用户名: 密码: 验证码:
基于综合效益评价的陶瓷产品全生命周期理论研究及应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
建筑材料工业是重要的基础材料工业和原材料工业。近年来,经济的高速发展以及大规模的基础设施建设虽然推动了传统建筑材料的发展,但是也带来了资源过度消耗、能源短缺和环境污染等一系列问题。陶瓷是重要的建筑材料。近些年来,我国陶瓷制造业取得了较大的发展,自1993年来生产和出口一直位居世界首位,但在热耗、电耗、污染物排放等指标方面同国际先进水平仍存在较大的差距。热工过程是实现节能、降耗、减少污染物排放的关键过程,也是生产优质产品的重要保证,因此开展热工过程关键技术的研究不仅能促进我国陶瓷制造技术的发展,增强我国陶瓷装备和陶瓷产品的国际竞争力,而且对实现我国陶瓷制造行业的节能、降耗、清洁生产发展目标也具有重要的现实意义。
     本文基于陶瓷行业的国内外研究现状,针对陶瓷产品综合效益相关的理论及其若干关键问题进行了深入研究,主要内容如下:
     (1)研究了陶瓷烧成的工艺过程,分析了窑炉内流体流动、传热、传质和物理、化学反应等要素以及它们之间相互作用机理,结合烧成过程的建模方法,根据实际工况,推导了窑炉内的换热与气体流动方程,建立了烧成过程的广义数学模型,并确定了窑内气体流动与传热控制方程及其离散方法。在此基础上,构建了基于CFD的陶瓷窑炉热工过程建模与仿真平台。
     (2)研究了陶瓷热工生产过程的特点,分析了基于机理建模的局限性,考虑到陶瓷烧成过程具有强非线性、强耦合性、不确定性和大滞后性的特点,建立了基于动态优化的陶瓷烧成过程炉温预测模型,并通过改进的学习算法取得了较高的预测精度,实现了预测模型的自适应性。
     (3)探讨了建筑陶瓷产品全生命周期理论,提出并分析了绿色陶瓷的生态友好性、美学艺术性和经济性这三大基本要素和特点;研究了建筑陶瓷产品生命周期评价LCA(Life Cycle Assessment LCA)的特殊性,并根据ISO14040系列标准提供的生命周期评价的技术基础,评价了我国建筑陶瓷产品全生命周期的环境表现;分析了基于全生命周期的建筑陶瓷涉及的生命周期成本构成,提出把建筑陶瓷生命周期成本分为生命周期财务成本和生命周期环境成本,并分别建立了各成本构成的相应计算方法和计算公式;根据建筑陶瓷全生命周期,建立了建筑陶瓷生命周期成本分析的流程。
     (4)研究了生命周期评价LCA与生命周期成本LCC (life cycle cost LCC)的集成框架,提出了基于时间系数矩阵的清单分析的集成算法;构建了LCA与LCC集成评价体系并应用于建筑陶瓷综合效益评价,探讨了相关指标权重的确定方法,从经济成本、能源消耗和环境排放三个层面出发,将主观赋权法与客观赋权法结合起来,提出了集成模糊层次分析法与信息熵权法评价指标权重的方法,全面细致地讨论了指标权重的计算过程;提出了根据全生命周期中财务成本最小、生命周期环境排放最小、美观性能最优和能源消耗最少这四个目标,并确立了基于全生命周期的建筑陶瓷产品综合效益的多目标优化方法。
Building material industry is an important basic material industry and raw material industry. In recent years, the rapid development of the economy, as well as large-scale infrastructural construction are promoting the development of the traditional building materials. But it also brings the resources consumption, energy shortages and pollution problems. Ceramics are important building materials. Recently ceramic manufacturing industry is developed very quickly in our country. Although the production and export of ceramics have been ranked first in the world since 1993, but heat consumption, power consumption, pollutants emissions etc. are concerned, there is still a large gap compared with the advanced international level. Thermal process is the key for saving energy, reducing consumption and decreasing the pollutants emission, and also an important guarantee of high quality product. Therefore the research on thermal process technology not only may promote the development of ceramic manufacturing technology, enhance international competitiveness of our ceramic industry and ceramic products, and also have important practical significance for saving energy, reducing consumption, clean production in ceramic industry.
