用户名: 密码: 验证码:
小型无人直升机非线性建模与控制算法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
鉴于小型无人直升机在军事和民用领域的巨大应用前景,本文以模型直升机为平台,设计了一个小型无人直升机实验系统,重点对小型无人直升机的非线性动力学模型和非线性控制算法展开了研究,探索了小型无人直升机自主飞行控制算法的设计过程,目标是建立一个既可以保证飞行安全又可以充分发挥小型无人直升机性能的控制系统,为进一步研究小型无人直升机智能控制系统奠定基础。研究的主要内容包括以下几个方面:
     小型无人直升机非线性动力学模型。根据叶素理论和Rotor Disk模型,详细推导了与主旋翼和稳定翼相关的空气动力模型和挥舞运动模型;根据三维非线性Pitt/Peter模型推导了直升机在垂直飞行或悬停飞行时的旋翼入流动力学方程;研究了稳定翼动力学模型,及其与主旋翼之间的耦合关系;应用系统辨识的方法,对含有AVCS(Angular Vector Control System)电子陀螺仪的尾旋翼系统建立了简单的模型。最终建立了一个包含位置、线速度、姿态、角速度、主旋翼入流状态以及主旋翼和稳定翼挥舞运动状态的小型无人直升机非线性动力学模型。
     小型无人直升机姿态控制算法。针对模型直升机在姿态控制系统实验平台上的特点,建立了姿态控制实验系统的非线性动力学模型,通过系统辨识的方法确定出了模型中的未知参数。根据实际应用的实时性要求,基于该模型设计了EKF(Extended Kalman Filter)状态观测器。证明了可以通过动态反馈线性化技术,将包含主旋翼和稳定翼挥舞运动状态的姿态动力学系统转换成为一个可控的线性系统。为了减少执行机构的饱和对闭环系统性能的影响,设计了一个启发式控制系统结构。研究了不确性对系统性能的影响,分析了H∞控制器在实际应用中的不足之处。然后,提出了一个ECID(Extended Convex Integrated Design)控制器设计方法,将其应用到反馈线性化后的系统中,设计了一个可以满足多个闭环性能指标的无人直升机姿态控制算法,最后通过实验验证了该算法的有效性和鲁棒性。
     小型无人直升机悬停飞行控制算法。对小型无人直升机复杂的理论模型进行了必要的简化,通过系统辨识的方法确定出了模型中的未知参数。基于该模型设计了一个UKF(Unscented Kalman Filter)状态观测器,在线实验验证了该算法的有效性。然后,证明了可以通过动态反馈线性化技术将该非线性系统转换成为线性系统,通过理论推导,证明了小型直升机的机械结构保证了其姿态动力学系统的零动态本质上是稳定的。设计了启发式串级控制系统结构,以解决系统中奇异点对飞行安全性的影响。最后,根据ECID控制器设计方法设计了一个小型无人直升机悬停飞行控制算法,仿真实验说明了该控制算法的鲁棒性。
The small-scale unmanned helicopter has wide prospective of applications in many areas, and is being extensively studied all over the world. This dissertation investigates the nonlinear modeling and controller design of small-scale helicopters and develops an experimental setup to validate the model and the controllers. The ultimate goal is to develop an autonomous flight control system that maximizes the performance of small-scale unmanned helicopters as well as guarantees the flight safety. The main contribution of the dissertation is as follows:
     First, we developed a nonlinear model of a small-scale helicopter near hovering. On the basis of the Blade Element theory and Rotor Disk model, the aerodynamics and the flapping dynamics of the main rotor are modeled. Then, the main rotor inflow dynamics is modeled based on the three-state nonlinear Pitt/Peters model. To characterize the model helicopter, the dynamics of the stabilizer bar and the tail rotor with the AVCS (Angular Vector Control System) electronic gyro are also studied in detail.
