用户名: 密码: 验证码:
环孢素A缓解人滋养细胞氧化应激损伤的分子机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
妊娠初期,滋养细胞具有独特的类似肿瘤细胞的生物学行为,即高增殖、低凋亡和高迁移及侵袭力;同时滋养细胞的生物学行为受到蜕膜微环境的严格调控,这对囊胚植入、胚胎发育和正常妊娠的维持起关键作用。近年来研究发现,氧化应激参与多种病理性妊娠的发病,与流产、先兆子痫、胎儿生长受限(FGR)、早产及死胎等妊娠并发症密切关联。过量的活性氧自由基(ROS)可使磷脂中的不饱和脂肪酸生成过氧化脂质,损伤生物膜;可以抑制蛋白质功能,破坏核酸及染色质,从而伤害机体的各种组织和细胞,包括导致滋养细胞凋亡,降低细胞侵袭力。因此,控制氧化损伤对于成功妊娠和正常妊娠的维持具有重要意义。
     环孢素A(CsA)是具有划时代意义的免疫抑制剂,其临床应用可显著改善实体器官移植的近期存活率,是器官移植后免疫抑制和抗排斥反应的首选药物。我们课题组首次发现,低浓度CsA可显著提高滋养细胞的增殖与侵袭力,抑制低血清培养诱导的滋养细胞凋亡,并改善小鼠流产模型的妊娠结局,提示CsA可能为滋养细胞功能障碍导致的妊娠疾病的潜在治疗药物。与CsA经典的细胞内信号转导通路不同,我们课题组的研究结果显示,CsA可通过活化MAPK/ERK通路提高滋养细胞的增殖及侵袭力。
     本研究在前期工作基础上,进一步研究在细胞生物学功能调控中起重要作用的粘着斑激酶(FAK)信号通路是否参与CsA调节滋养细胞的迁移与侵袭;并通过用H202处理人绒毛膜上皮癌细胞系JEG-3细胞,建立滋养细胞氧化损伤的体外模型,在氧化应激条件下进一步解析CsA减轻滋养细胞损伤的分子机制,以及相应的细胞内信号转导通路,为拓展CsA的临床应用提供科学依据。
     第一部分环孢素A通过FAK信号通路促进滋养细胞迁移与侵袭
     目的探讨FAK信号通路是否参与介导CsA促进滋养细胞迁移与侵袭,以及FAK信号通路与ERK信号通路间的相互作用。
     方法用CsA(1gM)处理滋养细胞,或用FAK抑制剂Y15、Src抑制剂PP2、MEK抑制剂U0126分别预处理滋养细胞后再用CsA处理,采用Transwell迁移试验和Matrigel侵袭试验分析滋养细胞的迁移及侵袭力,Western blot分析滋养细胞FAK、Src及ERK的磷酸化水平及E-钙粘蛋白(E-cadherin)和金属基质蛋白酶MMP2、MMP9的表达水平,明胶酶谱实验分析滋养细胞培养上清MMP2、MMP9的活性。
     结果CsA可显著提高原代滋养细胞及JEG-3细胞FAK及其接头分子Src的磷酸化水平。Y15和PP2均能阻断CsA升调节滋养细胞的迁移及侵袭。Y15和PP2可抑制CsA增高的FAK、Src及ERK的磷酸化水平,U0126可抑制CsA增高的ERK磷酸化水平,但对FAK及Src的磷酸化水平无显著影响。Y15、PP2和U0126均可消除CsA对E-cadherin表达的下调作用和对MMP2、MMP9表达及活性的上调作用。
     结论CsA通过FAK-Src信号通路促进ERK信号通路活化,下调E-cadherin表达,上调MMP2、MMP9的表达及分泌,进而促进滋养细胞的迁移和侵袭。
     第二部分氧化应激损伤滋养细胞的生物学行为
     目的分析H202对JEG-3细胞生物学行为的影响,建立滋养细胞氧化应激损伤模型。
     方法用不同浓度的H202处理JEG-3细胞24h,采用MTT法分析滋养细胞活力,倒置相差显微镜及荧光显微镜观察细胞形态,DHE荧光探针检测细胞内ROS水平,JC-1荧光探针检测细胞线粒体膜电位,Annexin V/PI双标记检测细胞早期凋亡,Matrigel侵袭试验检测细胞的侵袭力,以建立滋养细胞氧化损伤模型。
     结果500μM H2O2处理JEG-3细胞24h后,细胞活力显著下降,形态发生明显改变,细胞皱缩,间隙增大,体积减小,细胞核缩小,染色质凝集,呈颗粒团块状分布;细胞ROS产生增加,线粒体膜电位下降,凋亡比例升高,细胞侵袭力显著下降。更高浓度的H202(从7501μM开始)则诱发细胞大量脱落坏死,侵袭力丧失。
     结论JEG-3细胞经500gM H2O2处理24h呈现明显的氧化应激损伤,用此条件建立氧化应激模型,为研究滋养细胞氧化损伤及抗氧化应激药物的作用机制奠定了基础。
     第三部分环孢素A缓解氧化应激诱导的滋养细胞损伤
     目的解析CsA对H2O2诱导滋养细胞生物学行为损伤的保护作用及其分子机制。
     方法用低浓度CsA(1μM)预处理JEG-3细胞24h,再经H2O2(500μM)刺激诱导氧化损伤,采用MTT比色法分析滋养细胞活力,倒置相差显微镜及荧光显微镜观察细胞形态,Annexin V/PI双标记检测细胞早期凋亡,Matrigel侵袭试验检测细胞的侵袭力,DHE荧光探针检测细胞ROS水平,化学比色法检测细胞丙二醛(MDA)的含量、超氧化物歧化酶(SOD)及过氧化氢酶(CAT)的活性,JC-1荧光探针检测细胞线粒体膜电位,Western blot检测凋亡相关蛋白的表达水平。
     结果与H202单独处理组比较,JEG-3细胞经低浓度CsA干预后,细胞活力明显升高,形态得以改善;细胞凋亡比例下降,侵袭力增加;细胞内ROS、MDA含量明显下降,SOD.CAT的活性显著升高;线粒体膜电位水平恢复;p53的表达和磷酸化水平下降,Bax表达减少,Bcl-2表达增加,caspase-3前体增多,裂解的PARP大片段减少。
     结论CsA干预可明显改善氧化应激状态下JEG-3细胞的生物学行为;减轻细胞氧化损伤程度,增强细胞的抗氧化损伤能力;抑制线粒体相关的凋亡信号通路及caspase-3活化,减少滋养细胞凋亡。
     第四部分环孢素A通过调节FAK-Src和MAPK信号通路缓解滋养细胞氧化损伤
     目的解析CsA缓解滋养细胞氧化损伤的信号转导通路。