     Based on the situation of the ceramic industry all over the world, the theory and application to the evaluation of the ceramic products'comprehensive benefit have been studied in this doctoral dissertation. The main contents are as following:
     (1) The firing process of ceramic manufacturing is studied, and the fluid flow, heat transfer, mass transfer, physico-chemical changes in the kiln, as well as the interaction mechanism between them are analyzed. According to the actual operating conditions, combined with the modeling of firing process, the equations of gas flow and heat transfer in the kiln are derived, the generalized mathematical model of firing process are established, and the control and discretion methods used for the calculation of the gas flow and heat transfer in the kiln are determined. On the above analyses, by means of CFD, the modeling and simulation platform for firing process in ceramic kiln are proposed.
     (2) The thermal characteristics in ceramic firing process are studied, and the limitation of modeling based on mechanism is analyzed. Considering the characteristics of the strong nonlinear, strong coupling, uncertainty and big lag in kiln thermal process, based on the dynamic optimization theory, the model is established to predict the temperatures in the kiln. Through improved learning algorithm, higher forecast accuracy is achieved, and the adaptability of forecasting model.is realized.
     (3) The life cycle theory of building ceramics is discussed. As three fundamental, elements and characteristics, ecology friendship, aesthetics and economy are proposed and expounded. The specificity of LCA (life cycle assessment) for building ceramics is studied, according to the technical framework of LCA in ISO14040 series standard, the life cycle environmental performance of building ceramics in our country is assessed.
     The constitution of LCC (life cycle cost) related to building ceramic life cycle is analyzed. It is proposed that building ceramic life cycle cost is composed of life cycle financial cost and life cycle environmental cost. The methods and formulas to calculate these costs are also established. According to the general building ceramic life cycle, the analysis process of building ceramic life cycle cost is presented
     (4) The integrated framework of LCA and LCC is studied, and based on timing matrix, the algorithm for the inventory analysis is proposed. The integrated evaluation index system of LCA and LCC is established and applied to the evaluation of the ceramic products'comprehensive benefit. The index weights of this system are discussed. Based on FAHP (Fuzzy Analytic Hierarchy Process) and Entropy, combining the subjective weighting method and objective weighting method, the setting method of index weights in this system is proposed from three aspects (economic cost, energy consumption and emission of environmental). The calculation of the weights is demonstrated in detail; the objects (minimizing life cycle financial cost, minimizing life cycle environmental emission, artistic performance optimum and minimizing life cycle energy consumption) are put forward.
     Based on the life cycle of the building ceramic products'comprehensive benefit, the multi-objective optimization method is established finally.