     Next, we developed a nonlinear model of the helicopter on a test bench when the flapping states of the main rotor and the stabilizer bar are considered. The test bench is constructed for experimental testing of the attitude control of the small-scale helicopter. The unknown model parameters are estimated using the EKF (Extended Kalman Filter) with flight test data of the helicopter operating on the test bench. Then, it is proved that the nonlinear model can be globally linearized using the dynamic feedback linearization technique. A heuristic strategy is proposed to reduce the effect of the saturation actuators on the closed-loop performance. Moreover, a robust performance criterion for the experimental system is introduced. Using the Convex Integrated Design (CID) method, it is possible to design a single closed-loop controller that satisfies a set of multiple conflicting performance specifications. However, direct use of the CID method leads to a controller with complicated form which is not suitable for real-time implementation on the helicopter platform. So, we extended the standard CID method to a more general control system framework to solve the conflicting simultaneous performance design problem, which is referred to as ECID (Extended Convex Integrated Design) method. Compared with the standard CID design, the ECID procedure generates a relatively simple controller. Finally, the synthesized controller is tested by simulations and is validated on the experimental small-scale test helicopter. The experimental results demonstrate the expected performance of the proposed controller.
     Finally, in order to design a nonlinear controller for small-scale autonomous helicopters, an integrated nonlinear model of a small-scale helicopter for hovering control is developed, and the unknown parameters in the nonlinear model are estimated using the system identification method. To estimate the states in the nonlinear system by using the IMU and GPS sensors, an UKF (Unscented Kalman Filter) observer is designed, whose validity is confirmed by the flight experiments. It is demonstrated that the full nonlinear model can be converted into a controllable linear system via the dynamic feedback linearization technique, and its nonlinear attitude subsystem has a stable zero dynamics. In order to avoid the potential danger caused by the singularities in the feedback linearized system, a cascade control structure is proposed. Finally, a robust controller is designed by applying the ECID method to the cascade system, and simulations are carried out to show the good performance of the controller.
引文
[1]国际无人机系统协会和无人机分类[J].电子工程信息, 2005(6): 55.
    [2]吴建德.基于频域辨识的微小型无人直升机的建模与控制研究[D].杭州:浙江大学, 2007.
    [3]淳于江民,张珩.无人机的发展现状与展望[J].飞航导弹, 2005(2): 23-27.
    [4] Shakernia O, Sharp C S, R. Vidal, Shim D H, Ma Y, Sastry S. Multiple View Motion Estimation and Control for Landing an Unmanned Aerial Vehicle [C]. In Proceedings of the International Conference on Robotics and Automation, Washington, DC, 2002: 2793-2798.
    [5] Shim D H, Kim H J, Sastry S. Decentralized Nonlinear Model Predictive Control of Multiple Flying Robots in Dynamic Environments [C]. In Proceedings of the IEEE Conference on Decision and Control, Hawaii, 2003: 3621-3627.
    [6] Vidal R, Shakernia O, Kim H J, Shim H, Sastry S. Multi-Agent Probabilistic Pursuit-Evasion Games with Unmanned Ground and Aerial Vehicles [J]. IEEE Transactions on Robotics and Automation, 2002, 18(5): 662-669.
    [7] Kim H J, Vidal R, Shim D H, Shakernia O, Sastry S. A Hierarchical Approach to Probabilistic Pursuit-Evasion Games with Unmanned Ground and Aerial Vehicles [C]. In Proceedings of the IEEE Conference on Decision and Control, Orlando, Florida, 2001.
    [8] Clark L J. Robotic Helicopter Goes on a 360-degree Roll [EB/OL]. http://web.mit.edu/newsoffice/2002/copter-0213.html, 2002-02-13 / 2010-03-08.
    [9] Humphries M. Self-taught, AI-controlled Helicopter Flies over Stanford University [EB/OL]. http://www.geek.com/articles/gadgets/self-taught-ai-controlled- helicopter-flies-over-stanford-university-20080917/, 2008-09-17 / 2010-03-08.
    [10] HUMMINGBIRD [EB/OL]. http://sun-valley.stanford.edu/users/heli/.
    [11] Autonomous Helicopter Project [EB/OL]. http://www.cs.cmu.edu/afs/cs/ project/chopper/www/capability.html.
    [12] Sukhatme S H a G. Vision-Based Navigation Through Urban Canyons [J]. Journal of Field Robotics, 2009, 26(5): 431-452.
    [13] Hrabar S E. 3D Path Planning and Stereo-based Obstacle Avoidance for Rotorcraft UAVs [C]. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Nice, France, 2008: 807-814.
    [14] Hrabar S E, Corke P I, Sukhatme G S, Usher K, Roberts J M. Combined Optic-Flow and Stereo-Based Navigation of Urban Canyons for a UAV [C]. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots andSystems, Edmonton, Canada, 2005: 302-309.
    [15] Hrabar S E, Sukhatme G S. A Comparison of Two Camera Configurations For Optic-Flow Based Navigation of a UAV Through Urban Canyons [C]. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Sendai, Japan, 2004: 2673-2680.
