection (AGD) has become cutting-edge technology in the field of gas-information sensing and detecting techniques.
     AGD is primarily based on establishment of gas ultrasonic spectrums (GUS) which consist of gas acoustic absorption spectrums-gas acoustic absorption coefficient dependent on the acoustic frequency, and sound speed spectrums-sound speed dependent on the acoustic frequency. So the first thing needed for AGD is analyzing the gas acoustic relaxation process to establish GUS. After constructing the GUS, signal processing technology is used for the further research in ultrasonic-spectrum-based gas detection which is cutting-edge research of interdisciplinary including acoustics, quantum physics, and signal processing.
     Based on acoustic propagation-in-gas characteristics and acoustic wave equations under the condition of gas being disturbed by acoustic waves, via researching gas acoustic absorption theory, gas sound speed theory, and ultrasonic signal processing theory, a decomposition model and a multi-relaxation time model are obtained in the process of gas acoustic relaxation; GUS is also built up. Based on gas acoustic relaxation absorption spectrum (GARAS), the gas detection is realized by utilizing wavelet multi-resolution analysis (WMRA) and multi-class support vector machine (MSVM).
     The main research results are as follows:
     1A decomposition model---the decomposition relationship between effective specific heat capacity (ESHC) and relaxation time---and the general method of getting the model is obtained via researching the model of molecule energy transfer among vibration-translation (V-T) and vibration-vibration (V-V) in gas acoustic relaxation process. Compared with current acoustic relaxation models, this model has two characteristics:(1) the relationship between vibrational specific heat capacity and relaxation time in the process of V-T and V-V relaxation is obtained;(2) it is discovered that higher energy level is the determining factor of causing relaxation. Then, the model is modified by fine tuning collision diameter. The modified model suits the GARAS closer to experimental data by comparing with spectral lines from existing theories.
     2A reciprocal-sum model of multi-relaxation time is proposed, and using the relationship between the model and ESHC, GARAS is built up. GARAS functions to offer two physical effective relaxation frequency and effective relaxation time. Such method of establishing GARAS is correct:via comparison between collected experimental data and GARAS obtained by this method, only small error exits and the trend of spectra lines are the same. And the method is effective:through comparing data between spectrums from this method and spectrums from several existing theories, it is discovered that the changing rule of data are the same. This method is used to establish the GARAS of air and the gas mixtures including air to supply fundament in the further research.
     3Based on GUS theories and data collected systematically in published papers, and the data extant by the decomposition model, a database of gas acoustic spectra, which includes acoustic absorption spectrums and sound speed spectrums, has been built to record common gas mixtures from gases as diverse as N2、O2、H2O、CH4、H2、CO2and air. By statistics of GARAS key information---the primary peaks---from the database, a graph concerning GARAS key information areas is obtained. By researching the graph, two methods are obtained:(1) detecting qualitatively gas-components;(2) sensing quantitatively gas-components based on the changing range of the maximum acoustic relaxation absorption coefficient and acoustic frequency. Physically, the result proves that gas compositions detection based on gas acoustic spectra is feasible.
     4WMRA and MSVM, classic signal processing methods, are introduced for the first time in AGD. WMRA and MSVM are used for analyzing GARAS numerically---the key of AGD technology. WMRA is used to get features of GARAS. And then, the feature coefficients with high recognition rate and low computation cost are selected from these features and put into MSVM to train and to test it. The trained MSVM will help recognize four types of gas mixtures (air, air and CO, air and CO2, air and CH4) successfully. The simulation results demonstrate that the recognize accuracy of the approach is100%for four types of gas mixtures. In place of a traditional way is a new method of detecting one or several gases (CO, CO2, and CH4) from multi-component mixtures of gas such as air---a theoretical research of gas detection based on ultrasonic spectrums.
     This dissertation is funded by two projects listed in the National Natural Science Foundation of China:ultrasonic-based gas detection (Grant Nos.60971009) and the research of effective-relaxation-time-based gas sensing (Grant Nos.61001011). This dissertation introduces several research findings:(1) the relationship between ESHC and relaxation time is obtained via analyzing gas acoustic relaxation process;(2) the theory model of reciprocal-sum of multi-relaxation time is obtained by utilizing translational relaxation time and vibrational relaxation time and used to build up GUS;(3) the GUS database is established, which physically proves that ultrasonic-spectrum-based gas detection is practical;(4) WMRA and MSVM are used to acoustic gas detection, which suggests a new train of thought in the area of acoustic gas detection.
