用户名: 密码: 验证码:
水煤浆流变特性及其检测技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
流变特性是衡量水煤浆质量的重要指标之一,对水煤浆的传输、存储与雾化起着关键作用。然而目前常用的流变特性测量方法:旋转粘度计法与毛细管流法并不适合在线应用,况且水煤浆拥有明显的触变性,这两种方法的测量结果,并不能反映生产线上浆体的实际流变特性。因此寻求一种新的水煤浆流变特性的在线检测方法具有重要的现实意义。
     本文从水煤浆的流变特性入手,指出实用的水煤浆应当具有的流变特性为:具有一定屈服应力,呈假塑性或微弱胀塑性,并且具有较低的表观粘度。针对这些特点,研究对比了多种非牛顿流体的本构方程,结果表明,对于中等剪切率的水煤浆使用宾汉模型、屈服幂率模型与Casson模型都具有较高的拟合度,并指出这些模型都只能在消除了触变性的情况下使用。本文随后对水煤浆的触变性进行了理论研究,新提出了一个水煤浆的触变模型,其结果与实验数据吻合较好。在研究了水煤浆流变特性的影响因素后,首次将BP人工神经网络的方法应用在水煤浆的流变特性预测上,取得了比幂率模型更好的效果。
     根据水煤浆流变特性的研究,论文对水煤浆在管道传输中的流场分布进行了理论分析,并从多相流匀质传输的角度指出管道传输水煤浆应当为稳定层流,具有栓塞流区,并计算了流速范围。在此研究基础上,提出了一种动刀式水煤浆流变特性测量方法;使用非牛顿流体力学与边界层原理对该方法进行了理论分析,得到了动力学模型,给出了流变参数的测量方法;研究了测试点位置与驱动力大小的选择问题;理论分析了栓塞流速对测量结果的影响并提出了使用电磁流量计测量栓塞流流速来进行速度补偿的方法。考虑到水煤浆在管道传输中会产生滑移,影响流速测量,因而提出了一种使用光学相关的滑移速度测量方法。研究了测量原理,探头结构尺寸等问题,针对探头对流动噪声的滤波作用提出了二维相关算法的解决方案,并使用极性相关算法以提高计算速度。论文还对刀体形状改进、驱动力的实现、遮光脉冲电路的设计、密度检测、标定方法等问题进行了研究,最后进行了系统误差分析。
     动刀式流变特性检测法与光学相关法滑移速度测量法都具有一定的创新性与使用价值,能够解决目前水煤浆生产缺少有效的快速流变特性在线检测方法的问题。并能够推广到其他浆体的在线测量中,具有广泛的应用前景。
Rheological characteristics are one of the most important indicators for quantity evaluation of coal water slurry, refer as CWS. It plays a key role for in the process of transport, storage and atomization of CWS. The commonly used rheological characteristics measurement methods are the rotational rheometer and capillary rheometer, which are not suitable for on-line operation. Consider of the thixotropy of CWS, the measuring results of these methods cannot reflect the actual rheological characteristics of the CWS in the production line. So that it has practical significance to find a new on-line measurement method for rheological characteristics of CWS.
     Starting with the analysis of rheological characteristics of CWS, it pointed out that the practical CWS should possess yield point, exhibit regions of pseudo-plastic behavior or little dilatants, and has low apparent viscosity. Consider of these, a lot of constitutive equations for non-Newtonian fluid were analyzed and compared with. The result show that the Bingham fluid model, the yield power law model and the Casson model are also with high goodness-of-fitting for CWS at moderate shear rates, and these model are function only when thixotropy effect is removed. Theory analysis of the thixotropy of CWS was processed then, and a thixotropy model of CWS was proposed. This model fit experiment data very well. After the study of the influence factor of the rheological characteristics of CWS, BP neural network was used for predicting rheological characteristics of CWS for the first time, and it has better effect than the Yield Power.