    [16] Georgia Tech Aerial Robotics News [EB/OL]. http://controls.ae.gatech.edu /gtar/2008/, 2008-08-25 / 2010-03-08.
    [17]王建文.无人直升机状态估计算法研究[D].长沙:国防科学技术大学, 2008.
    [18]陈铭,胡继忠. M22小型无人直升机的设计特点[J].飞机设计, 2005(1): 70-74.
    [19]任沁源.基于视觉信息的微小型无人直升机地标识别与位姿估计研究[D].杭州:浙江大学, 2008.
    [20]常思哲.沈阳日报(2009.05.15):沈阳造出飞行机器人外观像袖珍型直升机[EB/OL]. http://www.sia.ac.cn/xwzx/mtjj/200905/t20090515_815735.html, 2009-05-15 / 2010-03-09.
    [21]高同跃.超小型无人直升机飞控系统及自主滞空飞行的研究[D].上海:上海大学, 2008.
    [22] Zein-Sabatto S, Zheng Y. Intelligent Flight Controllers for Helicopter Control [C]. In Proceedings of the International Conference on Neural Networks, Houston, 1997: 617-621.
    [23] Hamel P G, Kaletka J. Advances in Rotorcraft System Identification [J]. Progress in Aerospace Sciences, 1997, 33(3-4): 259-284.
    [24] Kr?mer P, Gimonet B, Grunhagen W v. A Systematic Approach to Nonlinear Rotorcraft Model Identification [J]. Aerospace Science and Technology, 2002, 6: 579-590.
    [25] Mettler B. Identification Modeling and Characteristics of Miniature Rotorcraft [M]. Norwell: Kluwer Academic Publishers, 2003.
    [26] Mettler B, Tischler M B, Kanade T. System Identification Modeling of a Small-Scale Unmanned Rotorcraft for Flight Control Design [J]. Journal of the American Helicopter Society, 2002, 47: 50-63.
    [27] Theodore C R, Tischler M B, Colbourne J D. Rapid Frequency-domain Modeling Mehtods for Unmanned Aerial Vehicl Flight Control Applications [J]. Jouranl of Aircraft, 2004, 41(4): 735-743.
    [28] Bruce P D, Silva J E F, Kellett M G. Maximum Likelihood Identification of a Rotary-wing RPV Simulation Model from Flight-test Data [C]. In Proceedings of the AIAA Atmospheric Flight Mechanics Conference and Exhibit, Boston, MA, 1998: 126-134.
    [29] Kim S K, Tilbury D M. Mathematical modeling and experimental identification of a model helicopter [C]. In Proceedings of the AIAA Modeling and Simulation Technologies Conference, Boston, MA: AIAA, 1998: 203-213.
    [30] Kim S K, Tilbury D M. Mathematical Modeling and Experimental Identification of an Unmanned Helicopter Robot with Flybar Dynamics [J]. Journal of Robotic Systems, 2004, 21(3): 95-116.
    [31] Mahony R, Hamel T, Dzul A. Hover Control via Lyapunov Control for an Autonomous Model Helicopter [C]. In Proceedings of the 38th Conference on Decision and Cotnrol, Phonix, Arizona, USA: IEEE Press, 1999: 3490-3495.
    [32] Avila Vilchis J C, Brogliato B, Dzul A, Lozano R. Nonlinear Modelling and Control of Helicopter [J]. Automatica, 2003, 39(9): 1583-1596.
    [33]陈皓生,陈大融.微型直升机动力学建模的研究现状[J].飞行力学, 2003, 21(3): 1-5.
    [34] Civita M L, Messner W, Kanade T. Modeling of Small-scale Helicopters with Integrated First-principles and System-identification Techniques [C]. In Proceedings of the 58th Forum of the American Helicopter Society, Montreal, Canada, 2002: 2505-2516.
    [35] Cai G, Chen B M, Lee T H. Comprehensive Nonlinear Modeling of an Unmanned-Aerial-Vehicle Helicopter [C]. In Proceedings of the AIAA Guidance, Navigation and Control Conference and Exhibit, Honolulu, Hawaii, 2008.
    [36] Padfield G D. Helicopter Flight Dynamics: The Theory and Application of Flying Qualities and Simulation Modeling [M]. American Institute of Aeronautics and Astronautics, Inc., 1996.
