用户名: 密码: 验证码:
焙烧钒矿脱硫剂的脱硫性能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国工业锅炉量大面广,随着其对环境污染的日趋严重,发展中小型锅炉脱硫技术,削减中小型锅炉的S02排放量和排放达标已成为工业锅炉行业一项刻不容缓的任务。湿法烟气脱硫技术(WFGD)作为一种相对较成熟、脱硫效率较高的技术,是目前世界上应用最广泛的一种烟气脱硫方法,而石灰石/石灰-石膏湿法烟气脱硫是控制二氧化硫排放的最常用方法,但该法存在结垢、堵塞、副产品销路困难等问题。另外,我国石煤钒矿资源丰富,多用于湿法冶金提钒技术领域,到目前为止国内外还尚未出现利用钒矿脱硫的报道。传统从石煤中提钒主要采用添加氯化钠氧化焙烧工艺,该工艺在生产过程中产生大量的Cl2、HCl、SO2等有害气体和废水,严重污染周边环境,同时钒收率低、能耗高。
     针对以上2个问题,本文进行了以无氯钠盐作焙烧添加剂,焙烧后的含钠钒矿先用于回收焙烧过程中产生的SO2气体,再用稀酸浸取提钒的新工艺可行性研究。对焙烧阶段、烟气回收处理阶段及酸浸提钒阶段各种影响因素进行了分析。
     研究结果表明,所用焙烧添加剂为新型环保复合添加剂无氯钠盐,添加量10%,适宜的焙烧温度为850℃,焙烧时间为2.5-3.0h。矿样的入炉温度宜低不宜高,尤其对大规模的工业生产来说,当连续作业时,应当控制入炉温度在200℃以下;当进气压降为3.0kPa,气体流量为2350m3·h-1左右,钒矿浆液pH值在4.5以上时,脱硫.效率持续稳定在90%左右,整个过程长达20min。脱硫率随吸收剂循环次数的增加而增加,2次循环比1次循环的脱硫率高3.5%。吸收塔运行约40min后,塔中钒的平均浸出率为20%左右,脱硫渣再用5%的稀硫酸浸取10h后浸取率可达到62%;V205的浸出率随H2SO4浓度的增加而提高,当H2SO4浓度为15%,常温下浸取10h后浸出率达到最大值70.01%,硫酸浓度再增加,浸出率反而有下降趋势。
     焙烧钒矿是一种较好的新型脱硫剂,脱硫渣可副产具有工业应用价值的五氧化二钒产品,并且解决了传统提钒工艺中钠离子废水对环境造成的污染问题。因此,该法是一种较好的资源化烟气脱硫方法,可应用于脱硫或湿法冶金等行业。
There are a lot of industrial boilers, and their distribution is very wide in our country. Along with their pollution to the atmosphere becoming more and more serious, developing desulfurization technologies of middle and small scale boilers and reducing emissions of sulfur oxides to the atmosphere has become an important and urgent work. Wet flue gas desulphurization technology(WFGD)as a relatively mature technology that has higher desulfurization efficiency, is the most widely used method in the world, and the most popular of which is the wet-type limestone/lime-gypsum process. Yet it often encounters problems such as fouling, clogging, and difficulty of selling the by-products during the system working. In China, especially in the southern provinces such as Hunan, Hubei, Zhejiang, Guizhou Province. There are abundant navajoite ore resources, which are often used in the field of hydrometallurgical technology, and there has not yet been reports of the use in desulfurization areas. In conventional technology, Vanadium Pentoxide(V2O5) is extracted from navajoite by roasting with adding sodium chloride. Large amounts of chlorine, hydrogen chloride, sulfur dioxide and other harmful gases and waste water produced in the process, simultaneously, the energy consumption is high, while the yield of vanadium is low.
     An innovative flue gas desulfurization (FGD) coupling process was proposed in this study to overcome the problems in wet-type limestone/lime processes which include fouling, clogging, and difficulty of selling the by-products and the problems in traditional process for vanadium extraction from navajoite ore such as excessive consumption of sulphuric acid and emissions of pollutants. The performance of a jet bubbling reactor(JBR) at pilot-scale was evaluated using navajoite ore produced in the process of extracting vanadium pentoxide as desulfurization absorbent.