     方法用低浓度CsA(1μM)处理JEG-3细胞24h,再经H2O2(500μM)刺激诱导氧化损伤,采用Western blot分析CsA对氧化应激的滋养细胞FAK.Src及MAPKs磷酸化水平的影响;在此基础上,用FAK抑制剂Y15、Src抑制剂PP2分别预处理处理JEG-3细胞,MTT法测定细胞活力,DHE荧光探针检测细胞内ROS水平,JC-1荧光探针检测细胞线粒体膜电位,Annexin V/PI双标记检测细胞早期凋亡,Matrigel侵袭实验检测细胞的侵袭力;用MAPKs信号通路抑制剂(SB203580、SP600125、U0126)分别预处理JEG-3细胞,MTT法分析细胞活力。
     结果H202刺激可引起JEG-3细胞FAK、Src磷酸化水平下降,p38MAPK、JNK和ERK的磷酸化水平升高。CsA预处理JEG-3细胞后再经H202刺激,FAK、Src磷酸化水平明显升高,JNK磷酸化水平明显下降,ERK磷酸化水平无显著性变化。Y15和PP2处理细胞后,再经CsA和H202联合处理,与CsA和H202联合处理组比较,滋养细胞活力下降,ROS产生增加,线粒体膜电位下降,凋亡比例升高,侵袭力下降。p38MAPK抑制剂SB203580或JNK抑制剂SP600125处理细胞后,再经H202处理,滋养细胞活力较H202处理组升高;而MEK抑制剂U0126处理后,细胞活力进一步下降。
     结论低浓度CsA通过促进FAK-Src信号通路活化,抑制p38MAPK和JNK信号通路活化,发挥对氧化损伤的滋养细胞的保护作用。
     综上所述,本研究发现低浓度CsA对人滋养细胞的生物学行为具有多重调节作用:(1)通过FAK-Src信号通路促进ERK信号通路活化,下调E-cadherin表达,上调MMP2、MMP9的表达及分泌,促进正常滋养细胞的迁移和侵袭;(2)通过降调节ROS及MDA的生成,升调节SOD和CAT的活性,缓解滋养细胞氧化应激损伤;(3)通过抑制线粒体相关的凋亡通路,降低caspase-3活化水平,抑制氧化应激诱导的滋养细胞凋亡;(4)通过促进FAK-Src信号通路活化,抑制p38MAPK和JNK信号通路活化,发挥对氧化损伤的滋养细胞的保护作用。这些研究结果显示,CsA的药理作用及其细胞内信号转导通路远超过人们迄今为止的认识,有望成为一种新型保胎制剂,为临床防治妊娠失败、子痫前期、胎儿生长受限等病理妊娠提供了一种新的策略。
Trophoblast cell exerts a crucial role in implantation and placentation which involves invasion of trophoblast cells into the uterine epithelium and the underlying stroma that undergo a complex process of proliferation, migration and differentiation. A typical feature of placentation in humans is the trophoblasts with high degree invasion to gain access to the maternal circulation in the first trimester pregnancy. The pregnancy physiology depends upon the orderly progress of structural and functional changes of villous and extravillous trophoblast, whereas a disorder of the processes would lead to different types of complications, including pregnancy loss and maternal life-threatening diseases. The inflammation and oxidative stress are associated with the functional disorder of trophoblast cells. The role of oxidative stress in female reproduction is becoming increasingly important, as recent evidence suggests that it plays a part in conditions such as polycystic ovarian syndrome, endometriosis, spontaneous abortion, preeclampsia, hydatidiform mole, embryopathies, preterm labor, and fetal growth restriction (FGR). Reactive oxygen species (ROS) are major species of free radicals, and play an important regulatory role via various signaling transduction pathways in folliculogenesis, oocyte maturation, endometrial cycle, luteolysis, implantation, embryogenesis and pregnancy. Persistent and elevated generation of ROS leads to a disturbance of redox potential that in turn causes oxidative stress. Therefore, keeping proper oxidative balance is needed for successful pregnancy.
