用户名: 密码: 验证码:
闽江河口湿地不同土地利用方式下甲烷排放研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究以闽江河口天然湿地类型——藨草(scirpus mariqueter)湿地和人工湿地——水稻(paddy)田为研究对象,采用野外定位观测和室内实验分析相结合的方法,测定了甲烷(CH_4)排放通量,并对其主要影响因素进行了研究。
     涨潮前藨草湿地CH_4排放通量季节动态范围为0.39~9.08 mg·m~(-2)·h~(-1),平均值为4.22 mg·m~(-2)·h~(-1);落潮后排放通量范围为0.95~12.78 mg·m~(-2)·h~(-1),平均值为5.82mg·m~(-2)·h~(-1)。落潮后CH_4排放通量高于涨潮前。
     水稻田(夏季)CH_4排放通量季节动态范围为-0.16~31.89 mg·m~(-2)·h~(-1)。在水稻生长期间出现3个排放高峰期,分别出现在水稻分蘖末期、孕穗期、成熟期。其CH_4排放通量与地下5cm处土温显著相关(相关系数:R=0.762,P<0.05),但与气温,氧化还原电位(Eh)等无明显相关性,其原因很可能是水稻田CH_4排放通量与水稻生长阶段关系更为密切。夏季水稻田CH_4平均排放通量为14.88 mg·m~(-2)·h~(-1),显著高于藨草湿地CH_4排放通量,可见人类生产活动直接导致CH_4排放通量增加。
     生长季藨草湿地CH_4排放通量日动态范围为2.43~12.66 mg·m~(-2)·h~(-1),平均值为5.92 mg·m~(-2)·h~(-1);非生长季藨草湿地CH_4排放通量日动态范围为0.09~1.30 mg·m~(-2)·h~(-1),平均值为0.63 mg·m~(-2)·h~(-1)。
     水稻田CH_4排放通量日动态的最大值和最小值分别出现在14点和凌晨6点,其排放通量分别为4.12 mg·m~(-2)·h~(-1)、1.67 mg·m~(-2)·h~(-1),在这两个时刻也分别对应着最高和最低的土温、气温。经相关性分析得出水稻田CH_4排放通量日动态与土温、气温显著相关,这和国际国内相关研究是一致的。
     研究表明,温度条件、土壤Eh是影响CH_4排放通量的主要因子,其它因子也在一定范围内表现出对CH_4排放的作用;对于水稻田来说,水稻不同生长阶段可能是决定其排放通量的主要因素:水位等条件同水稻田CH_4排放通量密切相关。
     人类通过土地利用方式的改变,如将天然湿地改造为水稻种植业用地,大大增加闽江河口湿地CH_4排放通量。出于减排和维护生态环境需要,人类应该采取诸如加强管理、改变耕作方式、确立闽江河口湿地开发时序等一系列措施。
To estimate the magnitude of methane emission and to understand temporal pattern of methane emission,the fluxes of methane emission and main influencing factors of scirpus mariqueter wetlands and paddy fields were measured in Minjiang River Estuary.
     methane emission fluxes(seasonal dynamic)from scirpus mariqueter wetland before the tidewater was 0.39~9.08 mg·m~(-2)·h~(-1),average 4.22 mg·m~(-2)·h~(-1);that after the tidewater was 0.95~12.78 mg·m~(-2)·h~(-1),average 5.82 mg·m~(-2)·h~(-1).
     Methane emission fluxes(seasonal dynamic)from paddy fields(summer)was-0.16~31.89 mg·m~(-2)·h~(-1).The CH_4 emission had a significant seasonal pattern,with three peaks at late tillering,booting-heading and milky stages During the period of measurement,there was a significantly positive correlation between CH_4 flux and soil temperature at 5cm soil depths,No significant correlation was found between CH_4 flux and soil Eh or air. The average methane emission fluxes(seasonal dynamic)from paddy fields(summer)was 14.88 mg·m~(-2)·h~(-1),it is higher than the scirpus mariqueter wetlands.