     According to the study of the rheological characteristics of CWS, the flow field distribution in the pipeline transports was analyzed in the dissertation. For steady transportation of multi-phase flow, it is point out that it is should be steady laminar flow and with plug flow for CWS in the pipeline transports. The velocity range was calculated. Base on the previous research, a moving-blade rheological characteristics measurement method for CWS was proposed. The method is studied base on non-Newtonian fluid mechanics theory and boundary layer theory, the dynamics model was achieved, and the rheological characteristics measurement model was given. The chosen problems of sampling position and the value of driven force were studied. And the plug flow influence to the measuring result was studied also. A plug flow measurement method was proposed in order to implement speed compensation for the moving-blade rheological characteristics measurement method. Consider to the influent of the slip effect of pipe flow. An optical cross-correlation slip speed measurement method was proposed. The measurement principle and the probe structure was study. In order to solve the integral filter effect of the optical fiber probe to the flow noise of CWS,2-D cross-correlation arithmetic was proposed, and polarity cross-correlation arithmetic was used to improve computing speed. In the dissertation, the blade shape improve method, the shading pulse processing circuits designing, the density measurement method and calibration method were studied also. The error analysis was done at last.
     The moving-blade rheological characteristics measurement method and the optical cross-correlation slip speed measurement method are innovative and with practical value, they could solve the problem that there is lack of fast and effective on-line rheological characteristics measurement method for CWS product process. These methods could also extend to on-line measure the rheological characteristics of other fluid, have broad application prospects.
引文
[1]. Aktas, Z.,E.T. Woodburn. Effect of addition of surface active agent on the viscosity of a high concentration slurry of a low-rank British coal in water[J]. Fuel Processing Technology,2000,62(1):1-15.
    [2]. 宋剑,刘建庆,杨占军等.水煤浆的特性分析和经济分析[J].辽宁化工2008(02):111-112+117.
    [3]. 傅丛,姜英.中国水煤浆技术工业应用中存在的问题与对策[J].煤质技术,2007(05):45-48.
    [4]. 陈良勇,段钰锋,王秋粉等.高浓度水煤浆的流变特性和流动规律研究进展[J].锅炉技术,2007(01):69-73.
    [5]. Boylu, F., H. Dincer,G. Atesok. Effect of coal particle size distribution, volume fraction and rank on the rheology of coal-water slurries[J]. Fuel Processing Technology,2004,85(4):241-250.
    [6]. Peyman Pakdel,Gareth H. McKinley. Digital particle imaging velocimetry of viscoelastic fluids[J]. Aiche Journal,1997,43(2):289-302.
    [7]. Arola, D. F., G. A. Barrall, R. L. Powell, et al. Use of nuclear magnetic resonance imaging as a viscometer for process monitoring[J]. Chemical Engineering Science, 1997,52(13):2049-2057.
    [8]. Goloshevsky, A. G., J. H. Walton, M. V. Shutov, et al. Development of low field nuclear magnetic resonance microcoils[J]. Review of Scientific Instruments,2005, 76(2):024101-024101-6.
    [9]. McCarthy, K. L.,W. L. Kerr. Rheological characterization of a model suspension during pipe flow using MRI[J]. Journal of Food Engineering,1998,37(1):11-23.
    [10]. 李鹏,徐立军,董峰.非牛顿液体粘度的在线测量方法[J].天津大学学报,2003,36(02):169-173.
    [11]. Wiklund, J., I. Shahram,M. Stading. Methodology for in-line rheology by ultrasound Doppler velocity profiling and pressure difference techniques [J]. Chemical Engineering Science,2007,62(16):4277-4293.
    [12]. Sheen, S. H., K. J. Reimann, W. P. Lawrence, et al. Ultrasonic techniques for measurement of coal slurry viscosity. in Ultrasonics Symposium,1988. Proceedings., IEEE 1988.1988.
    [13]. Vorwerk, J., R. Steger, M. Teufel, et al. Use of an optical meter to measure the flow rate and apparent viscosity of non-Newtonian fluids [J]. Flow Measurement and Instrumentation,1994,5(1):51-57.