引文
[1]黄宾.陶瓷行业的节能减排与绿色陶瓷的发展[J].佛山陶瓷,2008(8):1-4
    [2]搜狐网:2010首届中国陶瓷产区科学发展圆桌论坛.[EB/OL].2010-07-09 http://home.focus.cn/news/2010-07-09/180294.html
    [3]曾令可,邓伟强,刘艳春.陶瓷工业能耗的现状及节能技术措施[J].陶瓷学报,2006,27(1):109-115
    [4]国家发改委.“十一五”十大重点节能工程实施意见[M].2006
    [5]陈帆.现代陶瓷工业技术装备[M].北京:中国建材工业出版社,1995
    [6]卢少华.节能减排——陶瓷装备制造业面临的挑战与机遇[J].武汉理工大学学报,2010,32(4):70-75
    [7]王世峰.隧道窑计算机模拟方法与运行状态模拟试验的研究[D].济南:山东大学,2007
    [8]曾令可,邓伟强.陶瓷工业的能耗的现状及节能技术措施[J].陶瓷学报,2006,(2):1-4
    [9]杨辉,郭兴忠,樊先平等.我国建筑陶瓷的发展现状及节能减排[J].中国陶瓷工业,2009,16(2):20-23
    [10]美国开发出多功能的数字化陶瓷窑炉[EB/OL].2005-11-29 http://www.cutech.edu.cn/ShowArticle.asp?ArticleID=11947
    [11]孔先.我国工业炉窑节能发展方向[J].冶金能源,2003,(5):36-38
    [12]陶文铨,林汉涛等.传热学的研究与进展[M].北京:高等教育出版社,1995
    [13]L.Fischer, H.Marting. Friction Factors for Fully Developed Laminar Flow in Ducts Confined by Corrugated Parallel Walls[J]. Heat Mass Transfer.1997,40 (3):635-639
    [14]C.X.Lin, P.Zhang, M.A.Ebadian. Laminar Forced Convection in the Entrance Region of Helical Pipe[J]. Heat Mass Transfer,1997,40(14):3293-3304
    [15]B.Youn, A.F.Mills. Flow of Supercritical Hydrogen in a Uniformly Heated Circular Tube[J]. Numerical Heat Transfer, Part A.1993,24(1):1-24
    [16]F.Moukalled,S.Acharya,Forced Convection Heat Transfer in A Finitely Conducting Externally Finned Pipe[J]. Heat Transfer,1988,110(3):571-576
    [17]B.Wang, D.L. XU, K.W. CHU,A.B.YU. Numerical study of gas-solid flow in a cyclone separator[J].Applied Mathematical Modeling,2006,30:1326-1342
    [18]Atakan Avci,Irfan Karagoz. Effects of flow and geometrical parameters on the collection efficiency in cyclone separators[J]. Aerosol Science,2003,34:937-955
    [19]Robert E.Shenk, FLSmidth Inc.. Balancing the Desire to Reduce Operating Costs with Increasing Stringent Emission Rates[J]. IEEE,2006:306-315
    [20]Marcio A.Martins, Leandro S.Oliveira, Adriana S.Franca. Modeling and Simulation of Petroleum Coke Calcination in Rotary Kilns[J]. Fuel,2001,80:1611-1622
    [21]颜汉军.陶瓷工业中辊道窑的应用[J].陶瓷工程,2001(1):30-40
    [22]曾令可,程小苏,张明等.宽断面隧道窑计算机模拟及结构的优化系统[J].中国陶瓷工业,1999,6(4):1-3.
    [23]王惠,曾令可.陶瓷窑炉控制与人工神经网络[J].中国陶瓷,2000,36(1):33-36.
    [24]曾令可,程小苏,李满喜等.宽断面隧道窑冷却带的计算机模拟[J].陶瓷.2000(2):7-11
    [25]李竟先,吴基球,尹虹等.宽断面隧道窑综合热耗的计算机仿真[J].中国陶瓷工业,2001,8(3):11-14
    [26]欧俭平,吴道洪,肖泽强.蓄热式加热炉内流体流动、燃烧与传热的数值模拟[J].工业炉,2003(1):44-47
    [27]欧俭平.高温空气燃烧技术在冶金热工设备上的应用及数值仿真和优化研究[D].长沙:中南大学,2004
    [28]仇中柱,徐吉浣.无焰燃烧炉膛传热的三维数值模拟[J].同济大学学报,2004,32(3):322-326
    [29]李萍,曾令可,税安泽.基于VB的窑墙温度场数值模拟程序的设计[J].工业炉,2006,28(2):36-39
    [30]吴建青,刘振群.梭式窑炉对流换热的模拟研究[J].硅酸盐学报,1997,25(2):152-156