    [37] Padfield G D. Helicopter Flight Dynamics: The Theory and Application of Flying Qualities and Simulation Modelling [M]. Oxford, UK: Blackwell Publishing Ltd., 2007.
    [38] Lai G M Y. Modelling and Control of Small-Scale Helicopter on a Test Platform [D]. Waterloo: University of Waterloo, 2008.
    [39] Koo T J, Ma Y, Sastry S S. Nonlinear Control of a Helicopter Based Unmanned Aerial Vehicle Model [J]. IEEE Transactions on Control Systems Technology, 2001.
    [40] Song B, Mills J K, Liu Y, Fan C. Nonlinear Dynamic Modeling and Control of a Small-Scale Helicopter [J]. International Journal of Control, Automation, and Systems, 2010, 8(3): 534-543..
    [41] Song B, Liu Y, Fan C. Feedback linearization of the nonlinear model of a small-scale helicopter [J]. Journal of Control Theory and Applications, 2010, 8(3): (to be published).
    [42] Meyer G, Su R, Hunt L R. Application of Nonlinear Transformations toAutomatic Flight Control [J]. Automatica, 1984, 20(1): 103-107.
    [43] Koo T J, Sastry S. Output tracking control design of a helicopter model based on approximate linearization [C]. In Proceedings of the 37th IEEE Conference on Decision and Control, Tampa, Florida: IEEE Press, 1998: 3635-3640.
    [44] Bergerman M, Amidi O, Miller J R, Vallidis N, Dudek T. Cascaded Position and Heading Control of a Robotic Helicopter [C]. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, San Diego, CA, 2007: 135-140.
    [45] Kim H J, Shim D H, Sastry S. Flying Robots: Modeling , Control and Decision Making [C]. In Proceedings of the IEEE International Conference on Rototics and Automation, Washingto, DC: IEEE Press, 2002: 66-71.
    [46] Shim H, Koo T J, Hoffmann F, Sastry S. A Comprehensive Study of Control Design for an Autonomous Helicopter [C]. In Proceedings of the 37th IEEE Conference on Decision and Control, Tampa, Florida: IEEE Press, 1998: 3653-3658.
    [47] Krupadanam A S, Annaswamy A M, Mangoubi R S. A Multivariable Adaptive Controller for Autonomous Helicopters [C]. In Proceedings of the American Control Conference, Anchorage, AK, 2002: 2052-2057.
    [48] Frazzoli E, Dahleh M A, Feron E. Trajectory Tracking Control Design for Autonomous Helicopters Using a Backstepping Algorithm [C]. In Proceedings of the American Control Conference, Chicago, Illinois, 2000: 4102-4107.
    [49] Mahony R, Lozano R. (Almost) Exact Path Tracking Control for an Autonomous Helicopter in Hover Manoeuvers [C]. In Proceedings of the IEEE International Conference on Robotics and Antomation, San Francissco, CA, 2000: 1245-1250.
    [50] Gavrilets V, Mettler B, Feron E. Dynamic Model for a Miniature Aerobatic Helicopter [R]. Cambride, MA: Department of Aeronautics and Astronautics, MIT, LIDS-P-2580, 2004.
    [51] Chen R T N, Hindson W S. Influence of Dynamic Inflow on the Helicopter Vertical Response [R]. NASA, TM-88327, 1986.
    [52] Chen R T N. A Survey of Nonuniform Inflow Models for Rotorcraft Flight Dynamics and Control Applications [J]. Vertica, 1990, 14(2): 147-184.
    [53] Kothmann B D, Keller J D, Jr. H C C. On Aerodynamic Modelling for Rotorcraft Flight Dynamics [C]. In Proceedings of the 22nd European Rotorcraft Forum, Brighton, UK, 1996: 101.101-101.114.
    [54] Song B, Fan C, Liu Y, Mills J K, Cai X. Nonlinear System and Control of the Model-scale Helicopter [C]. In Proceedings of the IEEE International Conference on Robotics and Biomimetics, Guilin, Guangxi, China, 2009: 1081-1086.
    [55] Gaonkar G H, Peters D A. Review of Dynamic Inflow Modeling for Rotorcraft Flight Dynamics [J]. Vertica, 1988, 12(3): 213-242.
    [56] Andrew N. Shaping and Policy Search in Reinforcement Learning [D]. Berkeley: University of California, 2003.
    [57] Calise A J, Rysdyk R T. Nonlinear Adaptive Flight Control Using Neural Networks [J]. IEEE Control Systems Magazine, 1998, 18(6): 14-25.