    [14]. Fuerstenau, D. W.,A. De. Rheology of coal-water slurries prepared by the high-pressure roll mill grinding of coal. Final report[R]. Other Information:PBD: Aug 1996,1996:Medium:ED; Size:143 p.
    [15]. Turian, R. M., J. F. Attal, D.-J. Sung, et al. Properties and rheology of coal-water mixtures using different coals[J]. Fuel,2002,81(16):2019-2033.
    [16]. Cho, H.,M. S. Klima. Breakage Characteristics of Coal-Water Slurries[J]. Energy & Fuels,1996,10(6):1220-1226.
    [17]. Miller, S. F.,H. H. Schobert. Effect of fuel particle and droplet size distribution on particle size distribution of char and ash during pilot-scale combustion of pulverized coal and coal-water slurry fuels [J]. Energy & Fuels,1993,7(4): 520-531.
    [18]. Miller, S. F.,H. H. Schobert. Effect of the occurrence and composition of iron compounds on ash formation, composition, and size in pilot-scale combustion of pulverized coal and coal-water slurry fuels[J]. Energy & Fuels,1993,7(6): 1030-1038.
    [19]. Miller, S. F.,H. H. Schobert. Effect of the Occurrence and Composition of Silicate and Aluminosilicate Compounds on Ash Formation in Pilot-Scale Combustion of Pulverized Coal and Coal-Water Slurry Fuels[J]. Energy & Fuels,1994,8(6): 1197-1207.
    [20]. Miller, S. F.,H. H. Schobert. Effect of the Occurrence and Modes of Incorporation of Alkalis, Alkaline Earth Elements, and Sulfur on Ash Formation in Pilot-Scale Combustion of Beulah Pulverized Coal and Coal-Water Slurry Fuel[J]. Energy & Fuels,1994,8(6):1208-1216.
    [21]. Veytsman, B., J. Morrison, A. Scaroni, et al. Packing and Viscosity of Concentrated Polydisperse Coal-Water Slurries[J]. Energy & Fuels,1998,12(5): 1031-1039.
    [22]. Fuerstenau, D. W. Rheology of coal-water slurries prepared by the HP roll mill grinding of coal[R].1992:Medium:ED; Size:Pages:(10 p).
    [23]. Anderson, C. M., M. A. Musich,B. C. Young. Wiang Haeng coal-water fuel preparation and gasification, Thailand-task 39[R]. Other Information:PBD:Jul 1996,1996:Medium:P; Size:132 p.
    [24]. Podolsak, A. K., C. Tiu, T. Saeki, et al. Rheological properties and some applications for rhamsan and xanthan gum solutions [J]. Polymer International, 1996,40(3):155-167.
    [25]. Burdukov, A. P., V. I. Popov, V. G. Tomilov, et al. The rheodynamics and combustion of coal-water mixtures[J]. Fuel,2002,81(7):927-933.
    [26]. Koka, V. R., G. Papachristodoulou,O. Trass. Settling stability of coal slurries prepared by wet grinding in the szego mill[J]. The Canadian Journal of Chemical Engineering,1985,63(4):585-590.
    [27]. Shook, C. A. Experiments with concentrated slurries of particles with densities near that of the carrier fluid [J]. The Canadian Journal of Chemical Engineering, 1985,63(6):861-869.
    [28]. Lapasin, R.,S. Pricl. Continuous and oscillatory flow properties of concentrated coal/water suspensions [J]. The Canadian Journal of Chemical Engineering,1992, 70(1):20-27.
    [29]. 程军,周俊虎,黄镇宇等.130t/h高温、高压煤泥水煤浆锅炉的设计和调试[J].动力工程,2008(03):367-370+376.
    [30]. Available, N. Preliminary investigation of the effects of coal-water slurry fuels on the combustion in GE coal fueled diesel engine (Task 1.1.2.2.1, Fuels)[R].1990: Medium:ED; Size:Pages:(150 p).