     Methane emission fluxes(diurnal dynamic)from scirpus mariqueter wetlands(the season that plant can growth)was 2.42~12.66 mg·m~(-2)·h~(-1),average 5.91 mg·m~(-2)·h~(-1);Methane emission fluxes(diurnal dynamic)from scirpus mariqueter wetlands(the season that plant was dead)was 0.09~1.30 mg·m~(-2)·h~(-1),average 0.63 mg·m~(-2)·h~(-1).
     Methane emission fluxes(diurnal dynamic)from paddy fields was 1.67~4.12 mg·m~(-2)·h~(-1).The maximum and minimum were at 14 and 6 o'clock,that the corresponding tempreture(soil temperature at 5cm soil depths and air temperature)were the highest and lowest.There was a significantly positive correlation between CH_4 flux and tempreture.
     The research resulted that:temperature and Eh of soil were the main factors that effect methane emission quantities,other factors can influence it at a certain extent;To paddy fields,the growth phase of paddy maybe the determinant factor that influence methane emission quantities and water depth have a significant correlation with methane emission.
     Land use change of marsh under human activity can greatly increase methane emission fluxes from wetlands in Estuary.
引文
[1]叶勇.红树林湿地CH_4通量与动态研究[D].厦门大学博士学位论文.1998.
    [2]王德宣.典型沼泽湿地甲烷排放及主要环境影响因素研究[D].中国科学院东北地理与农业生态研究所博士学位论文.2000.
    [3]Houghton J H,Ding Y,Griggs D J,et al.Climate Change 2001:The Scientific Basis[M].Cambridge University Press,New York,USA,2001.
    [4]Blake,D.R,Makide,Y.,Montageu,D.C.,an Rowland,F S.Global increase in atmospheric methane concentrations between 1978and 1983[J],Geophys:Res.Lett.,1982,9:477-480.
    [5]Lelieveld J,Crutzenand P,Dentener FJ.Changing concentration,lifetime and climate forcing of atmospheric methane[J].Tellus,1998,5:128-150.
    [6]Khalil.M.A.K.,and Rasmussen,R A.Sources,sinks,and seasonal cycles of atmospheric methane[J].Geophys,1983,88(9):5131-5144.
    [7]Avery J B G,Shannon R D,White J R,et al.Controls on methane production in a tidal freshwater estuary and a peatland:methane production via acetate fermentation and CO_2 duction[J].Biogeochemistry,2003,62:19-37.
    [8]Kelley C A,Martens C S,UsslerⅢ W.Methane dynamics across a tidally flooded riverbank margin[J].Limnology and Oceanography,1995,40(6):1112-1129.
    [9]Brix H,Sorrell BK,Lorenzen B.Are Phragmites-dominated wetlands a net source or net sink of greenhouse gases[J].Aquatic Botany,2001,69:313-324.
    [10]Middelburg JJ,Nieuwenhuize J,Iversen N,et al.Methane distribution in European tidal estuaries[J].Biogeochemistry,2002,59:15-19.
    [11]Purvaja R,Ramesh R.Natural and anthropogenic methane emission from coastal wetlands of south India[J].Environmental Management,2001,27:547-557
    [12]叶勇,卢昌义,林鹏.厦门东屿白骨壤林土壤甲烷产生量、氧化量、传输率与库量[J].台湾海峡,2001,20(2):236-244.
    [13]叶勇,卢昌义,林鹏,等.河口红树林湿地CH_4通量的日变化研究[J].海洋学报,2000,22(3):103-109.
    [14]黄国宏,肖笃宁,李玉祥,等.芦苇湿地温室气体甲烷(CH_4)排放研究[J].生态学报,2001,21(9):1494-1497.
    [15]程晓莉.互花米草的入侵对盐沼湿地温室气体及土壤碳氮动态的影响[D].复旦大学博士后论文,2005.