    [58] Prasad J V R, Calise A J, Pei Y, Corban J E. Adaptive Nonlinear Controller Synthesis and Flight Test Evaluation on an Unmanned Helicopter [C]. In Proceedings of the IEEE International Conference on Control Applications, Hawai, 1999: 137-142.
    [59] Sugeno M, Hirano I, Nakamura S, Kotsu S. Development of an Intelligent Unmanned Helicopter [C]. In Proceedings of the IEEE International Conference on Fuzzy Systems, Yokohama, 1995: 33-34.
    [60] Tanaka T, Sasaki D, Matsumiy K, Morikuni Y, Kato K. Autonomous Flight Control for a Small RC Helicopter:A Measurement System with an EKF and a Fuzzy Control via GA-Based Learning [C]. In Proceedings of the SICE-ICASE International Joint Conference, Busan, South Korea, 2006: 1279-1284.
    [61]曾丽兰,王道波,郭才根,黄向华.无人驾驶直升机飞行控制技术综述[J].控制与决策, 2006, 21(4): 361-366.
    [62] Shim D H, Kim H J, Sastry S. Control System Dsign for Rotorcraft-based Unmanned Aerial Vehicles using Time-domain Systemt Identification [C]. In Proceedings of the International Conference on Controll Apllications, Anchorage, Alaska: IEEE Press, 2000: 808-813.
    [63] Morris J C, Nieuwstadt M v, Bendotti P. Identification and Control of a Model Helicopter in Hover [C]. In Proceedings of the American Control Conference, Baltimore, Maryland, America, 1994: 1238-1242.
    [64] Tischler M B, Cauffman M G. Frequency-Response Method for Rotorcraft System Identification: Flight Applications to BO-105 Coupled Fuselage/Rotor Dynamics [J]. Journal of the American Helicopter Society, 1992, 37(3): 3-17.
    [65] Tischler M B, Remple R K. Aircraft and Rotorcraft System Identification -- Engineering Methodes with Flight-Test Examples [M]. Reston: American Institute of Aeronautics and Astronautics, Inc., 2006.
    [66] Mettler B, Tischler M B, Kande T. System Identification of Small-Size Unmanned Helicopter Dynamics [C]. In Proceedings of the 55th Annual Forum of the American Helicopter Society, Montread, Canada, 1999.
    [67] Theodore C R, Tischler M B, Colbourne J D. Rapid Frequency Domain Modeling Methods for UAV Flight Control Applications [C]. In Proceedings of the AIAA Atmospheric Flight Mechanics Conference and Exhibit, Austin, Texas, 2003.
    [68] Civita M L. Integrated Modeling and Robust Control for Full-Envelope Flight of Robotic Helicopters [D]. Carneigie Mellon University, 2003.
    [69] Civita M L, Papageorgiou G, Messner W C, Kanade T. Integrated Modeling and Robust Control for Full-Envelope Flight of Robotic Helicopters [C]. In Proceedings of the IEEE International Conference on Robotics and Automation, Taipei, Twiwan, 2003: 552-557.
    [70] Postlethwaite I, Turner M C, Herrmann G. Robust Control Applications [J]. Annual Reviews in Control, 2007, 31(1): 27-39.
    [71] Gadewadikar J, Lewis F L, Subbarao K, Chen B M. Structured H-Infinity Command and Control-Loop Design for Unmanned Helicopters [J]. Journal of Guidance, Control, and Dynamics, 2008, 31(4): 1093-1102.
    [72] Gadewadikar J, Lewis F L, Subbarao K, Peng K, Chen B M. H-infinity static output-feedback control for rotorcraft [J]. Journal of Intelligent and Robotics Systems, 2009, 54(4): 629-646.
    [73] Prempain E, Postlethwaite I. Static H-infinity loop shaping control of a fly-by-wire helicopter [J]. Automatica, 2005, 41(9): 1517-1528.
    [74] Isidori A, Marconi L, Serrani A. Robust Nonlinear Motion Control of a Helicopter [J]. IEEE Transactions on Automatic Control, 2003, 48(3): 413-426.
    [75] Mazenc F, Mahony R E, Lozano R. Forwarding Control of Scale Model Autonomous Helicopter: A Lyapunov Control Design [C]. In Proceedings of the 42nd IEEE Conference on Decision and Control, Maui, Hawaii: IEEE Press, 2003: 3960-3965.