     Results showed that roasting additives used in the process were the new environment-friendly chlorine-free sodium salt compound additives, the amount of adding additives was 10%, optimum calcination temperature was 850℃, roasting time was 2.5-3.0 hours. Temperature of putting ore sample into furnace should be controlled at lower temperature, especially for the large-scale industrial production, the temperature should be below 200℃; Navajoite ore slurry achieved better desulfurization performance than limestone slurry. When the inlet flue gas pressure drop was 3.0 kPa, the gas flow was about 2350 m·h-1 and the pH of the navajoite ore slurry was higher than 4.5, the desulfurization efficiency was stable about 90%; The SO2 removal efficiency appeared to increase along with the increasing of absorbent cycle-index. The efficiency of the second circulation was improved 3.5% compared to the first circulation; After an operating duration of 40 minutes, the leaching rate of vanadium pentoxide was about 20%, and reached 62% when the by-products were leached with 5% dilute sulphuric acid for 10 hours; The leaching rate of V2O5 improved along with the increasing of sulphuric acid concentration, and it could reach the maximum 70.01% when the sulphuric acid concentration was 15% and leaching time was 10 hours, however, the sulphuric acid concentration increased again, the leaching rate had a decreasing trend. The by-product from this process not only could be used to produce vanadium pentoxide which is a valuable industrial product, but also could significantly overcome the pollution problem existing in the traditional refining process of vanadium pentoxide when navajoite ore is used as the feed material. This FGD process using roasted navajoite slurry as absorbent is environmental sound and cost-effective, and shows the potential for application in the field of flue gas desulfurization as well as hydrometallurgy.
引文
[1]郝吉明,王书肖,陆永琪.燃煤二氧化硫污染控制技术手册.北京:化学工业出版社,2001,254-272,274-277
    [2]杨春平,曾光明,利光裕,等.中国燃煤锅炉烟气脱硫技术的发展前景.环境科学进展,1997,5(5):46-49
    [3]周生贤.2008年中国环境状况公报.http://jcs.mep.gov.cn/hjzl/zkgb/2008zkgb/, 2009-06-09
    [4]刘炳江,柴发合,樊元生,等.中国酸雨和二氧化硫污染控制区区划及实施政策研究.中国环境科学,1998,18(1):1-7
    [5]钟秦.燃煤烟气脱硫脱销技术及工程实例.北京:化学工业出版社,2007,24,102-115
    [6]陈鹏.中国高硫煤及其排放S02污染控制.煤炭转化,1998,21(3):1-6
    [7]魏先勋.环境工程设计手册.湖南:湖南科学技术出版社,2002:182-185
    [8]田贺忠,陆永祺,郝吉明,等.我国酸雨和二氧化硫污染控制历程及进展.中国电力,2001,34(3):51-56
    [9]易红宏,郝吉明,马红.中国应用经济手段控制二氧化硫排放的探讨.环境保护,2004,(8):36-39
    [10]刘宪兵.《燃煤二氧化硫排放污染防治技术政策》简介.中国环保产业,2002,(4):15-19