    [31]. Ohene, F. Rheological properties essential for the atomization of Coal Water Slurries (CWS). Final report, September 1,1991--July 31,1995[R]. Other Information:PBD:[1995],1995:Medium:ED; Size:143 p.
    [32]. Liu, M.,Y. F. Duan. Resistance properties of coal-water slurry flowing through local piping fittings[J]. Experimental Thermal and Fluid Science,2009,33(5): 828-837.
    [33]. 晏名文.煤浆的流变性和稳定性[J].力学进展,1984(02):183-194.
    [34]. Shook, C. A.,J. Nurkowski. The effect of some alkaline additives on the viscosity of coal water slurries[J]. The Canadian Journal of Chemical Engineering,1977, 55(5):510-515.
    [35]. L. Y. Sadler III,B. A. Bethany. Effect of soluble ash components on the viscosity of lignite-water mixtures[J]. The Canadian Journal of Chemical Engineering,1987, 65(1):142-147.
    [36]. Vitolo, S., R. Belli, M. Mazzanti, et al. Rheology of coal-water mixutures containing petroleum coke[J]. Fuel,1996,75(3):259-261.
    [37]. Giirses, A., M. Acikyildiz, C. Dogar, et al. An investigation on effects of various parameters on viscosities of coal-water mixture prepared with Erzurum-Askale lignite coal[J]. Fuel Processing Technology,2006,87(9):821-827.
    [38]. Sis, H.,M. Birinci. Effect of nonionic and ionic surfactants on zeta potential and dispersion properties of carbon black powders [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2009,341(1-3):60-67.
    [39]. Roh, N.-S., D.-H. Shin, D.-C. Kim, et al. Rheological behaviour of coal-water mixtures.1. Effects of coal type, loading and particle size[J]. Fuel,1995,74(8): 1220-1225.
    [40]. 吴家珊,宋永玮,张春爱等.煤的性质对水煤浆特性的影响[J].燃料化学学报,1987(04):298-304.
    [41]. Boylu, F., G. Ates,ok,H. Dincer. The effect of carboxymethyl cellulose (CMC) on the stability of coal-water slurries[J]. Fuel,84(2-3):315-319.
    [42]. 李永昕,胡奇林,王千杰等.不同类型添加剂对灵武煤成浆性的影响规律——灵武煤改质制取高浓度水煤浆研究之三[J].宁夏大学学报(自然科学版),1994,15(01):75-80.
    [43]. Roh, N.-S., D.-H. Shin, D.-C. Kim, et al. Rheological behaviour of coal-water mixtures.2. Effect of surfactants and temperature [J]. Fuel,1995,74(9): 1313-1318.
    [44]. Yang, D., X. Q. Qiu, M. S. Zhou, et al. Properties of sodium lignosulfonate as dispersant of coal water slurry [J]. Energy Conversion and Management,2007, 48(9):2433-2438.
    [45]. Liu, J., W. Zhao, J. Zhou, et al. An investigation on the rheological and sulfur-retention characteristics of desulfurizing coal water slurry with calcium-based additives[J]. Fuel Processing Technology,2009,90(1):91-98.
    [46]. Zhou, M., X. Qiu, D. Yang, et al. High-performance dispersant of coal-water slurry synthesized from wheat straw alkali lignin[J]. Fuel Processing Technology,2007, 88(4):375-382.
    [47]. Atesok, G., H. Dincer, M. Ozer, et al. The effects of dispersants (PSS-NSF) used in coal-water slurries on the grindability of coals of different structures [J]. Fuel,2005, 84(7-8):801-808.
    [48]. Tudor, P. R., D. Atkinson, R. J. Crawford, et al. The effect of adsorbed and non-adsorbed additives on the stability of coal-water suspensions[J]. Fuel,1996, 75(4):443-452.