引文
[1]林林,高国强.超声波气体探测技术在海上平台应用研究.中国石油和化工标准与质量,2012,11:53-54.
    [2]冯王碧,李政颖.可燃气体(甲烷)光纤传感监测技术研究.消防科学与技术,2012,31(1):75-77.
    [3]蒋亚龙,王进军,祝玉泉.光声光谱火灾气体探测系统.中国安全生产科学技术,2012,8(2):23-28.
    [4]倪家升,常军,刘统玉等.基于光纤气体检测技术的煤矿自然发火预测预报系统.应用光学,2007,30(6):996-1002.
    [5]童启武,韩峻峰,徐京莲等.车载网络传感器采集监控系统的设计.传感器与微系统,2010,29(4):84-86.
    [6]王珊珊,周斌,叶庆等.车载被动差分吸收光谱在城市道路空气污染监测中的应用,2009,29(10):2645-2649.
    [7]熊伟,方勇华,黄烨等.基于亮温光谱法的大气污染气体探测.光电工程,2006,33(4):27-30.
    [8]崔方晓,方勇华,兰天鸽等.基于亮温光谱和主成分分析的大气污染气体探测.光谱学与光谱分析,2011,31(10):2794-2797.
    [9]田宏,马秀山,闫雅君.高性价比的气体探测器.消防技术与产品信息,2010,9:73-74.
    [10]张兴磊,花榕,陈双喜等.低浓度氢气检测方法研究进展.分析仪器,2009,5:6-12.
    [11]琚雪梅,张巍,毕东云等.红外吸收型C02气体传感器的设计.传感器技术,2005,24(8):62-64.
    [12]陈长伦,何建波,刘锦淮.新型电化学CO气体传感器的研制.传感器技术,2004,23(5):32-35.
    [13]宋晓辉,海中天.接触燃烧式气敏传感器的研制.计量技术,2007,8:76-78.
    [14]张强,管自生.电阻式半导体气体传感器.仪表技术与传感器,2006,7:6-9.
    [15]何世堂,李顺洲,王文等.声表面波气体传感器发展概况.仪表技术与传感器,2009,增刊:117-121.
    [16]方兴,李嘉,纪新明等.高灵敏度谐振式红外光声气体传感器研究,2012,31(10):57-60.
    [17]董连华.有害气体性状及监测技术.沈阳:东北工学院出版社,1991.
    [18]李顺洲,朱佐刚,刘久玲等.与气相色谱仪联用的声表面波传感器.仪表技术与传感器,2009,10:121-123.
    [19]Phillips S, Dain Y, and Lueptow R M. Theory for a gas composition sensor based on acoustic properties. Measurement Science and Technology,2003,14 (1):70-75.
    [20]Toda H, Kobayakawa T. High-speed gas concentration measurement using ultrasound. Sensors and Actuators A-Physical,2008,144(1):1-6.
    [21]太惠玲,谢光忠,蒋亚东.基于气体传感器阵列的混合气体定量分析.仪器仪表学报,2006,27(7):666-670.
    [22]葛海峰,林继鹏,刘君华等.基于支持向量机和小波分解的气体识别研究.仪器仪表学报,2006,27(6):573-578.
    [23]白鹏,谢文俊,刘君华.支持向量机在混合气体种类光谱识别中的应用.光电工程,2006,33(8):37-43.
    [24]白鹏,刘君华.SVM在混合气体光谱分析中的应用.仪器仪表学报,2006,27(10):1242-1247.
    [25]白鹏,谢文俊,刘君华.层次式SVM子集含烃类混合气体光谱分析方法.光谱学与光谱分析,2008,28(2):299-302.
    [26]白鹏,谢文俊,刘君华.混合气体红外光谱支持向量机分析的新方法.光谱学与光谱分析,2007,27(7):1323-1327.
    [27]白鹏,冀捐灶,张发启等.光谱学与光谱分析,2008,28(10):2278-2281.