    [31]孙巍.陶瓷辊道窑高温带流场的数值模拟研究[D].武汉:武汉理工大学,2006
    [32]Wenbi Rao, Peng Li. Particle Swarm Optimization of Ceramic Roller Kiln Temperature Field Uniformity Using Computational Fluid Dynamics Tools[C].2009 International Conference on Computational Intelligence and Natural Computing,2009:421-424
    [33]谢炳豪.辊道窑热平衡测试数据分析及节能方向探讨[J].佛山陶瓷,2007(2):11-14
    [34]王嵩,吴刚,薛美盛,张培仁,孙德敏.辊道窑现场总线计算机控制系统[J].自动化仪表,2004,25(1):55-58
    [35]陈作炳,赵燕.基于高速以太网现场总线的陶瓷辊道窑控制系统[J].国内外机电一体化技术,2006,(6):29-31
    [36]陈作炳,金雪丰,黄湘国等.基于CAN总线的陶瓷辊道窑控制系统[J].中国仪器仪表,2005,(1):51-53
    [37]朱永红,姚杰,鲁昌龙.信息融合技术在陶瓷窑炉智能控制系统中的应用[J].中国陶瓷,2007,43(2):11-14
    [38]Chai Tian-You, Yue Heng. Multivariable intelligent decoupling control system and its application [J].Zidonghua Xuebao/Acta Automatica Sinica,2005,31(1):123-131
    [39]闵娟.解耦技术在工业窑炉控制系统中的应用研究[D].武汉:武汉理工大学,2005
    [40]郝建.蓄热式加热炉脉冲燃烧技术及换向周期优化的应用研究[D].沈阳:东北大学,2005
    [41]高晖,郭烈锦,顾汉祥.梭式窑空气动力模型中紊流流动与对流传热的数值模拟研究[J1.硅酸盐学报,2002,30(5):602-607
    [42]H.M. Yao, H.B. Vuthaluru, M.O. Tade,et al. Artificial neural network-based prediction of hydrogen content of coal in power station boilers[J]. Fuel,2005,84(12-13):1535-1542
    [43]Nguyen Quoc Dinh, Nitin V. Afzulpurkar.Neuro-fuzzy MIMO nonlinear control for ceramic roller kiln[J]. Simulation Modeling Practice and Theory,2007,15:1239-1258.
    [44]Vladimir Havlena, Jii Findejs. Application of model predictive control to advanced combustion control [J]. Control Engineering Practice,2005,13(6):671-680
    [45]Wang J, Thomas G. A model based predictive control scheme for nonlinear process[C].American Control Conference.2006, (1-12):4842-4847
    [46]M. Leskens, L.B.M. van Kessel, O.H. Bosgra. Model predictive control as a tool for improving the process operation of MSW combustion plants[J]. Waste Management, 2005,25(8):788-798
    [47]Carlos Romero, Xianchang Li, Shahla Keyvan, et al. Spectrometer-based combustion monitoring for flame stoichiometry and temperature control[J]. Applied Thermal Engineering,2005,25(5-6):659-676
    [48]T.V. Breikin, I.D. Herbert, S.K. Kim, et al.Staged combustion control design for aero engines [J]. Control Engineering Practice,2006,14(4):387-396
    [49]Waldemar Wojcik, Tomasz Golec, Mariusz Kalita. Application of genetic algorithms for control of combustion process[C]. Proceedings of SPIE-The International Society for Optical Engineering, v 5576, Lightguides and their Applications II, TAL 2003,2004:373-376
    [50]C. Chen, Ni-Bin Chang, Jeng-Chung Chen. GA-based fuzzy neural controller design for municipal incinerators [J]. Fuzzy Sets and Systems,2002,129(3):343-369
