用户名: 密码: 验证码:
气候变化及人类活动对流域水资源的影响及实例研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
气候变化和人类活动影响是当前流域水文水资源演变规律研究的两大科学课题。水循环系统是气候系统的重要组成部分,而气候变化必然引起流域水资源的时空变化。人类活动对流域的水循环影响,一方面通过改变土地利用、以及修建大型水利工程等改变流域下垫面,破坏了流域内天然的产汇流机制;另一方面通过工农业取用水以及跨流域调水等活动直接影响流域水资源的时空分布。
     当前流域水资源俨然已经发生巨大变化,气候变化和人类活动是两个主要的驱动因子,量化分析气候变化和人类活动对流域水文水资源的影响,对认知水资源演变规律和实现水资源可持续利用发展具有重要的实践意义。鉴于此,本文以东北地区两个流域为研究实例,以大尺度流域水文模型SWAT为基础,开展气候变化及人类活动对流域水资源的影响研究。本论文的研究内容和成果如下:
     (1)流域水文气象要素变化特征分析。基于多种趋势检验方法和变点分析方法,分析了东北两个实例流域水文气象要素的变化趋势和变点,通过水文气象要素的特征识别,可以初步判断流域气候变化和人类活动影响的大小及变化特征。研究结果表明多种方法可以定性识别流域的降雨、温度等要素的变化特征。
     (2)大尺度流域水循环模型SWAT构建。本文阐述了模型结构及其原理方法,并详细说明模型相应气象、土壤、土地利用、土壤等资料数据库构建,为下一步进行流域水循环模拟以及量化分析气候变化和人类活动影响研究提供有力支撑。
     (3)针对历史气候变化和人类活动影响的贡献量化问题,提出一种基于SWAT的新的分项量化方法。该方法为削弱人类活动时期内降雨丰枯变化对分离气候变化和人类活动影响量的干扰,对长序列降雨、温度进行还原计算,利用长序列降雨、温度数据资料分析气候线性变幅,然后将年降雨的线性变化量根据年内月分配比例对实际降雨量序列逐年进行还原,依据各月份温度线性变化量对实际温度序列逐年逐月进行还原;构建有、无降雨和温度还原计算的SWAT模型,利用基准期数据资料进行模型参数率定,并分别模拟人类活动时期有、无降雨和温度还原计算的径流量,通过对比分析人类活动时期相对于基准期的还原和实际径流的相对变化量,分离出降雨丰枯变化量、气候变化量以及人类活动影响量,即可实现历史气候变化及人类活动对河川径流影响量化分析。本文以辉发河流域为研究对象,对模型方法进行了验证说明,结果显示本文提出的方法能够合理地评估气候变化和人类活动影响的贡献量。
     (4)针对灌区农业灌溉用水人类活动影响量化问题,建立基于改进的SWAT灌区水循环模型。该模型在原模型基础上,修改了灌区水源灌溉模式、灌区田间水量平衡方程计算项、渠道渗漏计算以及水田灌溉制度,分别为泡田期和水稻生育期定义灌溉判断准则,在两个时期均可实现多水源灌溉模式;以浑太河流域灌区为研究对象,对改进后的灌区模型进行验证,通过重构有、无灌溉条件下的还原模拟,量化分析浑太河流域灌溉回归水量和灌溉影响比率,以及农业灌溉对灌区水循环要素的影响。
     (5)为减弱单一气候模型预测的不确定性,本文提出基于贝叶斯加权平均(REV-BMA)的GCM多模式气候变化预测方法,并耦合SWAT大尺度流域分布式水文模型研究未来气候变化对流域水资源的影响。首先,利用自动降尺度方法(ASD)和距离倒数权重插值降尺度方法(IDW)分别对GCM模型(HadCM3、CGCM3、BCCR、CSIRO)进行降尺度,采用提出的REA-BMA方法计算多模型的可靠性因子,获得未来时期(2011~2040年)降雨、温度要素的加权变化量;然后,依据降雨、温度未来变化量对基准期(1961~2000年)实际降雨、温度数据进行比例缩放后作为SWAT模型输入,并构建未来气候变化对流域水资源影响的评估模型(REV-BMA-SWAT);最后,选取浑太河流域为研究对象,分析未来时期(2011~2040年)浑河干流上大伙房水库入库径流变化,以及浑太河流域水循环要素的相对变化状况,并与单一GCM模型、RVM模型以及基于历史趋势变化的模拟结果进行了比较分析。
Climate change and human activities impact are two topics in the current evolution law research of hydrology and water resources. The water circular system is an important part of the climate system, and climate change must cause water resources change in temporal and spatial. However, human activities are the most important factors in watershed hydrologic cycle system. On the one hand, land use changes and construction of large hydraulic engineering make the basin underlying surface changed, and then affect the runoff yield and concentration mechanism; on the other hand, industrial and agricultural water use and inter-basin water transfer affect the temporal and spatial distribution of water resources directly.