    [28]白鹏,李彦,张斌等.基于SVM的混合气体红外光谱分析关键技术研究.光子学报,2008,37(3):566-572.
    [29]张静远,张冰,蒋兴舟.基于小波变换的特征提取方法分析.信号处理,2000,16(2):155-162
    [30]Nikolaos N T, Spyretta G, Ioannis A, et al. Comparison of multi-resolution features for texture classification of carotid atherosclerosis from b-mode ultrasound. IEEE Transactions on Information Technology in Biomedicine,2011,15(1):130-137.
    [31]Dain Y, Lueptow R M. Acoustic attenuation in three-component gas mixtures-Theory. The Journal of the Acoustical Society of America,2001,109(5): 1955-1964.
    [32]Toda H. The precise mechanisms of a high-Speed ultrasound gas sensor and detecting human-specific lung gas exchange. International Journal of Advanced Robotic Systems,2012,9:1-9.
    [33]Polturak E, Garrett S L, Lipson S G Precision acoustic gas analyzer for binary mixtures. Review of Scientific Instruments,1986,57 (11):2837-2841.
    [34]Tinge J T, Mencke K, Bosgra L, et al. Ultrasonic gas analyser for high resolution determination of binary-gas composition. Journal of Physics E:Scientific Instruments, 1986,19(11):953-956.
    [35]Joos M, Muller H, Lindner G An ultrasonic sensor for the analysis of binary gas-mixtures. Sensor and Actuators B:Chemical,1993,16 (1-3):413-419.
    [36]Hok B, Bltickert A, Lofvig J. Acoustic gas sensor with ppm resolution. Sensor Review,2000,20(2):139-142.
    [37]Zipser L, Wechter F, Franke H. Acoustic gas sensors using airborne sound properties. Sensors and Actuators B:Chemical,2000,68(1-3):162-167.
    [38]朱明,王殊,王菽韬等.An algorithm for carbon monoxide concentration detection based on molecular multi-relaxation model. in:2007 Proceedings of the 2007 International Conference on Wavelet Analysis and Pattern Recogition, Beijing, November,2007,332-337.
    [39]朱明,王殊,王菽韬等.基于混合气体分子复合弛豫模型的一氧化碳浓度检测算法.物理学报,2008,57(9):5749-5755.
    [40]Petculescu A G Future trends in acoustic gas monitoring and sensing. Journal of Optoelectronics and Advanced Materials,2006,8(1):217-221
    [41]Petculescu A G, Lueptow R M. Quantitative acoustic relaxational spectroscopy for real-time monitoring of natural gas:a perspective on its potential. Sensors and Actuators B,2012,169(5):121-127.
    [42]Petculescu A G, Hall B, Fraenzle R, et al. A prototype acoustic gas sensor based on attenuation. The Journal of the Acoustical Society of America,2006, 120(4):1779-1782.
    [43]Schwartz R N, Slawsky Z I, Herzfeld K F. Calculation of vibrational relaxation times in gases. The Journal of Chemical Physics,1952,20(10):1591-1600.
    [44]Schwartz R N, Herzfeld K F. Vibrational relaxation times in gases (three-dimensional treatment)*. The Journal of Chemical Physics,1954,22(5):767-773.
    [45]Parker J G. Rotational and vibrational relaxation in diatomic gases*. The Physics of Fluids,1959,2(4):449-462.
    [46]Henderson M C, Clark A V, Lintz P R. Thermal relaxation in oxygen with H2O, and HDO, and D2O vapors as impurities. The Journal of the Acoustical Society of America,1965,37(3):457-463.
    [47]Henderson M C, Herfeld K F, Bry J, et al. Thermal relaxation in nitrogen with wet carbon dioxide as impurity. The Journal of the Acoustical Society of America,1969, 45(1):109-114.
    [48]Lewis J W L, Lee K P. Vibrational relaxation in carbon dioxide/water-vapor mixtures. The Journal of the Acoustical Society of America,1965,38(5):813-816.
    [49]Lewis J W L, Shields F D. Vibrational relaxation in carbon dioxide/helium mixtures. The Journal of the Acoustical Society of America,1967,41(1):100-102.
    [50]Harris C M. Absorption of sound in air versus humidity and temperature. The Journal of the Acoustical Society of America,1966,40(1):148-159.