    [49]. Shukla, S. C., S. Kukade, S. K. Mandal, et al. Coal-oil-water multiphase fuel: Rheological behavior and prediction of optimum particle size[J]. Fuel,2008, 87(15-16):3428-3432.
    [50]. Yavuz, R.,S. Kuecuekbayrak. Effect of particle size distribution on rheology of lignite-water slurry[J]. Journal Name:Energy Sources; Journal Volume:20; Journal Issue:9; Other Information:PBD:Nov 1998,1998:Medium:X; Size:pp. 787-794.
    [51]. Kihm, K. D. Investigation of the effect of coal particle sizes on the interfacial and rheological properties of coal-water slurry fuels:Final report, July 1,1994-June 30, 1996[R]. Other Information:PBD:Oct 1996,1996:Medium:ED; Size:55p.
    [52]. Logos, C.,Q. D. Nguyen. Effect of particle size on the flow properties of a South Australian coal-water slurry[J]. Powder Technology,1996,88(1):55-58.
    [53]. Kaushal, D. R., K. Sato, T. Toyota, et al. Effect of particle size distribution on pressure drop and concentration profile in pipeline flow of highly concentrated slurry [J]. International Journal of Multiphase Flow,2005,31(7):809-823.
    [54]. 刘崇江,曾凡.水质对水煤浆性能的影响与制浆用水的合理选择[J].煤炭加工与综合利用,2002(04):28-31+59.
    [55]. 周德悟,张桂安,李德智等.水煤浆流变特性影响因素的研究[J].煤气与热力,1989(03):9-13+2.
    [56]. Wang, Y.-g., L.-f. Hao, C.-a. Xiong, et al. Apparent viscosity changes of coal-oil slurry duringheating at atmosphere[J]. Journal of Fuel Chemistry and Technology, 2007,35(5):513-517.
    [57]. Cheng, J., J. Zhou, Y. Li, et al. Improvement of Coal Water Slurry Property through Coal Physicochemical Modifications by Microwave Irradiation and Thermal Heat[J]. Energy & Fuels,2008,22(4):2422-2428.
    [58]. Li, Y. X.,B. Q. Li. Study on the ultrasonic irradiation of coal water slurry[J]. Fuel, 2000,79(3-4):235-241.
    [59]. 孙成功,吴家珊,李保庆.高浓度煤浆的制备和流变性的研究Ⅰ.改质温度对煤浆性质的影响[J].燃料化学学报,1996(02).
    [60]. 孙成功,吴家珊,李保庆.低温热改质煤表面性质变化及其对浆体流变特性的影响[J].燃料化学学报,1996(02).
    [61]. Suslick, K. S. Sonochemistry[J]. Science,1990,247(4949):1439-1445.
    [62]. Xue, M. H., M. X. Su, L. L. Dong, et al. An Investigation on Characterizing Dense Coal-Water Slurry with Ultrasound:Theoretical and Experimental Method[J]. Chemical Engineering Communications,2010,197(2):169-179.
    [63]. Xue, M. H., M. X. Su, L. L. Dong, et al. Ultrasonic method for concentration and particle size analysis in dense coal-water slurry[J]. Multiphase Flow:The Ultimate Measurement Challenge, Proceedings,2007,914:695-702,925.
    [64]. Cui, G.-w., S.-q. Zhu, L.-z. Zou, et al. Effects of High-Power Ultrasonic Treatment on the Slurryability of Coals[J]. Journal of China University of Mining and Technology,2007,17(4):562-565.
    [65]. Meikap, B. C., N. K. Purohit,V. Mahadevan. Effect of microwave pretreatment of coal for improvement of rheological characteristics of coal-water slurries[J]. Journal of Colloid and Interface Science,2005,281(1):225-235.
    [66]. 岑可法,袁镇福,陆重庆等.煤浆管内流动特性及传热过程的研究[J].工程热物理学报,1983(01):46-52.
    [67].张承华,宋永玮,罗超等.高浓低粘水煤浆的制备[J].燃料化学学报,1985(02):141-151.