    [51]陈进,郭琼.陶瓷窑炉热效率在线自寻最优控制方法[J].佛山陶瓷,2004,(4):11-13
    [52]朱永红,姚杰,鲁昌龙.信息融合技术在陶瓷窑炉智能控制系统中的应用[J].中国陶瓷,2007,43(2):11-14
    [53]http://www.kromschroeder.de/[EB/OL]
    [54]刘耀林,张舜德,李华.喷雾器喷嘴流场仿真研究[J].轻工机械.2008,26(1):20-24
    [55]李伟锋,孙志刚,刘海峰,王辅臣,于遵宏.两喷嘴对置撞击流驻点偏移规律[J].化工学报, 2008,59(1):46-52
    [56]孔德英.发动机燃烧室喷嘴油雾角度的图像仿真实验研究[D].西安:西北工业大学,2007
    [57]彭云晖,林宇震,许全宏,刘高恩.双旋流空气雾化喷嘴喷雾、流动和燃烧性能[J].航空学报,2008,29(1):1-14
    [58]张晓东,董志国,郝鹏飞,李元宗.扁平扇形喷嘴设计及试验研究[J].机械设计与研究,2008,24(3):89-92
    [59]饶文涛,杜军,张鹤声,等.蓄热烧嘴结构优化数值模拟研究[J].工业炉,2002,24(2):5-8
    [60]袁宝荣,聂柞仁,狄向华.中国化石能源生产的生命周期清单-Ⅱ.生命周期清单的编制结果[J].现代化工,2006,26(40):59-61
    [61]狄向华.资源与材料生命周期分析中若干基础问题的研究[D].北京:北京工业大学,2005
    [62]杨倩苗.建筑产品的全生命周期环境影响定量评价[D].天津:天津大学,2009
    [63]陈庆文,马晓茜.建筑陶瓷的生命周期评价[J].中国陶瓷,2008,44(7):36-39
    [64]夏光华,廖润华,程锦崇,魏恒勇,邓启煌.日用陶瓷的清洁生产与生命周期评价[J].中国陶瓷业,2004,11(4):28-31
    [65]夏光华,廖润华,程锦崇,魏恒勇.日用陶瓷实施清洁生产技术的评价[J].环境污染治理技术与设备,2004,5(9):76-79
    [66]李晓鹏.我国卫生陶瓷生命周期影响评价研究[D].北京:北京工业大学,2009
    [67]庄顺南,王景福.陶瓷生产机械化与自动化[M].北京:轻工业出版社,1986
    [68]《陶瓷墙地砖生产编写组》.陶瓷墙地砖生产[M].北京:中国建材工业出版社,1985
    [69]宋耑,蒋欣之.陶瓷窑炉热工分析与模拟[M].北京:轻工业出版社,1993
    [70]卢荣德,陈宗海,王雷.思维模拟在复杂工业过程建模中应用的综述[J].信息与控制,2002,31(4):346-352
    [71]Lee C. C.Fuzzy logic in control system:fuzzy logic controller-part[J].IEEE Transaction on SMC,1990,20(2):404-435
    [72]廖迎新.基于群体搜索策略的热轧加热炉多模型优化控制研究[D].长沙:中南大学,2006
    [73]郭琼.陶瓷窑控制系统的设计与仿真[D].武汉:武汉理工大学.2004
    [74]Kalogirou S. A. Artificial intelligence for the modeling and control of combustion processes: a review[J]. Progress in Energy and Combustion Science,2003,29:515-566
    [75]Krstic M, Kanellakopoulos L, Kokotovic P.Nonlinear and adaptive control design[M]. New York:Wiley,1995
    [76]Platt J. A resource-allocating network for function interpolation[J]. Neural computer[J].1991(3):213-225
    [77]洪伟荣.大规模动态过程优化的拟序贯算法研究[D].杭州:浙江大学,2005
    [78]张乃尧,阎平凡.神经网络与模糊控制[M].北京:清华大学出版社,1998
    [79]李洪斌.基于神经网络的藻类水华建模与预测研究[D].武汉:华中科技大学,2007
    [80]Van Rooij A. J. R, Jain L. C., Johnson R. P. Neural network training using genetic algorithms[M].Singapore:World Scientific Publishing Co. Pte. Ltd.,1998
    [81]Nikhil R. P., Srimanta P., Jyotirmoy D., et al. SOFM-MLP:a hybrid neural network for atmospheric temperature prediction [J]. IEEE Transactions on Geoscience and Remote Sensing,2003,41 (12):2783-2791
    [82]Grznar J., Prasad S, Tata J. Neural networks and organizational systems:Modeling non-linear relationships[J]. European Journal of Operational Research,2007,181(2):939-955.