    [76] Johnson E N, Kannan S K. Adaptive trajectory control for autonomous helicopters [J]. Journal of Guidance, Control, and Dynamics, 2005, 28(3): 545-538.
    [77] Cai G, Chen B M, Peng K, Dong M, Lee T H. Modeling and Control of the Yaw Channel of a UAV Helicopter [J]. IEEE Transactions on Industrial Electronics, 2008, 55(9): 3426-3434.
    [78] Cai G, Chen B M, Peng K, Dong M, Lee T H. Modeling and Control System Design for a UAV Helicopter [C]. In Proceedings of the Mediterranean Conference Control and Automation, Ancona, Italy, 2006: 600-606.
    [79] Béjar M, Ollero A, Cuesta F. Modeling and Control of Autonomous Helicopters [C]. // Bonivento C, Isidori A, Marconi L and Rossi C(eds.). Advances in Control Theory and Applications. Berlin / Heidelberg: Springer, 2007: 1-29.
    [80] Jakubczyk B, Respondek W. On Linearization of Control Systems [J]. Bull. Acad. Polonaise Sci., Ser. Sci. Math., 1980, 28: 517-522.
    [81] Hunt L R, Su R. Linear Equivalents of Nonlinear Time Varying Sytems [C]. In Proceedings of the 17th International Symposium on the Mathematical Theory of Networks and Systems, Santa Monica, 1981: 119-123.
    [82] Martin P. An Intrinsic Sufficient Condition for Regular Decoupling [J]. Systems & Control Letters, 1993, 20(5): 383-391.
    [83] Respondek W. Dynamic Input-output Linearization and Decoupling ofNonlinear systems [C]. In Proceedings of the 2nd European Control Conference, Groningen, 1993: 1523-1527.
    [84] Respondek W. Geometry of Static and Dynamic Feedback [R]. Trieste, Italy: Summer School on Mathematical Control Theory, 2001.
    [85] Liu H T, Mills J K. Controller Design for Multiple Simultaneous Specifications with Application to Robotic Systems [C]. In Proceedings of the IEEE International Conference on Robotics and Automation, Albuquerque, New Mexico, 1997: 2038-2043.
    [86] Liu H H T, Mills J K. Multiple Simultaneous Specifications Control Problem and Its Application [C]. In Proceedings of the American Control Conference, Philadelphia, Pennsylvania, 1998: 8-12.
    [87] Liu H H T, Mills J K. Multiple Specification Design in Flight Control System [C]. In Proceedings of the American Control Conference, Chicago, Illinois, 2000: 1365-1369.
    [88] Liu H H T, Mills J K. Robot Trajectory Control System Dsign for Mltiple Smultaneous Secifications: Theory and Eperimentation [J]. Journal of Dynamic Systems, Measurement, and Control, 1998, 120(4): 520-523.
    [89] Fu K, Sun D, Mills J K. Simultaneous Mechanical Structure and Control System Design: Optimization and Convex Approaches [C]. In Proceedings of the IEEE International Symposium on Intelligent Control, Vancouver, Canada, 2002: 746-751.
    [90] Fu K, Mills J K. Convex Integrated Design (CID) Method and Its Application to the Design of a Linear Positioning System [J]. IEEE Transactions on Control Systems Technology, 2005, 13(5): 701-707.
    [91] Fu K, Mills J K, Sun D. Integrated Design of a Linear Positioning System With Applications To Electronic Manufacturing [C]. In Proceedings of the IEEE International Conference on Robotics & Automation, New Orleans, LA, 2004: 517-522.
    [92] Fu K, Mills J K. Integrated Design of a Quarter-car Semi-active Suspension System Using a Convex Integrated Design Method [J]. International Journal of Vehicle Design, 2006, 42(3-4): 328-347.
    [93] Fu K, Mills J K. Robust Control Design for a Planar Parallel Robot [J]. International Journal of Robotics and Automation, 2007, 22(2): 130-147.
    [94] Fu K. Convex Integrated Design of Controlled Mechanical Systems [D]. Toronto: University of Toronto, 2004.
    [95] Fu K, Mills J K. A Convex Approach Solving Simultaneous Mechanical Structure and Control System Design Problems with Multiple Closed-loop Performance Specifications [J]. Journal of Dynamic Systems, Measurement and Control, 2005, 127(1): 57-68.