    [68]. Das, D., S. Panigrahi, P. K. Misra, et al. Effect of Organized Assemblies. Part 4. Formulation of Highly Concentrated Coal-Water Slurry Using a Natural Surfactant[J]. Energy & Fuels,2008,22(3):1865-1872.
    [69]. 岑可法,黄国权,倪明江等.高粘度煤水混合物的管道输送和流化床燃烧[J].浙江大学学报,1986,20(06):1-7.
    [70]. Pawlik, M. Polymeric dispersants for coal-water slurries[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2005,266(1-3):82-90.
    [71]. Low, G. S.,S. N. Bhattacharya. The effect of moisture on the rheology of brown coal-oil suspensions[J]. The Canadian Journal of Chemical Engineering,1983, 61(6):785-790.
    [72]. Senapati, P. K., B. K. Mishra,A. Parida. Modeling of viscosity for power plant ash slurry at higher concentrations:Effect of solids volume fraction, particle size and hydrodynamic interactions[J]. Powder Technology, In Press, Corrected Proof.
    [73]. USUI, H., Y. SANO, M. SAWADA, et al. THIXOTROPY OF HIGHLY LOADED COAL-WATER SLURRIES[J]. Journal of Chemical Engineering of Japan,1984, 17(6):583-588.
    [74]. USUI, H.,Y. SANO. THIXOTROPY OF A COAL WATER MIXTURE[J]. Journal of Chemical Engineering of Japan,1985,18:519-525.
    [75]. Usui, H. A thixotropy model for coal-water mixtures[J]. Journal of Non-Newtonian Fluid Mechanics,1995,60(2-3):259-275.
    [76]. Happel, J. Viscosity of Suspensions of Uniform Spheres[J]. Journal of Applied Physics,1957,28(11):1288-1292.
    [77]. Mooney, M. Explicit Formulas for Slip and Fluidity [J]. Journal of Rheology,1931, 2(2):210.
    [78]. Jastrzebski, Z. D. Entrance Effects and Wall Effects in an Extrusion Rheometer during Flow of Concentrated Suspensions [J]. Industrial & Engineering Chemistry Fundamentals,1967,6(3):445-454.
    [79]. S. F.Kurath,W. S. Larson. Capillary viscometry on a rheologically complex coating color[J]. TAPPI,1990,9:235-241.
    [80]. Tang, H. S.,D. M. Kalyon. Estimation of the parameters of Herschel-Bulkley fluid under wall slip using a combination of capillary and squeeze flow viscometers[J]. Rheologica Acta,2004,43(1):80-88.
    [81]. L. Meng, M. Zhang,L. Shen. Study on Flow Properties of Coal-Water Paste in Pipes [J]. Developments in Chemical Engineering and Mineral Processing,2000, 8(3-4):323-332.
    [82]. Lu, P.,M. Zhang. Resistance properties of coal-water paste flowing in pipes[J]. Fuel,2002,81(7):877-881.
    [83]. Lu, P.,M. Zhang. Rheology of coal-water paste[J]. Powder Technology,2005, 150(3):189-195.
    [84]. Chen, L., Y. Duan, Z. Huang, et al. Slip flow of coal water slurries in pipelines[J]. Fuel, In Press, Uncorrected Proof.
    [85]. Chen, L., Y. Duan, C. Zhao, et al. Rheological behavior and wall slip of concentrated coal water slurry in pipe flows[J]. Chemical Engineering and Processing:Process Intensification,2009,48(7):1241-1248.
    [86]. 张文军.旋转流变仪的研制和水煤浆流变特性的研究[D].北京:中国矿业大学,1994.
    [87]. Dunn-Rankin, D., J. Hoornstra, F. A. Gruelich, et al. Combustion of coal--water slurries:Evolution of particle size distribution for coals of different rank[J]. Fuel, 1987,66(8):1139-1145.