    [83]王耀南.智能控制系统·模糊逻辑·专家系统.神经网络控制[M].长沙:湖南大学出版社,1996
    [84]周志华,曹存根.神经网络及应用[M].北京:清华大学出版社,2004
    [85]陈仕欢.计算机辅助烧结技术的理论分析及其优化技术[D].天津:天津大学,2004
    [86]Ma X.X., He X.J., Zhao D.Q., Wang X.Y. Influence of B-P networks hidden layer on water quality evaluation result[J]. International Journal Hydroelectric Energy,2002,20:16-18
    [87]Xiong L.H., Guo S.L., Wang Y. Study and application of artificial neural network in real time flood forecasting[J]. International Journal Hydroelectric Energy,2002,20:28-31
    [88]Rivals I., Personnaz L. On cross validation for model selection[J]. Neural computation,1999, 11:863-870
    [89]Girosi F., Jones M. and Poggio T. Regularization theory and neural networks architectures [J]. Neural computation,1995,7:219-269
    [90]Rumelhart,D.E.,Hinton,G.E.,Williams, R.J. Learning representations by back propagation errors[J]. Nature,1986,323(6188):533-536
    [91]Weigend, A.S.,Huberman,B.A., Rumelhart, D.E. Predicting the future:A connectionist approach[J].International Journal of Neural Systems,1990,1:193-209
    [92]Cottrell, M., Girard, B., Girard, Y., Mangeas, M., Muller, C. Neural modeling for time series:a statistical stepwise method for weight elimination[J].IEEE Transactions on Neural Networks,1995,6(6):1355-1364
    [93]Broomhead D. S., Lowe D. Multi-variable functional interpolation and adaptive Networks[J]. Complex System,1988,2:321-55
    [94]Yao X.J., Zhang X.Y., Zhang R.S. et al. Prediction of enthalpy of alkanes by the use of radial basis function neural networks[J]. Computers and Chemistry,2001,25:475-482
    [95]Rivas V.M., Merelo J.J., Castillo P.A. et al. Evolving RBF neural networks for time-series forecasting with EvRBF[J]. Information Sciences,2004,165:207-220
    [96]Sheta A.F. and Jong K. Time-series forecasting using GA-tuned radial basis functions [J]. Information Sciences,2001,133(3-4):221-228
    [97]Chen, S., Cowan C.F.N., and Grant P. M. Orthogonal Least Squares Learning Algorithm for Radial Basis Function Networks[J]. IEEE Transactions on Neural Networks,1991,2(2): 302-309
    [98]王璐,潘紫微,叶金杰.基于EKF训练的RBF神经网络及其故障诊断应用[J].振动、测试与诊断,2008,28(4):358-361
    [99]Moody J E, Darken C. Fast Learning in Networks of Locally Tuned Processing Units [J]. Neural Computation,1989,1(2):281-294
    [100]LEE S, KIL R M. A Gaussian potential function network with hierarchically self-organizing learning[J]. Neural Networks,1991,4 (2):207-224
    [101]J Platt. A resource-allocating network for function interpolation[J]. Neural Computation. 1991,3(2):213-225
    [102]Kadirkamanathan V, Niranjan M. A function estimation approach to sequential learning with neural networks[J]. Neural Computation.1993,5(4):954-975
    [103]Lu Yingwei, N Sundararajan, P Saratchandran. A sequential learning scheme for function approximation using minimal radial function neural networks [J]. Neural Computation.1997, 9(2):461-478