    [96] Fu K, Mills J K. The Convex Integrated Design (CID) Method: Necessary and Sufficient Conditions for Existence of Solution [C]. In Proceedings of the IEEEInternational Conference on Robotic, Intelligent System and Signal Processing, Changsha, China, 2003: 7-12.
    [97] Chen R T N. Effects of Primary Rotor Parameters on Flapping Dynamics [R]. Moffett Field: NASA Ames Research Center, TR-1431, 1980.
    [98] Bramwell A R S, Done G, Balmford D. Bramwell's Helicopter Dynamics [M]. Oxford: Butterworth-Heinemann, 2001.
    [99] Johson W. Helicopter Therory [M]. Princeton: Princeton University Press, 1980.
    [100] Keller J D. An Investigation of Helicopter Dynamic Coupling Using an Analytical Model [J]. Journal of the American Helicopter Society, 1996, 41(4): 322-330.
    [101] Pitt D M, Peters D A. Theoretical Prediction of Dynamic-inflow Derivatives [J]. Vertica, 1981, 5(1): 21-31.
    [102] Leishman J G. Principles of Helicopter Aerodynamics [M]. Cambridge: Cambridge University Press, 2000.
    [103] Takahashi M D. A Flight-Dynamic Helicopter Mathematical Model with a Single Flap-Lag-Torsion Main Rotor [R]. NASA, TM-102267, 1990.
    [104] Peters D A, HaQuang N. Dynamic Inflow for Practical Application [J]. Journal of the American Helicopter Society, 1988, 33(4): 63-68.
    [105] Chen R T N, Hindson W S. Influence of Dynamic Inflow on the Helicopter Vertical Response [J]. Vertica, 1987, 11(1-2): 77-91.
    [106] Houston S S, Tarttelin P C. Theoretical and Experimental Correlation of Helicopter Aeromechanics in Hover [C]. In Proceedings of the Annual Forum of the American Helicopter Society, 1989.
    [107] Rohlfs M, Grunhagen W v, Kaletka J. Nonlinear Rotorcraft Modeling and Identification [C]. In Proceedings of the RTO SCI Symposium on "System Identification for Integrated Aircraft Development and Flight Testing", Madrid, Spain, 1998: 23-21~23-13.
    [108] Futaba GY240 Instruction Manual [Z].
    [109] Futaba GY502 Instruction Manual [Z].
    [110] Lidstone C. The Gimballed Helicopter Testbed: Deisgn, Build and Validation [D]. Toronto: University of Toronto, 2003.
    [111] Weilenmann M F, Geering H P. Test Bench for Rotorcraft Hover Control [J]. Journal of Guidance, Control, and Dynamics, 1994, 17(4): 729-736.
    [112] Dzul A, Lozano R, Castillo P. Adaptive Altitude Control for a Small Helicopter in a Vertical Flying Stand [C]. In Proceedings of the 42nd IEEE Conference on Decision and Control, Maui, Hawaii: IEEE Press, 2003: 2710-2715.
    [113] Dzul A, Lozano R, Castillo P. Adaptive Control for a Radio-controlled Helicopter in a Vertical Flying Stand [J]. International Journal of Adaptive Control andSignal Processing, 2004, 18(5): 473-485.
    [114] Inoue A, Deng M, Harima T, Nakano S, Ueki N. Attitude Control System Design of a Helicopter Experimental System [C]. In Proceedings of the IEEE International Conference on Industrial Technology, Hongkong, China, 2005: 1240-1245.
    [115] Inoue A, Deng M, Nakano S, Harima T, Ueki N. Combined Adaptive and Non-Adaptive Attitude Control of a Helicopter [C]. In Proceedings of the Society of Instrument and Control Engineering Annual Conference, Okayama, Japan, 2005: 2217-2221.
    [116] Kallapur A G, Anavatti S G. UAV Linear and Nonlinear Estimation Using Extended Kalman Filter [C]. In Proceedings of the CIMCA-IAWTIC, Sydney, Australia: IEEE Computer Society, 2006: 250-255.
    [117] Kallapur A G, Ali S S, Anavatti S G. Application of Extended Kalman Filter Towards UAV Identification [C]. // Mukhopadhyay S and Gupta G S(eds.). Autonomous Robots and Agents. Berlin / Heidelberg: Springer, 2007: 199-207.
    [118] Merwe R v d, Wan E A. The Square-Root Unscented Kalman filter for State and Parameter-Estimation [C]. In Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing, Salt Lake City, UT: IEEE Press, 2001: 3461-3464.