     Current water resources system has changed enormously. It has important significance to quantify the influence of climate change and human activities for the cognition of evolution law and sustainable development of water resources. In view of this situation, this paper carries out the evolution law study of water resources based on large-scale distributed hydrological model. Research contents and results are as follows:
     (1) Change characteristics analysis of hydrometeorological factors in typical basin. Many trend test and change-point analysis methods are used to analyze the change tendency and change-point recognition of hydrometeorological factors in the typical basin of northeast China. Based on the hydrometeorological factors recognition, the degree and change characteristics of the basin climate change and human activities can be required primarily. Results show that these methods can qualitatively recognize the change characteristics of precipitation, temperature and other factors in the typical basin.
     (2) Construction of large-scale hydrologic cycle model. This paper describes the structure and principle of SWAT model, and then displays the database construction for meteorology, soil and land use in detail. These works can provide vigorous support to the hydrological cycle simulation and to the quantitative analysis of climate change and human activities influence.
     (3) To deal with the quantitative analysis problem of historical climate change and the influence of human activities, a partial quantization method is put forward base on SWAT model. In order to weaken the interference of high and low variation of rainfall in a short period to the separation calculation of influence quantity of climate change, reducing calculation of the rainfall in the influence period of human activities is made, linear change range of climate is analyzed using complete series of rainfall data and temperature, linear change quantity of annual rainfall is reduced to practical rainfall series according to distribution proportion of every month, model parameters calibration is made using rainfall data in reference period, and runoff simulation is conducted under different rainfall condition in the period of human activities. By comparing the runoff change under different rainfall data condition in human activities influence period with that in reference period, high and low change quantity of rainfall, climate change quantity and influence quantity of human activities can be separated out, then quantitative analysis of historical climate change and human activities influence on river runoff can be realized. Taking the typical Huifa river basin as the study area to validate the model, the result shows that the method proposed in this paper is successful in separating the influence quantity of climate change and human activities more reasonably.
     (4) To deal with the quantitative problem of the influence of human activities such as agricultural irrigation water use in irrigation district basin, a advanced water cycle model base on SWAT model is proposed. Modifications are made to calculation methods of water source irrigation and field water balance equation to calculate paddy field runoff, the judgment criterions of irrigation in ponding period and rice growth period are defined respectively, so that the multi-water resources irrigation mode can be put into effect in both periods. Taking Huntai basin irrigation district as the study area to validate the irrigation district simulation model, by remodeling river flow under irrigation condition or without irrigation condition, calculating the ratio of irrigation water regression, irrigation influence coefficient, to quantize influencing of irrigation on river flow and water cycle factors.
     (5) To deal with the uncertainty of forecast results of single climate model in the study of future climate change influence on water resources, a REV-BMA based GCM Multi-mode weighted average method for climate data processing is proposed, which explicitly relates SWAT hydrological model in large-scale basin to research the influence of future climate change on water resources. First, two downscaling methods, automated statistical downscaling (ASD) and interpolation distance weight (IDW) are applied to downscale the GCMs(CGCM3、HadCM3、CSIRO、BCCR) respectively; Second, the REV-BMA method is employed to compute the weighted variable quantity of future climate in the GCM multi-model, then proportion scaling is made to the rainfall and temperature input data in reference period according to future change quantity of rainfall and temperature, and applied SWAT to simulation. Finally, taking Huntai River basin as the study area, establish climate change on water resources impact assessment model (REV-BMA-SWAT) to assess the change of dahuofang reservoir inflow and basin hydrological cycle factors during 2011~2040, and by comparing it with the single GCM simulation, RVM model simulation, and based on history data trend simulation.