    [11]邱荣贵.北京大气环境质量与脱硫技术.节能与环保,2004,(1):20-23
    [12]冯玲,杨景玲,蔡树中.烟气脱硫技术的发展及应用现状.环境工程,1997,15(2):19-24
    [13]李秀荣,钟崇林.介绍几种日本国开发的新型脱硫设备,环境工程,1997,15(6):37-40
    [14]马双忱.烟气循环流化床脱硫技术实验研究:[华北电力大学博士学位论文].保定:华北电力大学热能工程,2002,7
    [15]Dou B L, Pan W G, Jin Q, et al. Prediction of SO2 removal efficiency for wet Flue Gas Desulfurization [J]. Energy Conversion and Management,2009,50(10): 2547-2553
    [16]Zheng Y J, Kiil S, Johnsson J E. Experimental investigation of a pilot-scale jet bubbling reactor for wet flue gas desulphurisation. Chemical Engineering Science,2003,58(20):4695-4703
    [17]杨晓燕,高永善.上海市二氧化硫污染控制对策和行动计划.上海环境科学,1999,18(7):293-295
    [18]陈东,林继发.湿法烟气脱硫技术简述.陕西环境,2003,10(5):32-34
    [19]孔火良,吴慧芳,金保升.燃煤电厂烟气脱硫技术及其主要工艺.煤矿环境保护,2002,16(6):22-28
    [20]Gao X, Guo R T, Ding H L, et al. Dissolution rate of limestone for wet flue gas desulfurization in the presence of sulfite. Journal of Hazardous Materials,2009, 168(2-3):1059-1064
    [21]Gomez A, Fueyo N, Tomas A. Detailed modelling of a flue-gas desulfurisation plant. Computers Chemical Engineering,2007,31(11):1419-1431
    [22]Gerard P, Segantini G, Vanderschuren J. Modeling of dilute sulfur dioxide absorption into calcium sulfite slurries. Chemical Engineering Science,1996, 51(12):3349-3358
    [23]李守信,纪立国,于军玲,等.石灰石-石膏湿法烟气脱硫工艺原理.华北电力大学学报,2002,29(4):91-94
    [24]郭东明.脱硫工程技术与设备.北京:化学工业出版社,2007,56-58
    [25]Lancia A, Musmarra D, Prisciandaro M, et al. Catalytic oxidation of calcium bisulfite in the wet limestone-gypsum flue gas desulfurization process. Chemical Engineering Science,1999,54(15-16):3019-3026
    [26]李玉平,谭天恩.双碱法烟气脱硫的基础研究.重庆环境科学,1999,21(5):49-52
    [27]童志权,陈昭琼,彭朝辉.钙-钙双碱法脱硫技术及其在工业中的应用.环境科学学报,2003,23(1):28-32
    [28]吴忠标,刘越,谭天恩.双碱法烟气脱硫工艺的研究.环境科学学报,2001,21(5):534-537
    [29]晏乃强,施耀,吴忠标,等.双碱法旋流板塔烟气脱硫工艺.环境科学,1998,19(5):72-74
    [30]Mo J S, Wu Z B, Cheng C J, et al. Oxidation inhibition of sulfite in dual alkali flue gas desulfurization system. Journal of Environmental Sciences,2007,19(2): 226-231
    [31]周菊华.海水脱硫技术及其发展.江苏锅炉,2007,(2):8-14
    [32]欧阳凌云,丁明,张龙.氨法与双碱法脱硫技术的比较.玻璃,2006,33(1):28-30,52
    [33]张爱萍.燃煤锅炉烟气氨法脱硫技术的应用.环境科学导刊,2009,28(2):58-61
    [34]王会串,尚俊法.氨法烟气脱硫技术在氮肥行业应用的探讨.氮肥技术,2009,30(3):17-18
    [35]Alonso L, Palacios J M, Garcia E, et al. Characterization of Mn and Cu oxides as regenerable sorbents for hot coal gas desulfurization. Fuel Processing Technology,2000,62(1):31-44
    [36]宁平,孙佩石,宋文彪.冶炼厂8O2软锰矿湿法脱硫研究.环境科学,1997,18(5):68-70,74