    [16]杨红霞,汪东启,陈振楼,等.长江口潮滩湿地—大气界面碳通量特征[J].环境科学学报,2006,26(4):667-673.
    [17]王维奇,曾从盛,仝川.湿地甲烷产生的测定方法及主要控制因子研究综述[J].亚热带资源与环境学报,2007,2(2):48-55.
    [18]杨文燕,宋长春,栾兆擎,等.干旱年份三江平原沼泽甲烷(CH_4)排放及影响因子[J].生态学杂志,2006,25(4):423-427.
    [19]徐华,蔡祖聪,李小平.土壤Eh和温度对稻田甲烷排放季节变化的影响[J].农业环境保护,1999,18(4):145-149.
    [20]陈槐,周舜,吴宁,等.湿地甲烷的产生、氧化及排放通量研究进展[J].应用与环境生物学报,2006,12(5):726-733.
    [21]Wang Z P,Zeng D,Patrick W H.Methane emissions from natural wetlands[J].Environmental Monitoring Assessment,1996,42:143-161.
    [22]leMer J,Roger P.Production,oxidation,emission and consumption of methane by soils[J].a review Euro Soil Biol,2001,37:25-50.
    [23]Crozier CR,Devai I,DeLaune RD.Methane and reduced sulfur gas production by fresh and dried wetland soil[J].Soil Sci Soc Am J,1995,59:277-284.
    [24]丁维新.沼泽湿地不同土地利用方式下甲烷排放机理研究[D].中国科学院南京土壤研究所博 士学位论文.2003.
    [25]Kludze HK,Delaune RD,Patrick WH Jr.Aerenchyma formation and methane and oxygen exchange[J].rice Soil Sci Soc Am J,1993,57:386-391.
    [26]Dunfiled P,Knowles R,Dumont R,Moor TR.Methane production and consumption in temperate and subarcctic peat soils response to temperature and PH[J].soil Biolbiochem,1993,25:321-326.
    [27]王明星,中国稻田甲烷排放[M].北京:科学出版社,2001.
    [28]Banker,B.C.,Kludze,H.K,Alford.D.P.,DcLaune,R.D.,andLindau,C.W.Methane sources and sinks in paddy soiLs relationship to emission[J].Agriculture Ecosystem Enviroment,1995,53(3):243-251.
    [29]Topp E,Pattey E.Soils as sources and sinks for atmospheric methane[J].Can J Soil Sci,1997,77:167-178.
    [30]Bosse U,Frenzel P.Activity and distribution of methane-oxidizing bacteria in flooded rice soilmicrocosms and in rice plants(Oryza sativa)[J].Appl Environ Microbiol,1997,63:1199-1207.
    [31]ChantonJ P,Whiting G J,Showers W J,Crill P M.Methane flux from Peltandra virgimca Stable isotope tracing and chamber efeets[J].Global Biogeochemical Cycles,1992:6:15-31.
    [32]Schutz H,Seiler W.Conrad R.Processes involved information and emission of methane in rice paddies[J].Biogeochemistry,1989,7:33-53.
    [33]Nouchil,MarikoS,AokiK.Mechanism of methane transport from the rhizosphere through rice plants[J].Plant Physiol.,1990,94:59-66.
    [34]Aulakh M S,Wassmann R,Rennenberg H,Fink S.Patern and amount of aerenchyma relate to variable methane transport capacity of different rice cultivars[J].Plant Biology,2000,2:182-194.
    [35]上官行健,王明星,陈德章等.稻田CH_4的传输[J].地球科学进展,1993b,8(5):13-22.
    [36]王天龙,杨宁,杨永生,等.清远稻田甲烷排放实验及技术问题[J].广东气象,2005.3:29-31.
    [37]陈中义.长江口海三棱蘪草的生态价值及利用与保护[J].河南科技大学学报(自然科学版),2005,26(2):64-67.
    [38]杜尧东,刘锦銮,杨宁,等.赤红壤早稻田甲烷排放通量及其影响因素[J].生态学杂志,2005,24(8):939-942.