引文
[1]IPCC, Climate Change 2007:Impacts, Adaptation and Vulnerability Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change[M].2007, Cambridge,. UK and New YorK, USA:Cambridge University Press.
    [2]丁一汇,任国玉,石广玉等.气候变化国家评估报告(1)中国气候变化的历史和未来趋势[J].气候变化研究进展,2006,2(1):3-8.
    [3]沈永平.IPCC WGI第四次评估报告关于全球气候变化的科学要点[J].冰川冻土,2007,29(1).
    [4]Gleick P H. Climate change, hydrology, and water resources[J]. REVIEWS OF GEOPHYSICS, 1989,27(3):329-344.
    [5]Waggoner P E, Climate Change and U. S. Water Resources[M].1990, New York:John Wiley.
    [6]Sulzman E W, Poiani K A and Kittel T G F. Modeling Human-Induced Climatic-Change a Summary for Environmental Managers [J]. Environmental Management,1995, 19 (2):197-224.
    [7]Arnell N W. Climate change and water resources in Britain[J]. Climatic Change,1998, 39(1):83-110.
    [8]夏军,谈戈.全球变化与水文科学新的进展与挑战[J].资源科学,2002,24(3):1-7.
    [9]刘春蓁.气候变化对陆地水循环影响研究的问题[J].地球科学进展,2004,19(1):115-119.
    [10]王顺久.全球气候变化对水文与水资源的影响[J].气候变化研究进展,2006,2(5):223-227.
    [11]张建云,王国庆等.气候变化对水文水资源影响研究[M].2007,北京:科学出版社.
    [12]郑新奇,慧姚,王筱明.20世纪90年代以来《Science》关于全球气候变化研究述评[J].生态环境,2005,14(3):422-428.
    [13]张利平,陈小凤,赵志鹏等.气候变化对水文水资源影响的研究进展[J].2008,27(3):61-67.
    [14]钱正英,张光斗.中国可持续发展水资源的战略研究综合报告及各专题报告[M].2001,北京:中国水利水电出版社.
    [15]刘昌明,陈志凯.中国水资源现状和供需发展趋势[M].2001,北京:中国水利水电出版社.
    [16]钱正英.中国水资源战略研究中几个问题的认识[J].河海大学学报,2001,29(3):1-7.
    [17]刘昌明.21世纪中国水资源若干问题的讨论[M].2002,北京:中国水利水电出版社.
    [18]陈志凯.中国水资源的可持续利用问题[J].水文,2003(1):1-5.
    [19]刘昌明,陈志凯.中国水资源现状评价和供需发展趋势分析[M].2005,北京:中国水利水电出版社.
    [20]秦大河,丁一汇,苏纪兰.中国气候与环境演变(上卷)[M].2005,北京:科学出版社.
    [21]任国玉.气候变化与中国水资源[M].2007,北京:气象出版社.
    [22]任国玉,彤姜,李维京等.气候变化对中国水资源情势影响综合分析[J].水科学进展,2008,19(6):772-778.
    [23]IPCC. Climate Change 2007:Impacts, Adaptation and Vulnerability Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change[M].2007, Cambridge, UK and New YorK, USA:Cambridge University Press.
    [24]芮孝芳.水文学的机遇及应着重研究的若干领域[J].中国水利,2004,7(22-24).
    [25]仇亚琴.水资源综合评价及水资源演变规律研究[D].2006:中国水利水电科学研究院.
    [26]IPCC. Climate Chnage and Impact 1990[Ml.1990, Cambridge:Cambridge Univesity Perss.
    [27]IPCC. Climate Chnage 1995. Impact, Adaptation, and Mitigation[M].1995, Cambridge Cambridge Univesity Perss.