    [51]Harris C M. On the absorption of sound in humid air at reduced pressures. The Journal of the Acoustical Society of America,1968,43(3):530-532.
    [52]Harris C M. Effects of humidity on the velocity of sound in air. The Journal of the Acoustical Society of America,1971,49(3):890-893.
    [53]Shields F D, Burks J A. Vibrational relaxation in CO2/D2O mixtures. The Journal of the Acoustical Society of America,1968,43(3):510-515.
    [54]Shields F D. Sound absorption and velocity in H2S and CO2/H2S mixtures. The Journal of the Acoustical Society of America,1969,45(2):481-484.
    [55]Shields F D, Carney G P. Sound absorption in pure D2S and CO2/DS mixtures. The Journal of the Acoustical Society of America,1970,47(5):1269-1273.
    [56]Shields F D, Warf C C, Bass H E. Acoustical method of obtaining vibrational transition rates tested on CO2/N2 mixtures. The Journal of Chemical Physical,1973, 58(9):3837-3840.
    [57]Shields F D, Bass H E, Bolen L N. Tube method of sound-absorption measurement extended to frequencies far above cut-off. The Journal of the Acoustical Society of America,1977,62(2):346-353.
    [58]Bass H E. Vibrational relaxation in CO2/O2 mixtures. The Journal of Chemical Physical,1973,58(11):4783-4786.
    [59]Bass H E, Shields F D. Vibrational relaxation and sound absorption in O2/H2O mixtures. The Journal of the Acoustical Society of America,1974,56(3):856-859.
    [60]Bass H E, Keeton R G. Ultrasonic absorption in air at elevated temperatures. The Journal of the Acoustical Society of America,1975,58(1):110-112.
    [61]Bass H E, Keeton R Q Williams D. Vibrational and rotational relaxation in mixtures of water vapor and oxygen. The Journal of the Acoustical Society of America,1976, 60(1):74-77.
    [62]Bass H E, Shields F D. Absorption of sound in air:High-frequency measurements. The Journal of the Acoustical Society of America,1977,62(3):571-576.
    [63]Keeton R G, Bass H E. Vibrational and rotational relaxation of water vapor by water vapor, nitrogen, and argon at 500 K. The Journal of the Acoustical Society of America,1976,60(1):78-82.
    [64]Chang D, Shields F D, Bass H E. Sound-tube measurements of the relaxation frequency of moist nitrogen. The Journal of the Acoustical Society of America,1977, 62(3):577-581.
    [65]Shields F D. On obtaining transition rates from sound absorption and dispersion curves. The Journal of the Acoustical Society of America,1970,47(5):1262-1268.
    [66]Bass H E, Bauer H J, Evans L B. Atmospheric absorption of sound:analytical expressions. The Journal of the Acoustical Society of America,1972,52(3):821-825.
    [67]Piercy J E. Role of the vibrational relaxation of nitrogen in the absorption of sound in air. The Journal of the Acoustical Society of America,1969,46(3):602-604.
    [68]Bass H E, Sutherland L C, Zuckerwar A J, et al. Atmospheric absorption of sound: Further developments. The Journal of the Acoustical Society of America,1995,97(1): 680-683.
    [69]Bass H E, Sutherland L C, Zuckerwar A J. Atmospheric absorption of sound:Update. The Journal of the Acoustical Society of America,1990,88(4):2019-2021.
    [70]Bauer H J, Shields F D, Bass H E. Multimode vibrational relaxation in polyatomic molecules. The Journal of Chemical Physical,1972,57(11):4624-4628.
    [71]Zuckerwar A J, Griffin W A. Resonant tube for measurement of sound absorption in gases at low frequency/pressure ratios. The Journal of the Acoustical Society of America,1980,68(1):218-226.
    [72]Zuckerwar A J, Griffin W A. Effect of water vapor on sound absorption in nitrogen at low frequency/pressure ratios. The Journal of the Acoustical Society of America, 1981,69(1):150-154.
    [73]Zuckerwar A J, Meredith R W. Acoustical measurements of vibrational relaxation in moist N2 at elevated temperatures. The Journal of the Acoustical Society of America, 1982,71(1):67-73.
    [74]Zuckerwar A J, Meredith R W. Low-frequency absorption of sound in air. The Journal of the Acoustical Society of America,1985,78(3):946-955.