    [88]. Elbeyli, I. Y., A. Palantoken, S. Piskin, et al. Liquefaction/solubilization of low-rank Turkish coals by white-rot fungus (Phanerochaete chrysosporium)[J]. Energy Sources Part a-Recovery Utilization and Environmental Effects,2006, 28(11):1063-1073.
    [89]. Goudoulas, T. B., E. G. Kastrinakis,S. G. Nychas. Rheological aspects of dense lignite-water suspensions; time dependence, preshear and solids loading effects[J]. Rheologica Acta,2003,42(1-2):73-85.
    [90]. Gurses, A., M. Acikyildiz, C. Dogar, et al. An investigation on effects of various parameters on viscosities of coal-water mixture prepared with Erzurum-Askale lignite coal[J]. Fuel Processing Technology,2006,87(9):821-827.
    [91]. 段清兵,何国锋,王国房等.低阶煤制备高浓度气化水煤浆新技术[J].煤质技术,2009(05):41-43.
    [92]. Dinger, B. R. Stability of a coal water slurry:Co-Al. Proc. of 4th Intern. Symp. on Coal Slurry Combustion. Orlando, FL,1982,10.
    [93]. Pulido, J. E.,N. Ortiz. The effect of particle-size distribution on thixotropy of coal-water slurry fuels[J]. Prospects for Coal Science in the 21st Century, Vols I and Ii,1999:1147-1150,1584.
    [94]. Cross, M. M. Rheology of non-Newtonian fluids:A new flow equation for pseudoplastic systems[J]. Journal of Colloid Science,1965,20(5):417-437.
    [95]. Kanamori, S., S. Takano,Y. Wada. The influences of maceral on slurryability of coals.in The Proc of 17th Intern Conf on Coal Utilization and Slurry Technologies. 1992. Washington DC:Coal and Slurry Technology Association.
    [96]. W.P.Liang,L.Liang. Effect of Wettability and Adsorbability of Coal on the Slurryability of Coal. in Procceedings of the 8th International Symposium on Coal Slurry Fuels Preparation and Utilization.1986. Orlando, FL, USA.
    [97]. 朱书全,刘红缨,刘利等.3种难溶性矿物对煤成浆性的影响[J].中国矿业大学学报,2003,36(2):115-118.
    [98]. Krieger, I. M. Rheology of monodisperse latices[J]. Colloid Interface Sci,1972,3: 111-136.
    [99]. Tangsathitkulchai, C.,L. G. Austin. The effect of slurry density on breakage parameters of quartz, coal and copper ore in a laboratory ball mill[J]. Powder Technology,1985,42(3):287-296.
    [100]. A.De. Modeling and Optimization of Fine Grinding of Minerals in High-Pressure Roll Mill-Ball Mill Hybrid Grinding Circuits[D]. University of California, Berkeley,1995:135.
    [101].朱睿杰.高效复合型水煤浆添加剂及其分散机理的研究[D].湖南科技大学, 2009.
    [102].夏德宏,王世均.水煤浆的应用特性及其测试方法[J].钢铁,1991(02):61-64,25.
    [103].夏德宏,王世均.水煤浆管道输送数学模型及其应用[J].北京科技大学学报,1990(06):528-534.
    [104]. Chao, T., D. Feng, Z. Fusheng, et al. Oil-water two-phase flow measurement with a V-cone meter in a horizontal pipe. in Instrumentation and Measurement Technology Conference,2009.12MTC'09. IEEE.2009.
    [105]. Metzner, A. B.,J. C. Reed. Flow of non-newtonian fluids-correlation of the laminar, transition, and turbulent-flow regions [J]. Aiche Journal,1955,1(4): 434-440.
    [106]. Kaushal, D. R., Y. Tomita,R. R. Dighade. Concentration at the pipe bottom at deposition velocity for transportation of commercial slurries through pipeline [J]. Powder Technology,2002,125(1):89-101.