    [37]Su S J, Zhu X F, Liu Y J, et al. A pilot-scale jet bubbling reactor for wet flue gas desulfurization with pyrolusite. Journal of Environmental Sciences,2005,17(5): 827-831
    [38]郭翠香,朱晓帆,蒋文举,等.软锰矿烟气脱硫资源化工艺研究.四川环境,2002,21(1):27-31
    [39]朱晓帆,苏仕军,任志凌,等.软锰矿烟气脱硫研究.四川大学学报(工程科学版),2000,32(5):36-39
    [40]崔可,柴明,徐康富,等.回收法氧化镁湿法烟气脱硫机理和工艺基础研究.环境科学,2006,27(5):846-849
    [41]赵小勇,许轩,王睿,等.烟气脱硫技术进展.环境保护科学,2001,27(3):1-2
    [42]吴丹,郝久清,马学良.烟气脱硫技术的发展及其应用前景.抚顺石油学院学报,2003,23(1):37-41
    [43]Paul S F. Emissions Control through Dry Scrubbing. Environmental Progress, 1986,5(3):178-183
    [44]董勇.烟气脱硫循环流化床内物料分离循环的研究:[哈尔滨工业大学博士学位论文].哈尔滨:哈尔滨工业大学热能工程,2003,1-4
    [45]王凤东,张卫江.石灰石为脱硫剂喷雾干燥法烟气脱硫实验研究.化学工程,2003,31(4):61-63
    [46]Yang H M, Kim S S. Experimental Study on the Spray Characteristics in the Spray Drying Absorber. Environment Science Technology,2000,34(21): 4582-4586
    [47]潘朝群.喷雾干燥法烟气脱硫工艺评述.重庆环境科学,2003,25(8):43-46
    [48]Gutierrez F J, Ollero P, Cabanillas A, et al. A technical pilot plant assessment of flue gas desulfurisation in a circulating fluidized bed. Advances in Environmental Research,2002,7(1):73-85
    [49]Chu CT Y, Hwang S. J. Flue gas desulfurization in an internally circulating fluidized bed reactor. Powder Technology,2005,154(1):14-23
    [50]Zhang J, You C. F, Qi H. Y, et al. Effect of Solids Concentration Distribution on the Flue Gas Desulfurization Process. Environment Science Technology,2006, 40(12):4010-4015
    [51]高志平.气体悬浮吸收干法脱硫工艺.电力环境保护,2001,17(3):54-56
    [52]Yan K P, Li R N, Zhu T L, et al. A semi-wet technological process for flue gas desulfurization by corona discharges at an industrial scale. Chemical Engineering Journal,2006,116(2):139-147
    [53]张明,徐光.电子束深度氧化烟气净化技术.环境污染治理技术与设备,2004,5(5):72-74
    [54]曹玮,骆仲泱,徐飞,等.脉冲电晕放电协同烟气脱硫脱销试验研究.环境科学学报,2008,28(12):2487-2492
    [55]王广建,马智,秦永宁,等.等离子体法在烟气脱硫中应用进展.化学工业与工程,2007,24(3):266-271
    [56]漆明鉴.从石煤中提钒现状及前景.湿法冶金,1999,(4):1-10
    [57]刘安华,李辽沙,余亮.含钒固废提钒技术及展望.金属矿山,2003,(10):61-64
    [58]文友.钒的资源,应用,开发与展望.稀有金属与硬质合金,1996(1):51-55
    [59]《有色金属提取冶金手册》编辑委员会.有色金属提取冶金手册·稀有高熔点金属(下).北京:冶金工业出版社,2002,276-391
    [60]黄道鑫.提钒炼钢.北京:冶金工业出版社,2002,34-36
    [61]宾智勇.钒矿石无盐焙烧提取五氧化二钒试验.钢铁钒钛,2006,27(1):21-26
    [62]漆明鉴.酸浸法从石煤中提钒的中间试验研究.湿法冶金,2000,19(2):7-16
    [63]张中豪.钙化焙烧冶炼V2O5新工艺研究.新技术新工艺,1999,(3):23-24
    [64]张德芳.无污染提钒工艺试验研究.湖南有色金属,2005,21(6):16-17
    [65]张中豪,王彦恒.硅质钒矿氧化钙化焙烧提钒新工艺.化学世界,2000,(6):290-292
    [66]张萍,蒋馥华.苛化泥为焙烧添加剂从石煤提取五氧化二钒.稀有金属,2000,24(2):115-118
    [67]李晓健.酸浸-萃取工艺在石煤提钒工业中的设计与应用.湖南有色金属,2000,16(3):21-23
    [68]鲁兆伶.用酸法从石煤中提取五氧化二钒的试验研究与工业实践.湿法冶金,2002,21(4):175-183
    [69]沈喜恩.上饶八都石煤直接酸浸提钒工艺研究.江西煤炭科技,1997,(3):57-59