    [75]Bass H E, Yan H X. Pulsed spectrophone measurements of vibrational energy transfer in CO2. The Journal of the Acoustical Society of America,1983,74(6):1817-1825.
    [76]Shields F D, Bass H E. Vibrational relaxation rates in N2/CO2 mixtures as determined from low-frequency-sound absorption measurements. The Journal of the Acoustical Society of America,1980,68(4):1210-1211.
    [77]Shields F D. The propagation of sound through a gas with an overpopulation of excited states. The Journal of the Acoustical Society of America,1984,76(6): 1749-1754.
    [78]Bass H E. Absorption of sound by air:High temperature predictions. The Journal of the Acoustical Society of America,1981,69(1):124-138.
    [79]Zuckerwar A J, Miller K W. Vibrational-vibrational coupling in air at low humidities. The Journal of the Acoustical Society of America,1988,84(3):970-977.
    [80]Bond L J, Chiang C Hung, Fortunko C M. Absorption of ultrasonic waves in air at high frequencies(10-20 MHz). The Journal of the Acoustical Society of America, 1992,92(4):2006-2015.
    [81]Lueptow R M, Phillips S. Acoustic sensor for determining combustion properties of natural gas. Measurement Science and Technology,1994,5 (11) 1375-1381.
    [82]Townsend L W, Meador W E. Vibrational relaxation and sound absorption and dispersion in binary mixtures of gases. The Journal of the Acoustical Society of America,1996,99(2):920-925.
    [83]Tanczos F I. Calculation of Vibrational Relaxation Times of the Chloromethanes. The Journal of Chemical Physics,1956,25(3):439-447.
    [84]Dain Y, Lueptow R M. Acoustic attenuation in a three-gas mixture:Results. The Journal of the Acoustical Society of America m,2001,110(6):2974-2979.
    [85]Petculescu A G, Lueptow R M. Fine-tuning molecular acoustic models:sensitivity of the predicted attenuation to the Lennard-Jones parameters. The Journal of the Acoustical Society of America.2005,117(1):175-184.
    [86]Petculescu A G, Lueptow R M. Synthesizing primary molecular relaxation processes in excitable gases using a two-frequency reconstructive algorithm. Physical Review Letters,2005,94(23):238301~1-238301~4.
    [87]鄢舒,王殊.多原子分子气体中声波弛豫衰减谱的重建算法.物理学报.2008,7(57):4282-4291.
    [88]朱明.混合气体浓度检测的弛豫声学方法研究:[博士学位论文].武汉:华中科技大学,2008.
    [89]鄢舒.多元混合气体声学特性的数值模拟研究:[博士学位论文].武汉:华中科技大学,2008.
    [90]鄢舒,王殊,窦征.A signal processing method applied to direct simulation Monte Carlo for predicting acoustic attenuation in gas mixtures. Measurement Science and Technology,2007,18 (5):1278-1286.
    [91]朱明,王殊,朱振宇等.微弱气体浓度检测的弛豫平滑处理算法.应用科学学报,2008,26(2):137-144.
    [92]鄢舒,王殊.多元混合气体中非线性声衰减的数值模拟.声学学报,2008,33(6):481-490.
    [93]Petculescu A G, Lueptow R M. Atmospheric acoustics of Titan, Mars, Venus, and Earth. Icarus,2007,186 (2):413-419.
    [94]Petculescu A G, Lueptow R M. Alien soundscapes:a concise guide to the atmospheric acoustics of VENUS, MARS, TITAN, AND EARTH. Acoustics Today,2007,3(1): 17-22.
    [95]Rosenkrantz E, Ferrandis J Y, Leveque G, et al. Ultrasonic measurement of gas pressure and composition for nuclear fuel rods. Nuclear Instruments and Methods in Physics Research A,2009,603:504-509
    [96]Garrett S. Sonic gas analyzer for hydrogen and methane. The Journal of the Acoustical Society of America,2008,123(5):3372-3372.
    [97]Evans L B, Bass H E, Sutherland L C. Atmospheric absorption of sound:theoretical predictions. The Journal of the Acoustical Society of America,1972, 51(5):1565-1575.