    [28]IPCC. Climate Change 2001. Impacts, adaptation, vulnerability[M].2001, Cambridge Cambridge Univesity Perss.
    [29]US National Academy of Sciences Climate. Climatic Change and Water Supply[M].1977, Washington D C.:National Academy Press.
    [30]Mimikou M A, Impact of climate change on hydrological and European community, EV5-CT93-0293 Report [R].1996, UK:university of Southampton.
    [31]WMO. Water resources and climatic change:sensitivity of water resources systems to climate change and variability[M].1987, Geneva:WMO.
    [32]江涛,陈永勤,陈俊合等.未来气候变化对我国水文水资源影响的研究[J].中山大学学报(自然科学版),2000,39((增刊)):151-157.
    [33]张建云.气候变化对水资源影响研究中需要进一步研究的若干问题[J].水科学进展,2000,11:76-79.
    [34]郝振纯,李丽,王加虎等.气候变化对地表水资源的影响[J]地球科学-中国地质大学学报,2007,32(3):425-432.
    [35]施雅风.气候变化对西北华北水资源的影响[M].1995,济南:山东科学技术出版社.
    [36]张建云.短期气候异常对我国水资源的影响评估[J].水科学进展,1996,7(增刊):1-3.
    [37]王国庆.气候变化对黄河中游水文水资源影响的关键问题研究[D].2006:河海大学.
    [38]王纲胜,夏军,万东晖等.气候变化及人类活动影响下的潮白河月水量平衡模拟[J].自然资源学报,2006,21(1):86-91.
    [39]Mimikou M A, Kouvopoulos Y S. Regional Climate Change Impacts 1. Impacts on Water-Resources[J]. Hydrological Sciences Journal-Journal Des Sciences Hydrologiques,1991,36(3):247-258.
    [40]Chiew F, Mcmahon T. Application of the Daily Rainfall-Runoff Model Modhydrolog to 28 Australian Catchments[J]. Journal of Hydrology,1994,153(1-4):383-416.
    [41]Dvorak V, Hladny J, Kasparek L. Climate change hydrology and water resources impact and adaptation for selected river basins in the Czech Republic[J]. Climatic Change, 1997,36(1-2):93-106.
    [42]Sefton C E M, Boorman D B. A regional investigation of climate change impacts on UK streamflows[J]. Journal of Hydrology,1997,195(1-4):26-44.
    [43]Venema H D, Schiller E J, Adamowski K, et al. A water resources planning response to climate change in the Senegal River Basin [J]. Journal of Environmental Management, 1997,49(1):125-155.
    [44]Arnell N W. The effect of climate change on hydrological regimes in Europe:a continental perspective [J]. Global Environmental Change-Human and Policy Dimensions, 1999,9(1):5-23.
    [45]Arnell N W. Climate change and global water resources[J]. Global Environmental Change-Human and Policy Dimensions,1999,9:S31-S49.
    [46]Hamlet A F, Lettenmaier D P. Effects of climate change on hydrology and water resources in the Columbia River basin [J]. Journal of the American Water Resources Association, 1999,35(6):1597-1623.
    [47]Middelkoop H, Daamen K, Gellens D, et al. Impact of climate change on hydrological regimes and water resources management in the rhine basin[J]. Climatic Change,2001, 49(1-2):105-128.
    [48]Christensen N S, Wood A W, Voisin N, et al. The effects of climate change on the hydrology and water resources of the Colorado River basin[J]. Climatic Change,2004, 62(1-3):337-363.
    [49]Diaz-Nieto J, Wilby R L. A comparison of statistical downscaling and climate change factor methods:Impacts on low flows in the River Thames, United Kingdom [J]. Climatic Change,2005,69(2-3):245-268.
    [50]Bell V A, Kay A L, Jones R G, et al. Use of a grid-based hydrological model and regional climate model outputs to assess changing flood risk[J]. INTERNATIONAL JOURNAL OF CLIMATOLOGY,2007,27(12):1657-1671.
    [51]Blenkinsop S, Fowler H J. Changes in drought frequency, severity and duration for the British Isles projected by the PRUDENCE regional climate models[J]. Journal of Hydrology,2007,342(1-2):50-71.