    [70]郑祥明,田学达,张小云,等.湿法提取石煤中钒的新工艺研究.湘潭大学学报(自然科学版),2003,25(1):43-45
    [71]朱联锡,朱晓帆.我国环保产业现状及市场急需重点产品.中国环境管理,2000,(3):28-30
    [72]蒋文举,赵君科,尹华强,等.烟气脱硫脱销技术手册.北京:化学工业出版社,2006,169,202-206
    [73]周至祥,段建中,薛建明.火电厂湿法烟气脱硫技术手册.北京:中国电力出版社,2006,107-121
    [74]杜谦.并流有序降膜组脱除烟气中SO2过程的研究:[哈尔滨工业大学博士学位论文].哈尔滨:哈尔滨工业大学,2004,12-14
    [75]何苏浩,项光明.石灰石/石灰-石膏湿法脱硫集中反应塔的比较.电力环境保护,2001,17(3):5-8
    [76]Tesarek P, Drchalova J, Kolisko J, et al. Flue gas desulfurization gypsum:Study of basic mechanical, hydric and thermal properties. Construction and Building Materials,2007,21(7):1500-1509
    [77]宾智勇.石煤提钒研究进展与五氧化二钒的市场状况.湖南有色金属,2006,22(1):16-20
    [78]王忠,王军.国内外五氧化二钒市场状况与分析.矿冶,2007,16(2):47-51
    [79]潘勇,于吉顺,.吴红丹.石煤提钒的工艺评价.矿业快报,2007,(4):10-13
    [80]谢更生,魏赫赫,张又飞,等.一种从石煤钒矿中提取五氧化二钒的方法.中国专利:CN 1899971A,2007-01-24
    [81]Palant A A, Bryukvin V A, Petrova V A. Liquid-Liquid Extraction of Vanadium(V)from Sulfate Media with Diisododecylamine. Russian Journal of Inorganic Chemistry,2007,52(6):963-968
    [82]Kozlov V A, Demidov A E. Chemical principles of a technology for making pure vanadium pentoxide. Metallurgist,2000,44(7-8):428-433
    [83]赵欣,甘海明,侯立臣,等.环栅式塔器进气装置.中国专利:CN 1513578A,2004-07-21
    [84]孟蕾,杨春平,甘海明,等.磷矿与石灰双循环脱硫的工艺性能.环境科学学报,2008,28(7):1354-1359
    [85]Meng L, Yang C P, Gan H M, et al. Pierced cylindrical gas inlet device for sulfur dioxide removal from waste gas streams. Separation and Purification Technology, 2008,63(1):86-91
    [86]吴婷,杨春平,甘海明,等.气动搅拌喷射鼓泡脱硫除尘吸收塔.环境工程,2008,26(2):10-12
    [87]孟蕾,姚欣建,甘海明,等.单切向环栅式喷射鼓泡进气脱硫装置的研究.化学工程,2007,35(3):6-9
    [88]Moskalyk R R, Alfantazi A M. Processing of vanadium:a review. Minerals Engineering,2003, (16):793-795
    [89]Ozer A K, Gulabolu M S, Bayrakceken S, et al. Flue gas desulfurization with phosphate rock in a fluidized bed. Fuel,2002,81(1):41-49
    [90]Zeng L, Li Q G, Xiao L S. Extraction of vanadium from the leach solution of stone coal using ion exchange resin. Hydrometallurgy,2009,97(3-4):194-197
    [91]He D S, Feng Q M, Zhang G F, et al. An environmentally-friendly technology of vanadium extraction from stone coal. Minerals Engineering,2007,20(12): 1184-1186
    [92]Gur'eva R F, Savvin S B. Selective sorption-spectrometric determination of nanogram amounts of vanadium(IV) and vanadium(V). Journal of Analytical Chemistry,2001,56(10):901-904
    [93]邴桔.从石煤中提取五氧化二钒的工艺研究:[中南大学硕士学位论文].长沙:中南大学冶金物理化学,2007,26-28
    [94]王新文,雷兆敏,段铭有,等.从废钒催化剂中回收精制五氧化二钒的试验研究.硫酸工业,1998,(2):47-51

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700