     Cyclosporin A (CsA), first found in1970s, has made transplantation a breakthrough. Our previous research has found that a low concentration of CsA (10-4~1.0μmol/L) can remarkably promote the proliferation and invasion of human first-trimester trophoblasts while decrease trophoblastic apoptosis induced by serum starvation in vitro. It has been found that CsA promotes trophoblastic invasion through mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) pathway, which is different from the classical pathway of CsA. The study in vivo has showed that administration with low dose CsA at the early stage of pregnancy can reduce fetal resorption rate in murine abortion-prone CBA/J×DBA/2matings. These results above suggest that CsA appears to have favorable effect on materno-fetal relationship by regulating behaviors of trophoblast cells.
     In the present study, we further investigate the role of FAK signaling pathway in the CsA-promoted migration and invasion of trophoblast cells. In addition, we investigate the molecular mechanism and signaling pathway of CsA protection trophoblast cells against oxidative stress-induced damage with the oxidative stress model established by exposing JEG-3cells to different concentrations of H2O2in vitro. This study will provide more scientific evidence for the expansion of CsA clinical application in the therapeutics for pathological pregnancy.
     1. CsA improves migration and invasion of human trophoblast cells via FAK signaling pathway
     Objectives:Our previous studies have shown that Cyclosporin A (CsA) promotes the invasiveness of human trophoblast cells via MAPK/ERK signaling pathway. However, the upstream cascades of ERK activation induced by CsA remain poorly defined. Here, we are to investigate whether focal adhesion kinase (FAK) signaling is involved in the CsA-induced trophoblast migration and invasion and ERK activation.
     Methods:The migration and invasion of human primary trophoblasts and JEG-3cells were measured by transwell migration and matrigel invasion assays. The CsA-induced activation of FAK, Src or ERK was examined by western blot. The reciprocal regulation between FAK, Src and ERK signaling pathway was investigated with the use of their specific inhibitors Y15, PP2or U0126. The E-cadherin expression and matrix metalloproteinases (MMPs) activity was evaluated by western blot or gelatin zymography, respectively.
     Results:CsA increased the phosphorylation of FAK and Src in human primary trophoblasts and JEG-3cells. Both FAK inhibitor Y15and Src inhibitor PP2not only inhibited the activation of FAK and Src, but also suppressed the phosphorylation of ERK in the presence of CsA. They also blocked the CsA-induced migration and invasion of JEG-3cells. U0126inhibited the activation of ERK but had no effect on the activation of FAK or Src induced by CsA. Furthermore, the CsA-promoted expression and activity of MMP2, MMP9were blocked effectively by pretreatment with Y15, PP2or U0126, and these inhibitors also restored the expression of E-cadherin which was down-regulated by CsA.
     Conclusions:FAK-Src signaling, the upstream signaling cascade of ERK activation, plays an important role in the CsA-induced trophoblast migration and invasion via down-regulating the expression of E-cadherin and up-regulating the activity of MMP2, MMP9in human trophoblast cells.
     2. H2P2-induced oxidative stress damages the biological behaviors of JEG-3cells
     Objective:The experimental oxidative stress model of human trophoblast cells in vitro was established to investigate the effect of H2O2-induced oxidative stress on the biological behaviors of JEG-3cells.