    [98]Cottrell T L, Mccoubrey J C. Molecular energy transfer in gases. UK:Butterworths, 1961.
    [99]Holman J P. Thermodynamics. New York:McGraw-Hill,1980
    [100]Janik P, Lobos T. Automated Classification of Power-Quality Disturbances Using SVM and RBF Networks. IEEE Transactions on power delivery,2006,21(3): 1663-1669.
    [101]Chapelle O, Vapnik V, Bousquet O, et al. Choosing Multiple Parameters for Support Vector Machines. Machine Learning,2002,46(1):131-159.
    [102]Hsu C W, Lin C J. A comparison of methods for multiclass support vector machines. IEEE Transactions on Neural Networks,2002,13(2):415-425.
    [103]Vapnik V N. An overview of statistical learning theory. IEEE Transactions on Neural Networks,1999,10(5):988-999.
    [104]邹邦银.热力学与分子物理学.武汉:华中师范大学出版社,2004.
    [105]汪志诚.热力学与统计物理.北京:高等教育出版社,2010.
    [106]徐建良.工程热力学.北京:化学工业出版社,2009
    [107]王保国.气体动力学.北京:北京理工大学出版社,2005
    [108]Gutowski F A. Ultrasonic dispersion in a CO2-H2O mixture. The Journal of the Acoustical Society of Ameirca,1956,28(3):478-483.
    [109]王保国.空气动力学基础.北京:国防工业出版社,2009
    [110]Lukasik S J, Young J E. Vibrational relaxation times in nitrogen. The Journal of Chemical Physics,1957,27(5):1149-1155.
    [111]卞荫贵,徐立功.气动热力学.合肥:中国科学技术大学出版社,1997
    [112]应纯同.气体输运理论及应用.北京:清华大学出版社,1990
    [113]马大猷.现代声学理论基础.北京:科学出版社,2004
    [114]Kinsler W E, Frey A R, Coppens, A B, et al. Fundamentals of Acoustics. New York: Wiley,1982.
    [115]Shields F D, Lageann R T. Tube corrections in the study of sound absorption. The Journal of the Acoustical Society of America,1957,29(4):470-475.
    [116]James C F Wang, George S Springer. Vibrational relaxation times in some hydrocarbons in the range 300-900K. The Journal of Chemical Physics,1973, 59(12):6556-6562.
    [117]Herzfeld K F, Litovitz T A. Absorption and dispersion of ultrasonic waves. New York:Academic Press,1959.
    [118]Mason W P, Thurston R N. Physical acoustics:principles and methods. New York: Academic Press,1984.
    [119]杨训仁,陈宇.大气声学.北京:科学出版社,2007.
    [120]Bhatia A B. Ultrasonic Absorption-An Introduction to the Theory of Sound Absorption and Dispersion in Gases, Liquids and Solids. New York:Dover,1985
    [121]Petculescu A G, Achi P. A model for the vertical sound speed and absorption profiles in Titan's atmosphere based on Cassini-Huygens data. The Journal of the Acoustical Society of America,2012,131(5):3671-3679.
    [122]Lambert J D. Vibrational and rotational relaxation in gases. Oxford:Clarendon, 1977.
    [123]Ejakov S G, Phillips S, Dain Y, et al. Acoustic attenuation in gas mixtures with nitrogen:Experimental data and calculations. The Journal of the Acoustical Society of America,2003,113 (4):1871-1879.
    [124]Tabor D. Gases, liquids and solids. Great Britain:Cambridge University Press, 1979.
    [125]Henderson M C, Klose J Z. Ultrasonic absorption and thermal relaxation in CO2. The Journal of the Acoustical Society of America,1959,31(1):29-33.
    [126]Leitner D M, Wolynes P G. Vibrational relaxation and energy localization in polyatomic:Effects of high-order resonances on flow rates and the quantum periodicity transition. The Journal of Chemical Physics,1996,105 (24): 11226-11236.
    [127]Lukasjk S J, Young J E. Vibrational relaxation times in nitrogen. The Journal of Chemical Physics,1957,27(5):1149-1155.
    [128]Huber P W, Kantrowitz A. Heat-capacity lag measurements in various gases. The Journal of Chemical Physics,1947,15(5):275-284.