    [39]王明星,戴爱国,黄俊,等.中国CH4排放量估算[J].大气科学,1993,17(1):52-64.
    [40]杨军,贺丽萍,杨崇,等.广州地区晚季稻田CH_4、N_2O排放研究初报[J].华南农业大学学报,1997,18(3):62-66.
    [41]Yagi K,Minami K.Effect of organic matter application on methane emission from some Japanese paddy field[J].Soil Sci.Plant Nutr,1990,36:599-610.
    [42]蔡祖聪.冬季水分管理方式对稻田甲烷排放的影响[J].应用生态学报,1998,9(2):171-175.
    [43]Peters V,Conrad R.Sequential reduction processes and initiation of CH_4 production upon flooding of oxic upland soils[J].Soil Biology and Biochemistry,1996,28:371-382.
    [44]Wang Z.et el.Soil redox and PH effects on methaneproduction in a flooded rice soil[J].Soil Science Society of America Journal.1993,57,2:382-385.
    [45]杜尧东,陈德章,王明星等.我国西南地区CH_4的稻田排放[J].地球科学进展,1993,8(5):47-54.
    [46]Cicerone RJ,Shetter JD,Delwiche CC.Seasonal variation of methane flux from a California rice paddy.[J].J.Geophys.Res,1983,88:11022-11024.
    [47]Wagner O,Pfeiffer E M.Two temperature optima of methane production in a typical soil of the Elbe river marshland[J].FEMS Microbiology Ecology,1997,22:145-153
    [48]P.Jakobsen,W.H.Patarick,JR.and B.G.Williams.Sulfide and Methane formation in soils and sediments[J].Soil science,1981,132(4):279-287.
    [49]任丽新,王庚辰,张仁健.成都平原稻田甲烷排放实验研究[J].大气科学2002,26(6):731-743.
    [50]韩广轩,朱波,江长胜,等.川中丘陵区稻田甲烷排放及其影响因素[J].农村生态环境,2005,21(1):1-6.
    [51]Wang B,Neue HU,Samonte HP.Effect of cultivar difference on methane emission[J].Agriculture Ecosystem Enviroment,1997,62(1):31-40.
    [52]Schatz H,Seiler W,Conrad R.Processes involved in formation and emission of methane in rice Paddies[J].Biogeochemistry,1998,7(1):33-53.
    [53]黄耀,Sass RL,Fisher FM.水稻物质生产对稻田甲烷排放的影响[J].农业环境保护,1999,18(4):150-154.
    [54]段晓男,王效科,陈琳,等.乌梁素海湖泊湿地植物区甲烷排放规律[J].环境科学,2007,28(3):455-459.
    [55]张福凯,徐龙君.甲烷对全球气候变暖的影响及减排措施[J].矿业安全与环保.2004,31(5):6-10.
    [56]段彬伍,卢婉芳.种植杂交稻对甲烷排放及土壤甲烷菌的影响[J].农业环境保护,1999,(5):119-124.
    [57]丁效华.稻田甲烷排放研究[J].世界农业,1995,(7):27-28.
    [58]Parashar D C,Gupta P K,Rai J,Sharma R C,Singh N.Effect of soiltemperature on methane emission from paddy field.Chemosphere,1993,26:247-250.
    [59]Singh J S,Sing S,Raghubanshi A S,Singh S,Kashyap A K.Methane flux from rice/wheat agroecosystem as affected by crop phenology,fertilization and water lever.Plant and Soil,1996,183:323-327.
    [60]毛显强,杨居荣,王华东,等.生态农业模式的环境经济学分析及政策研究.环境科学研究,1997,10(4):51-55.
    [61]陈中云,闵航,吴伟祥.农药污染对黄松稻田土壤产甲烷菌数量和甲烷排放通量的研究[J].中 国沼气,2003,21(1):18-21.