    [52]Fowler H J, Blenkinsop S, Tebaldi C. Linking climate change modelling to impacts studies:recent advances in downscaling techniques for hydrological modelling[J]. INTERNATIONAL JOURNAL OF CLIMATOLOGY,2007,27(12):1547-1578.
    [53]Fowler H J, Kilsby C G. Using regional climate model data to simulate historical and future river flows in northwest England[J]. Climatic Change,2007,80(3-4):337-367.
    [54]Fujihara Y, Tanaka K, Watanabe T, et al. Assessing the impacts of climate change on the water resources of the Seyhan River Basin in Turkey:Use of dynamically downscaled data for hydrologic simulations[J]. Journal of Hydrology,2008,353(1-2):33-48.
    [55]Goderniaux P, Brouyere S, Fowler H J, et al. Large scale surface-subsurface hydrological model to assess climate change impacts on groundwater reserves[J]. Journal of Hydrology,2009,373(1-2):122-138.
    [56]Kay A L, Davies H N, Bell V A, et al. Comparison of uncertainty sources for climate change impacts:flood frequency in England [J]. Climatic Change,2009,92(1-2):41-63.
    [57]康尔泗.气候变化对我国区域性水资源影响研究的新进展[J].冰川冻土,2002,18:376-377.
    [58]Xu C Y. Climate change and hydrologic models:A review of existing gaps and recent research developments[J]. Water Resources Management,1999,13(5):369-382.
    [59]Xu C Y. Modelling the effects of climate change on water resources in central Sweden [J]. Water Resources Management,2000,14(3):177-189.
    [60]英爱文,姜广斌.辽河流域水资源对气候变化的响应[J].水科学进展增刊,1996,7:68-72.
    [61]Gleick P H. The development and testing of a water balance model for climate impact assessment:modeling the Sacramento basin[J]. Water Resources Research,1987, 23(7):1049-1061.
    [62]贾仰文,辉高,牛存稳等.气候变化对黄河源区径流过程的影响[J].2008,39(1):52-58.
    [63]袁飞,谢正飞,任立良等.气候变化对海河流域水文特性的影响[J].水利学报,2005,36(3):274-279.
    [64]郝振纯,王加虎,李丽等.气候变化对黄河源区水资源的影响[J].冰川冻土,2006,28(1):1-7.
    [65]王浩,王建华,秦大庸等.基于二元水循环模式的水资源评价理论方法[J].水利学报,2006,37(12):1496-1502.
    [66]贺国平,张彤,周东.土地覆被和气候变化的水文响应研究[J].分析与研究, 2006(6):27-30.
    [67]李丽娟,姜德娟,李九一等.土地利用/覆被变化的水文效应研究进展[J].自然资源学报,2007,22(2):212-224.
    [68]欧春平,夏军,王中根等.土地利用/覆被变化对SWAT模型水循环模拟结果的影响研究——以海河流域为例[J].水力发电学报,2009,28(4):125-129.
    [69]Siriwardena L, Finlayson B L, McMahon T A. The impact of land use change on catchment hydrology in large catchments:The Comet River, Central Queensland, Australia[J]. Journal of Hydrology,2006,326(1-4):199-214.
    [70]Thanapakpawin P, Richey J, Thomas D, et al. Effects of landuse change on the hydrologic regime of the Mae Chaem river basin, NW Thai land[J]. Journal of Hydrology,2006, 334:215-230.
    [71]王盛萍.典型小流域土地利用与气候变异的生态水文响应研究[D].2007:北京林业大学.
    [72]王兆印,程东升,刘成.人类活动对典型三角洲演变的影响-Ⅰ长江和珠江三角洲[J].泥沙研究,2005,6:76-80.
    [73]王兆印,程东升,刘成.人类活动对典型三角洲演变的影响-Ⅱ黄河和海河三角洲[J].泥沙研究,2006(1):76-80.
    [74]许炯心.人类活动影响下的黄河下游河道泥沙淤积宏观趋势研究[J].水利学报,2004(2):8-16.