    [107]. Poloski, A. P., H. E. Adkins, J. Abrefah, et al. Deposition Velocities of Newtonian and Non-Newtonian Slurries in Pipelines[R].2009:179p.
    [108]. Slatter, P. The Role of Rheology in the Pipelining of Mineral Slurries[J]. Mineral Processing and Extractive Metallurgy Review:An International Journal,1999, 20(1):281-300.
    [109].平成舫.水煤浆和液固悬浮液管输压力降的计算[J].煤化工,1988(02):48-56.
    [110].王旭宾.水煤浆管道输送压力降的计算方法探讨[J].煤化工,2004(03):24-27.
    [111]. Ahmad, F.,W. H. Al-Barakati. An approximate analytic solution of the Blasius problem[J]. Communications in Nonlinear Science and Numerical Simulation, 2009,14(4):1021-1024.
    [112]. Lin, J. A new approximate iteration solution of Blasius equation[J]. Communications in Nonlinear Science and Numerical Simulation,1999,4(2): 91-94.
    [113]. Ridha, A. On the three-dimensional alternative to the Blasius boundary-layer solution[J]. Comptes Rendus Mecanique,2005,333(10):768-772.
    [114]. Xia, Y. M.,Z. Q. Xu. Electromagnetic flowmeter measurement and numerical computation of laminar flow transport pipeline flow quantity [J]. Proceedings of the Second International Symposium on Electronic Commerce and Security, Vol Ii, 2009:169-173,544.
    [115]. Raptis, A. C.,S. Shuh-Haw. Ultrasonic Properties of Coal Slurries and Flow Measurements by Cross Correlation[J]. Sonics and Ultrasonics, IEEE Transactions on,1981,28(4):248-256.
    [116]. Barrett-Gultepe, M. A., M. E. Gultepe, J. L. McCarthy, et al. A study of steric stability of coal--water dispersions by ultrasonic absorption and velocity measurements [J]. Journal of Colloid and Interface Science,1989,132(1):144-160.
    [117].孟令杰,秦显燕,章名耀.水煤浆管内流动流量测量的研究[J].热能动力工程,1995(03).
    [118].司源.电磁流量计在德士古气化炉中的应用[J].黑龙江科技信息,2009(36):80.
    [119]. Soltani, F.,U. Yilmazer. Slip velocity and slip layer thickness in flow of concentrated suspensions [J]. Journal of Applied Polymer Science,1998,70(3): 515-522.
    [120].肖锡发,王世均.高浓度水煤浆管道输送滑移减阻试验研究[J].钢铁,1994(04):68-71.
    [121].王秋粉,陈良勇,任远等.水煤浆的滑移速度修正模型[J].洁净煤技术,2007(03):32-36.
    [122]. Shellhammer, D. M. An Optical Correlation Flowmeter For Pulp Stock[J]. Tappi, 1975,58(5):113-116.
    [123].向廷元,郑莹娜,黄南民等.纸浆光学相关流量计的研究[J].中国造纸,1991(03):37-43.
    [124].谢翠丽,陈康民.水煤浆管流的表观滑移流动研究[J].上海理工大学学报,2008(02):125-128.
    [125]. Liang-Min, W.,K. K. Shung. Adaptive pattern correlation for two-dimensional blood flow measurements[J]. Ultrasonics, Ferroelectrics and Frequency Control, IEEE Transactions on,1996,43(5):881-887.
    [126]. Fernandes, C. W., M. D. Bellar,M. M. Werneck. Cross-Correlation-Based Optical Flowmeter[J]. Instrumentation and Measurement, IEEE Transactions on,2010, 59(4):840-846.
    [127]. Van Vleck, J. H.,D. Middleton. The spectrum of clipped noise[J]. Proceedings of the Ieee,1966,54(1):2-19.
    [128]. Graham, A. J., B. S. Hudgins,P. A. Parker. Polarity Correlator for Conduction Velocity Measurement[J]. Biomedical Engineering, IEEE Transactions on,1984, BME-31(10):675-679.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700