    [104]杨戈,吕剑虹,刘志远.一种新型RBF网络序贯学习算法[J].中国科学E辑工程科学材料科学,2004,34(7):763-775
    [105]G.-B. Huang, P. Saratchandran, N. Sundararajan, A generalized growing and pruning RBF (GGAP-RBF) neural network for function approximation [J]. IEEE Trans. Neural Networks, 2005,16 (1):57-67
    [106]王君.模糊演化卡尔曼滤波及其在RBF神经网络中的应用[D].武汉:中国地质大学,2007
    [107]张和明,熊光楞.制造企业的产品生命周期管理[M].北京:清华出版社,2006
    [108]刘相华,王国栋,杜林秀.钢材性能柔性化与柔性轧制技术[J].钢铁,2006,41(11):32-36
    [109]李蓓蓓.生命周期分析技术框架[J].辽宁城乡环境科技,2001,21(6):7-9
    [110]GB/T24042-2002(ISO 14042:2000).环境管理生命周期评价生命周期影响评价[S],2002
    [111]王静,宾鸿赞.产品生命周期评价及其指标体系的建立[J].机械设计与制造工程,2001,30(2):1-2
    [112]曹华林.产品生命周期评价(LCA)的理论及方法研究[J].西南民族大学学报,2004,25(2): 281-284
    [113]中国建筑材料工业规划研究院.绿色建筑材料——发展与政策研究[M].北京:中国建材工业出版社,2010
    [114]曾令可.陶瓷废料回收利用技术[M].北京:化学工业出版,2010
    [115]张培.钢铁产品生命周期影响评价方法[J].安徽工业大学学报,2007,24(1):84-88
    [116]钱易,唐孝炎.环境保护与可持续发展[M].北京:高等教育出版社,2000
    [117]杨建新,徐成,王如松.产品生命周期评价方法及应用[M].北京:气象出版社.2002
    [118]邵新宇,邓超,吴军,王丽琴.产品设计中生命周期评价与生命周期成本的集成与优化[J].机械工程学报,2008,44(9):13-20
    [119]张杰,唐宏,苏凯.效能评估方法研究[M].北京:国防工业出版社,2009
    [120]Keeney R L,Raiffa H. Decision with Multiple Objectives:Preferences and Value Tradeoffs[M].New York:Wiley,1976
    [121]谭阳.层次分析法中指数标度与保序性研究[M].南宁:广西大学出版社,2002
    [122]Rosenbloom E S.A probabilistic interpretation of the final ranking in AHP[J].European Journal of Operational Research,1996
    [123]熊立,梁樑,王国华.层次分析法中数字标度的选择与评价方法研究[J].系统工程理论与实践,2005(3):72-79
    [124]傅毓维,张凌.预测决策理论与方法[M].哈尔滨:哈尔滨工程大学出版社,2003
    [125]翟雪梅,李长玲.德尔菲法及其在创建知识共享型企业中的应用[J].现代情报,2009(9):185-188
    [126]赵立果,栾晓慧,朱显英.基于权重分配的德尔菲法的企业运营效率评价[J].沿海企业与科技,2008(11):35-36
    [127]Yu P.S., Chen S.T., Chang LF. Support vector regression for real-time flood stage forecasting[J]. Hydrol,2006(328),704-716
    [128]徐泽水,达庆利.多属性决策的组合赋权方法研究[J].中国管理科学,2000,10(2):84-88
    [129]Athanasios I. Chatzimouratidis, Petros A.Pilavachi. Objective and subjective evaluation of power plants and their non-radioactive emissions using the analytic hierarchy process[J].Energy Policy,2007(35):4027-4038
    [130]Lidija Zadnik Stirn. Integrating the fuzzy analytic hierarchy process with dynamic programming approach for determining the optimal forest management decisions[J].Ecological Modelling,2006(194):296-305
    [131]王莲芬.层次分析法引论[M].北京:中国人民大学出版社,1990
    [132]M.M.Kablan. Decision support for energy conservation promotion:an analytic hierarchy process approach[J].Energy Policy,2004 (32):1151-1158
    [133]Laarhoven P.J.M, Pedrycz W. A fuzzy extension of Saaty's priority theory[J]. Fuzzy Sets Syst,1983,11:229-241.
    [134]Zadeh L.A. Fuzzy sets[J]. Information and Control,1965,8:338-353
    [135]Buckley J.J. Fuzzy hierarchical analysis[J].Fuzzy Sets Syst,1985,17:233-247
    [136]董兴武.公路网与经济发展层次适应性研究[D].哈尔滨:哈尔滨工业大学.2005年

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700