    [129]Evans L B. Vibrational relaxation in moist nitrogen. The Journal of the Acoustical Society of America,1972,51(1):409-411.
    [130]Rosenberg C W V, Bray K N C, Pratt N H. Shock tube vibrational relaxation measurements:N2 relaxation by H2O and the CO-N2 V-V rate. The Journal of Chemical Physics,1972,56(7):3230-3237.
    [131]Bass H E, Olson J R, Amme R C. Vibrational relaxation in H2O vapor in the temperature range 373-946K. The Journal of the Acoustical Society of America,1974, 56(5):1455-1460.
    [132]Fujii Y, Lindsay R B, Urushihara K. Ultrasonic absorption and relaxation times in nitrogen, oxygen, and water vapor. The Journal of the Acoustical Society of America, 1963,35(7):961-966.
    [133]Kung R T V, Center R E. High temperature vibrational relaxation of H2O by H2O, He, Ar and N2. The Journal of Chemical Physics,1975,62(6):2187-2194.
    [134]Rhodes C K, Kelly M J, Javan A. Collisional relaxation of the 1000 state in pure CO2. The Journal of Chemical Physics,1968,48(12):5730-5731.
    [135]Sharma R D, Brau C A. Near-resonant vibrational energy transfer in N2-CO2 mixtures. Physical Review Letters,1967,19(22):1273-1275.
    [136]Henderson M C, Burbank L J, Glatzel J J. Thermal relaxation in nitrogen with CH4 and CD4 admixtures. The Journal of the Acoustical Society of America,1969,46(3): 819-820.
    [137]Shields F D, Lafleur L D. Propagation of sound in vibrationally excited 4, and N2/H2O mixtures. The Journal of the Acoustical Society of America,1988,83(6):2186-2189.
    [138]Parker J G, Swope R H. Vibrational relaxation in methane-oxygen mixtures. The Journal of Chemical Physics,1965,43(12):4427-4434.
    [139]Parker J G, Ritke D N. Vibrational relaxation times of methane and oxygen at increased pressure. The Journal of the Acoustical Society of America,1972, 51(1):169-181.
    [140]Evans L B, Winter T G. Vibrational relaxation of oxygen by methane. The Journal of the Acoustical Society of America,1969,45(2):515-515.
    [141]Monkewicz A A. Changes in the vibrational napier(relaxation) time of methane-water-vapor mixtures. The Journal of the Acoustical Society of America, 1967,42(1):258-266.
    [142]Bauer H J, Schotter R. Collision transfer of vibrational energy from nitrogen and methane to the carbon dioxide molecule. The Journal of Chemical Physics11969, 51(8):3261-3270.
    [143]Millikan R C, White D R. Vibrational energy exchange between N2 and CO. The Journal of Chemical Physics,1963,39(1):98-101.
    [144]Shields F D. Propagation of sound in vibrationally excited N2/H2 mixtures. The Journal of the Acoustical Society of America,1987,81(1):87-92.
    [145]Ruppel T H, Shields F D. Sound propagation in vibrationally excited N2/CO and H2/He/CO gas mixtures. The Journal of the Acoustical Society of America,1990, 87(3):1134-1137.
    [146]Winter T G, Hill G L. High-temperature ultrasonic measurements of rotational relaxation in Hydrogen, Deuterium, Nitrogen, and Oxygen. The Journal of the Acoustical Society of America,1967,42(4):848-858.
    [147]Henderson M C. Vibrational Relaxation in Nitrogen and Other Gases. The Journal of the Acoustical Society of America,1962,34(3):349-350.
    [148]Peng W W. Attenuation and dispersion effects of nonequilibrium molecular processes on acoustic waves in cylindrical tube. The Journal of the Acoustical Society of America,1982,72(4):1264-1268.
    [149]Martinsson P E, Delsing J. Ultrasonic Measurements of Molecular Relaxation in Ethane and Carbon Monoxide. in:IEEE Ultrasonic Symposium, Munich, Germany, October,2002,511-516.
    [150]Shields F D, Lee K P. Sound absorption and velocity measurements in Oxygen. The Journal of the Acoustical Society of America,1963,35(2):251-252.
    [151]Cottrell T L, Day M A. Effect of oxygen on vibrational relaxation in methane. Journal of Chemical Physics,1965,43(4):1433-1434.