    [62]唐龙飞,黄毅斌,翁伯奇,等.稻田高效、低耗、低污染的持续农业模式研究.中国农业科学,2000,33(3):60-66.
    [63]徐雨昌,王增远.稻田甲烷排放及其控制[J].山西农业大学学报,1998(3):10-15.
    [64]张锐,何凤珍.饲养业与温室效应[J].畜牧兽医杂志,1999,18(4):26-28.
    [65]林而达,李玉娥.稻田甲烷排放量估算和减缓技术选择[J].农村生态环境学报,1994,10(4):55-58.
    [66]卢维盛,廖宗文.不同水旱轮作方式对稻田甲烷排放影响的研究[J].农业环境保护,1999,2(1):200-202.
    [67]张竹青,李义纯.稻田甲烷排放控制方法的研究进展[J].山西农业大学学报2004,24(1):89-92.
    [68]周毅,陶战.控制稻田甲烷排放的农业技术选择[J].农业生态环境学报,1994,10(3):6-8.
    [69]唐建阳.稻田甲烷排放机理和调控技术[J].中国农业大学学报,1998,3(3):101-105.
    [70]陶战.不同农作措施对稻田甲烷排放通量的影响[J].农业环境保护,1995,14(3):101-104.
    [71]熊效振,沈壬兴.太湖流域单季稻的甲烷排放现状[J].大气科学,1999,23(1):9-18.
    [72]陈苇.灌溉对稻田甲烷排放的影响[J].浙江农业学报,1998,10(1):12-17.
    [73]谢军飞,李玉娥,董红敏,等.堆肥处理蛋鸡粪时温室气体排放与影响因子关系[J].农业工程学报,2003,19(1):192-195.
    [74]于心科.温度对稻田甲烷排放的影响[J].地球科学进展,1994,9(5):54-56.
    [75]杨军.广州地区晚季稻稻田甲烷排放通量与施肥影响研究[J].华南农业大学学报,1996,17(2):17-22.
    [76]许炳雄,卢巨祥,傅桂芬,等.广州地区稻田甲烷排放通量研究[J].环境科学研究,1997,10(4):10-14.
    [77]卢昌义,叶勇,黄玉山,等.海南岛东寨港红树林群落甲烷通量研究[J].植物生态学报,2000,24(1):87-90.
    [78]Juutinen S,Larmola T,Remus R,et al.The contribution of Phragmites australis litter to methane(CH_4)emission in planted and non-planted fen microcosms[J].Biology Fertility of Soils,2003,38:10-14.
    [79]魏朝富,高明,黄勤,等.耕种制度对西南地区甲烷排放规律的研究[J].土壤学报,2000,37(2):157-165.
    [80]黄勤,魏朝富.不同耕作制对稻田甲烷排放通量的影响[J].西南农业大学学报,1996,10(5):436-439.
    [81]荣湘民,袁正平.地下水与有机肥及水分管理对稻田甲烷排放的影响[J].湖南农业大学学报(自然科学版),2001,10(5):346-349.
    [82]汪永钦,李年荣.稻田甲烷排放抑制剂实验结果分析[J].农业气象,1994,(4):15-17.
    [83]陈美慈,闵航.有机肥和无机肥对水稻土产甲烷的影响[J].植物营养与肥料学报,1998,4(4):366-370.
    [84]王增远,徐雨昌,李震,等.稻田甲烷排放及其控制[J].作物杂志,1998(3):10-11.
    [85]金会军,吴杰,程国栋,等.青藏高原湿地CH_4排放评估[J]。科学通报,1999,16(44):1758-1763.
    [86]苗曼倩,朱超群.EM对稻田甲烷排放抑制作用的初步研究[J].应用气象学报,1998,11(4):462-469.
    [87]蔡明聪.中国稻田甲烷排放研究进展[J].土壤,1999,(5):266-269.
    [88]崔胜辉.秋茄红树林湿地甲烷动态与环境因子相互关系的研究[D].厦门大学硕士学位论文.1998.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700