    [75]任立良,张炜,李春红等.中国北方地区人类活动对地表水资源的影响研究[J].河海大学学报,2001,29(4):14-18.
    [76]张士锋,贾绍凤,刘昌明等.黄河源区水循环变化规律及其影响[J].中国科学E辑技术科学,2004,34(增刊):117-125.
    [77]许炯心.人类活动对黄河河川径流的影响[J].水科学进展,2007,18(5):648-655.
    [78]姚治君,管彦平,高迎春.潮白河径流分布规律及人类活动对径流的影响分析[J].地理科学进展,2003,22(6):600-606.
    [79]孙宁,李秀彬,冉圣洪等.潮河上游降水-径流关系演变及人类活动的影响分析[J].地理科学进展,2007,26(5):41-47.
    [80]曹明亮,张弛,周惠成等.丰满上游流域人类活动影响下的降雨径流变化趋势分析[J].水文,2008,28(5):87-89.
    [81]孙天青,张鑫,梁学玉等.秃尾河径流特性及人类活动对径流的影响分析[J].人民长江,2010,41(8):48-50.
    [82]仇亚琴,周祖昊,贾仰文等.三川河流域水资源演变个例研究[J].水科学进展,2006,17(6):866-872.
    [83]王浩,贾仰文,王建华等.人类活动影响下的黄河流域水资源演化规律初探[J].自然资源学报,2005,20(2):158-162.
    [84]周祖昊,仇亚琴,贾仰文,et al变化环境下渭河流域水资源演变规律分析[J].水文,2009,29(1):22-25.
    [85]Ren L L, Wang M R, Li C H, et al. Impacts of human activity on river runoff in the northern area of China[J]. Journal of Hydrology,2002,261(1-4):204-217.
    [86]Wouter B, Rolando C, Bert D B, et al. Human impact on the hydrology of the Andean paramos[J]. Earth-Science Reviews,2006,79:53-72.
    [87]Hao X M, Chen Y N, Xu C C, et al. Impacts of climate change and human activities on the surface runoff in the Tarim River basin over the last fifty years[J]. Water Resources Management,2008,22(9):1159-1171.
    [88]Ma Z M, Kang S Z, Zhang L, et al. Analysis of impacts of climate variability and human activity on streamflow for a river basin in arid region of northwest China [J]. Journal of Hydrology,2008,352(3-4):239-249.
    [89]王光谦,王思远,陈志祥.黄河流域的土地利用和土地覆盖变化[J].清华大学学报(自然科学版),2004,44(9):1218-1222.
    [90]Ye B S, Yang D Q, Kane D L. Changes in Lena River streamflow hydrology:Human impacts versus natural variations[J]. Water Resources Research,2003,39(7).
    [91]Storck P, Bowling L, Wetherbee P, et al. Application of a GIS-based distributed hydrology model for prediction of forest harvest effects on peak stream flow in the Pacific Northwest[J]. Hydrological Processes,1998,12(6):889-904.
    [92]Li K Y, Coe M T, Ramankutty N, et al. Modeling the hydrological impact of land-use change in West Africa[J]. Journal of Hydrology,2007,337:258-268.
    [93]Mann H B. Nonparametric tests against trend [J]. Econometrica,1945,13:245-259.
    [94]Kendall M G, Rank Correlation Methods [M].1955, London:Griffin.
    [95]Lee A F S, Heghinian S M. A shift of the mean level in a sequence of independent normal random variables:a Bayesian approach[J]. Technometrics,1977,19(4):503-506.
    [96]Pettitt A N. A non-parametric approach to the change-point problem[J]. Applied Statistics,1979,28(2):126-135.
    [97]肖宜,夏军,申明亮等.差异信息理论在水文时间序列变异点诊断中的应用[J].中国农村水利水电,2001(11):28-30.
    [98]王孝礼,胡宝清,夏军.水文时序趋势与变异点的R/S分析法[J].武汉大学学报(工学版),2002,35(2):10-12.
    [99]陈广才,谢平.水文变异的滑动F检验与识别方法[J].水文,2006,26(5):57-60.