    [119] Bernstein D S, Michel A N. A Chronological Bibliography on Saturating Actuators [J]. International Journal of Robust and Nonlinear Control, 1995, 5(5): 375-380.
    [120] Grimm G, Hatfield J, Postlethwaite I, Teel A R, Turner M C, Zaccarian L. Antiwindup for Stable Linear Systems with Input Saturation: An LMI-Based Synthesis [J]. IEEE Transactions on Automatic Control, 2003, 48(9): 1509-1525.
    [121] Cao Y-Y, Lin Z, Ward D G. H∞Antiwindup Design for Linear Systems Subject to Input Saturation [J]. Journal of Guidance, Control, and Dynamics, 2002, 25(3): 455-463.
    [122] Barbu C, Galeani S, Teel A R, Zaccarian L. Non-linear Anti-windup for Manual Flight Control [J]. International Journal of Control, 2005, 78(14): 1111-1129.
    [123] Turner M C, Postlethwaite I. A New Perspective on Static and Low Order Anti-windup Synthesis [J]. International Journal of Control, 2004, 77(1): 27-44.
    [124] Turner M C, Herrmann G, Postlethwite I. Accounting for Uncertainty in Anti-windup Synthesis [C]. In Proceedings of the American Control Conference, Boston, Massachusetts, 2004: 5292-5297.
    [125] Turner M C, Walker D J, Alford A G. Design and Ground-based Simulation of an H∞Limited Authority Flight Control System for the Westland Lynx Helicopter [J]. Aerospace Science and Technology, 2001, 5(3): 221-234.
    [126] Jakobsen O C, Johnson E N. Control Architecture for a UAV-Mounted Pan/Tilt/Roll Camera Gimbal [C]. In Proceedings of the InfoTech at Aerospace: Advancing Contemporary Aerospace Technologies and Their Integration, Arlington, Virginia, USA, 2005: 2170-2179.
    [127] Kahveci N E, Ioannou P A, Mirmirani M D. Adaptive LQ Control with Anti-windup Augmentation to Optimize UAV Performance in Autonomous Soaring Applications [J]. IEEE Transactions on Control System Technology, 2008, 16(4): 691-707.
    [128] Freudenberg J S, Looze D P. An Analysis of H∞-Optimization Design Methods [J]. IEEE Transactions on Automatic Control, 1986, 31(3): 194-200.
    [129] Turner M C, Bates D G. Mathematical Methods for Robust and Nonlinear Control [M]. Berlin Heidelberg: Spring-Verlag, 2007.
    [130] Boyd S P, Barratt C H. Linear Controller Design: Limits of Performance [M]. Prentice-Hall, 1991.
    [131] Song B, Mills J K, Huang H, Liu Y, Fan C. Nonlinear robust control of a small-scale helicopter on a test bench [J]. International Journal of Control, 2010, 83(4): 761-775.
    [132] Hale A L, Lisowski R J, Dahl W E. Optimal Simultaneous Structural and Control Design of Manoeuvring Flexible Spacecraft [J]. Journal of Guidance, Control, and Dynamics, 1985, 8(1): 86-93.
    [133] Arakawa A, Miyata K. A Simultaneous Optimization Algorithm for Determining Both Mechanical System and Controller Parameters for Positioning Control Mechanism [C]. In Proceedings of the 4th International Workshop on Advanced Motion Control, MIE University, Japonska, 1996: 625-630.
    [134] Niewoehner R J, Kaminer I I. Integrated Aircraft-controller Design Using Linear Matrix Inequalities [J]. Journal of Guidance, Control, and Dynamics, 1996, 19(2): 445-452.
    [135] Savant S V, Asada H H. Integrated Structure /control Design Based on Model Validity and Robustness Margin [C]. In Proceedings of the American Control Conference, San Diego, CA, USA: IEEE Press, 1999: 2871-2875.
    [136] Rastegar J S, Lidong L, Yin D. Task-specific optimal simultaneous kinematic, dynamic, and controldesign of high-performance robotic systems [J]. IEEE/ASME Transactions on Mechatronics, 1999, 4(4): 387-395.
    [137] Asada H, Park J H, Rai S. A Control Configured Flexible Arm: Integrated Structure/Control Design [C]. In Proceedings of the IEEE Conference on Robotics and Automation, Scaramento, California: IEEE Press, 1991: 2356-2362.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700