    [152]Schnaus U E. Thermal relaxation in oxygen with CH4 and CD4 admixtures. The Journal of the Acoustical Society of America,1965,37(1):1-4.
    [153]Parker J G Effect of several light molecules on the vibrational relaxation time of oxyen. Journal of Chemical Physics,1961,34(5):1763-1772.
    [154]Holmes R, Smith F A, Tempest W. Vibrational relaxation in oxygen. Proceedings of the Physical Society,1963,81(2):311-319.
    [155]Estrada-Alexanders A F, Trusler J P M. Speed of sound in carbon dioxide at temperatures between (220 and 450) K and pressures up to 14 MPa. The Journal of Chemical Thermodynamics,1998,30(12):1589-1601.
    [156]Higgs R W, Torborg R H. Ultrasonic absorption in carbon dioxide-water-vapor mixtures. The Journal of the Acoustical Society of America,1967,42(5): 1038-1040.
    [157]Eristia H, Ucarb A, Demirb Y. Wavelet-based feature extraction and selection for classification of power system disturbances using support vector machines. Electric Power Systems Research,2010,80 (7):743-752.
    [158]Haibo He, Janusz A. Starzyk. A self-organizing learning Array System for Power Quality Classification Based on Wavelet Transform. IEEE Transactions on power delivery,2005,21(1):285-295.
    [159]Jianhua Yao, Jeremy Chen, Catherine Chow. Breast Tumor Analysis in Dynamic Contrast Enhanced MRI Using Texture Features and Wavelet Transform. IEEE Journal of Selected Topics in Signal Processing,2009,3(1):94-100.
    [160]Ahsan H K, Marimuthu P, Chandan K K. Support Vector Machines for Automated Recognition of Obstructive Sleep Apnea Syndrome From ECG Recordings. IEEE Transactions on Information Technology in Biomedicine,2009,13(1):37-48.
    [161]Mallat S G. A theory for Multiresolution Signal Decomposition:the Wavelet Representation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1989,11(7):574-593.
    [162]Cortes C, Vapnik V. Support-vector networks. Machine Learning,1995,20(3): 273-297
    [163]Murthy V S, Tarakanath K, Mohanta D K, et al. Insulator condition analysis for overhead distribution lines using combined wavelet support vector machine (SVM). IEEE Transactions on Dielectrics and Electrical Insulation,2010,17(1):89-99.
    [164]Zeng Jianwu, Qiao Wei. Short-term wind power prediction using a wavelet support vector machine. IEEE Transactions on Sustainable Energy,2012,3 (2):255-254.
    [165]Zhang X Y, Zhou J Z, Wang C Q, et al. Multi-class support vector machine optimized by inter-cluster distance and self-adaptive deferential evolution. Applied Mathematics and Computation,2012,218(9):4973-4987.
    [166]Bernhard S, Sung K K, Chris J C, et al. Comparing support vector machines with gaussian kernels to radial basis function classifiers. IEEE Transactions on Signal Processing,1997,45(11):2758-2765.
    [167]Kim K J, Ahn H. A corporate credit rating model using multi-class support vector machines with an ordinal pairwise partitioning approach. Computers & Operations Research,2012,39(8):1800-1811.
    [168]Zheng H B, Liao R J, Grzybowski S, et al. Fault diagnosis of power transformers using multi-class least square support vector machines classifiers with particle swarm optimisation. IET Electric Power Applications,2011,5(9):591-595.
    [169]Chowdhury S, Sing J K, Basu D K, et al. Face recognition by generalized two-dimensional FLD method and multi-class support vector machines. Applied Soft Computing,2011,11(7):4282-4292.
    [170]He X S, Wang Z, Jin C, et al. A simplified multi-class support vector machine with reduced dual optimization. Pattern Recognition Letters,2012,33(1):71-82.
    [171]Fu J H, Lee S L. A multi-class SVM classification system based on learning methods from indistinguishable chinese official documents. Expert Systems with Applications,2012,39 (3):3127-3134.
    [172]Agarwal K, Shivpuri R, Zhu Y J, et al. Process knowledge based multi-class support vector classification (PK-MSVM) approach for surface defects in hot rolling. Expert Systems with Applications,2011,38 (6):7251-7262.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700