    [100]熊立华,周芬,肖义等.水文时间序列变点分析的贝叶斯方法[J].水电能源科学,2003,21(4):39-41.
    [101]Perreault L, Bernier J, Bobee B, et al. Bayesian change-point analysis in hydrometeorological time series. Part 1. The normal model revisited. Journal of Hydrology,2000,235 (3-4):221-241.
    [102]Perreault L, Bernier J, Bobee B, et al. Bayesian change-point analysis in hydrometeorological time series. Part 2. Comparison of change-point models and forecasting. Journal of Hydrology,2000,235(3-4):242-263.
    [103]Erdman C, Emerson J W. bcp:An R package for performing a Bayesian analysis of change point problems[J]. Journal of Statistical Software,2007,23(3):1-13.
    [104]Erdman C, Emerson J W. A fast Bayesian change point analysis for the segmentation of microarray data[J]. Bioinformatics,2008,24(19):2143-2148.
    [105]Srinivasan R, Ramanarayanan T S, Arnold J G, et al. Large area hydrologic modeling and assessment-Part II:Model application[J]. Journal of the American Water Resources Association,1998,34(1):91-101.
    [106]Arnold J G, Srinivasan R, Muttiah R S, et al. Large Area Hydrologic Modeling and Assessment. Part I, Model Development[J]. Journal of the American Water Resource Association,1998,34(1):73-89.
    [107]Wang J H, Hong Y, Gourley J, et al. Quantitative assessment of climate change and human impacts on long-term hydrologic response:a casestudy in a sub-basin of the Yellow River, China[J]. INTERNATIONAL JOURNAL OF CLIMATOLOGY,2009.
    [108]李慧赞,张弛,王本德等.基于模糊聚类的丰满上游流域降雨径流变化趋势分析[J].水文,2009,29(3):29-31.
    [109]Chen S K, Chen W L. Analysis of water movement in paddy rice fields (1) experimental studies[J]. Journal of Hydrology,2006,260:206-215.
    [110]Chen S K, Chen W L, Huang H C. Analysis of water movement in paddy rice fields (II) simulation studies[J]. Journal of Hydrology,2002,268:259-271.
    [111]Odhiambo L 0 and Murty V V N. Modeling water balance components in relation to field layout in lowland paddy fields I:Model[J]. Agricultural Water Management,1996, 30:185-199.
    [112]代俊峰,崔远来.灌溉水文学及其研究进展[J].水科学进展,2008,19(2):295-300.
    [113]Spuill C A, Workman S R and Taraba J L. Simulation of daily and monthly stream discharge from small watersheds using the SWAT model[J]. Transactions of the ASAE,2000, 43(6):143-1439.
    [114]Santhi C, Arnold J G, Williams J R, et al. Application of a watershed model to evaluate management effects on point and nonpoint source pollution[J]. Transactions of the ASAE,2001,44(6):1559-1570.
    [115]Santhi C, Muttiah R S, Arnold J G, et al. A GIS-based regional planning tool for irrigation demand assessment and saving using SWAT[J]. American Society of Agricultural Engineers,2005,48(1):137-147.
    [116]Tripathi M P, Panda R K and Raghuwanshi N S. Development of effective management plan for critical subwatersheds using SWAT model[J]. Hydrological Processes,2005, 19:809-826.
    [117]Kang M S, Park S W, Lee J J, et al. Applying SWAT for TMDL programs to a small watershed containing rice paddy fields[J]. Agricultural Water Management,2006,79:72-92.
    [118]Bosch D D, Sheridan J M, Batten H L, et al. Evaluation of SWAT model on a coastal plain agricultural watershed[J]. Transactions of the ASAE 2004,47(5):1493-1506.
    [119]Gosain A K, Rao S, Srinivasan R, et al. Return-flow assessment for irrigation command in the Palleru river basin using SWAT model[J]. Hydrological Processes,2005, 19:673-682.
    [120]Du B, Arnold J G and Saleh A J, D. B. Development and application of SWAT to landscapes with tiles and potholes[J]. Transactions of the ASAE,2005,48(3):1121-1133.
    [121]Green C H, Tomer M D, Di L M, et al. Hydrologic evaluation of the soil and water assessment tool for a large tile-drained watershed in Iwoa[J]. Transactions of the ASABE,2006,49(2):413-422.
    [122]代俊峰,崔远来.基于SWAT的灌区分布式水文模型——Ⅰ模型构建的原理与方法[J].水利学报,2009,40(2):145-152.
    [123]Allen R G, Periera L S and Smith M. Crops evapotranspiration—guidelines for computing crop water requirements. FAO Irrigation and Drainage, Paper 56. Food and Agriculture Organization,1990.
    [124]王殿武,迟道才,张玉龙等.北方农业节水理论与技术研究[M].2009,中国水利水电出版社:北京.
    [125]陈玉民,郭国双,王广兴等.中国主要作物需水量与灌溉[M].1995,北京:中国水利电力出版社.
    [126]陈玉民,郭国双.中国主要农作物需水量等值线图研究[M].1993,北京:中国农业科技出版社.
    [127]郭元裕.农田水利学[M].1997,中国水利水电出版社:北京.
    [128]Giorgi F, Mearns L 0. Calculation of average, uncertainty range, and reliability of regional climate changes from AOGCM simulations via the "reliability ensemble averaging" (REA) method. Journal of Climate,2002,15(10):1141-1158.
    [129]Giorgi F, Mearns L 0. Probability of regional climate change based on the Reliability Ensemble Averaging (REA) method. Geophysical Research Letters,2003,30(12).
    [130]Murphy J M, Sexton D M H, Barnett D N, et al. Quantification of modelling uncertainties in a large ensemble of climate change simulations. Nature,2004,430(7001):768-772.
    [131]Tebaldi C, Smith R L, Nychka D, et al. Quantifying uncertainty in projections of regional climate change:A Bayesian approach to the analysis of multimodel ensembles. Journal of Climate,2005,18(10):1524-1540.
    [132]Wilby R L, Harris I. A framework for assessing uncertainties in climate change impacts:low-flow scenarios[J]. Water Resource Research,2002b,42.
    [133]Khan M S, Dibike Y. Uncertainty analysis of statistical downscaling methods[J]. Journal of Hydrology,2006,319:357-382.
    [134]Mujumdar P P, Ghosh S. Modeling GCM and scenario uncertainty using a possibilistic approach:Application to the Mahanadi River, India[J]. Water Resour Res,2008,44.
    [135]Raftery A E, Gneiting T, Balabdaoui F, et al. Using Bayesian model averaging to calibrate forecast ensembles. Monthly Weather Review,2005,133(5):1155-1174.
    [136]Wilby R L, Dawason C W and Barrow E M. SDSM-a decision support tool for the assessment of regional climate change impacts[J]. Environmental and Modelling Software,2002a, 17:147-159.
    [137]Hessami M, Gachon P, Ouarda T B M J. Automated regression-based Statistical Downscaling tool[J]. Environmental Modelling & Software,2008,23:813-834.
    [138]Gemmer M, Becher S, Jiang T. Observed monthly precipitation trends in China 1951-2002[J]. Theoretical and Applied Climatology,2004,77:39-45.
    [139]Hughes J, Guttort P. A class of stochastic models for relating synoptic atmospheric patterns to regional hydrologia phenomena[J]. Water Resource Research, 1994:1535-1546.
    [140]Ghosh S and Mujumdar P P. Statistical downscaling of GCM simulation to streamflow using relevance vector machine[J]. Advances in Water Resources,2008,31:132-146.
    [141]Huth R. Statisticla Downscaling of Daily Temperature in Central Europe[J]. Journal of Climate,2002,15:1731-1742.
    [142]Tipping M E. The relevance vector machine[J]. Advances in Neural Information Processing System,2000,12:652-658.
    [143]Kennedy J, Eberhart R C. Particle swarm optimization[J]. Proc IEEE Conf. on Neural Networks, Perth,1995:1942-1948.
    [144]李志,刘文兆,张勋昌等.未来气候变化对黄土高原黑河流域水资源的影响[J].生态学报,2009,29(7):3456-3464.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700