     Methods:JEG-3cells were treated with H2O2of different concentrations for24h. Cells viability was measured with MTT assay. Cell morphology was observed by inverted microscope and fluorescence microscope with DAPI staining. The ROS production and mitochondrial membrane potential were detected by DHE and JC-1staining, respectively. Cell apoptosis was analyzed by Annexin V/PI staining. Cell invasiveness was evaluated by Matrigel-coated transwell invasion assay.
     Results:H2O2decreased the viability and invasiveness, and increased the apoptosis ratio of JEG-3cells in a concentration-dependent manner. H2O2also increased the production of ROS and decreased the mitochondrial membrane potential. JEG-3cells exposed to500μM H2O2showed typical appearance of apoptotic cells, such as cell shrinkage and fragmentation, condensed chromatin. The higher concentration of H2O2induced cell death and cell invasiveness loss.
     Conclusion:Treatment with500μM H2O2for24h can induce significant oxidative injury in JEG-3cells, which provides a valuable tool to directly investigate the cellular events of trophoblast oxidative injury and the mechanisms of antioxidants.
     3. CsA attenuates the H2O2-induced oxidative injury of JEG-3cells
     Objective:To investigate the protective effect and mechanisms of CsA on the H2O2-induced oxidative injury of JEG-3cells.
     Methods:JEG-3cells were pretreated with CsA for24h followed by treatment with500μM H2O2for another24h. Cells viability was measured by MTT assay. Cell morphology was observed by inverted microscope and fluorescence microscope with DAPI staining. Cell apoptosis was analyzed by Annexin V/PI staining. Cell invasiveness was evaluated by Matrigel-coated transwell invasion assay. The ROS production and mitochondrial membrane potential were detected by DHE and JC-1staining, respectively. Furthermore, MDA production, SOD and CAT activity were tested with chemical colorimetry assays. The expression of p53, phoph-p53, Bax, Bcl-2, pro caspase-3and cleaved PARP was examined by western blot.
     Results:CsA pretreatment dramatically increased JEG-3cell viability, alleviated the morphological injury, reduced the cell apoptosis and improved cell invasion after H2O2treatment. Compared to the H2O2-treated group, CsA pretreatment reduced the production of ROS and MDA, and increased the activity of SOD and CAT. Furthermore, CsA pretreatment restored the mitochondrial membrane potential of JEG-3cells, decreased the expression of p53and phoph-p53, Bax and cleaved PARP, and increased the expression of Bcl-2and pro caspase-3.
     Conclusion:CsA displays protective effect of oxidative injured JEG-3cells. CsA attenuates the H2O2-induced oxidative injury by decreasing ROS, MDA production and increasing SOD, CAT activity, and inhibits H2O2-induced apoptosis by suppressing mitochondria related apoptotic signaling pathway and caspase-3activity.
     4. CsA attenuates the H2O2-induced oxidative injury of JEG-3cells via regulation of FAK-Src and MAPK pathway
     Objective:To explore the signaling pathway by which CsA attenuates the H2O2-induced oxidative injury of JEG-3cells.
     Methods:Cells were pretreated with CsA for24h, and then incubated with H2O2for another24h. Y15, PP2, SB203580, SP60015and U0126were used to block the activation of FAK, Src, p38MAPK, JNK and ERK, respectively. Cells viability was measured by MTT assay. Apoptosis was analyzed by Annexin V/PI staining. The ROS production and mitochondrial membrane potential were detected by DHE and JC-1staining, respectively. The invasiveness of JEG-3was investigated with Matrigel-coated transwell invasion assay. The expression and activation of signaling molecules were examined by western blot.
     Results:H2O2treatment decreased the activation of FAK and Src, and increased the phosphorylation of ERK, p38MAPK and JNK in JEG-3cells. CsA pretreatment enhanced the activation of FAK, Src and attenuated the phosphorylation of p38, JNK in JEG-3cells after H2O2treatment. However, there was no significant effect on the activation of ERK. Blocking the activation of FAK or Src with Y15or PP2, respectively, reduced the cross activation between FAK and Src, decreased the cell viability, mitochondrial membrane potential and invasiveness, and increased the cell apoptosis ratio and ROS production after the combination treatment of CsA and H2O2. Furthermore, blocking the phosphorylation of p38MAPK or JNK by SB203580or SP60015, respectively, promoted the cell viability reduced by H2O2. However, U0126intensified the inhibitory effect of cell viability by H2O2via inactivating ERK signaling.
     Conclusion:CsA attenuates the H2O2-induced oxidative injury of JEG-3cells via promoting the activation of FAK-Src and suppressing the activation of p38MAPK and JNK signaling pathway.
     In conclusion, a low concentration of CsA has multiple modulating effect on the biological behaviors of human trophoblast cells:(1) enhances the migration and invasion of trophoblast cells by up-regulating the activity of MMP2and MMP9, and down-regulating the expression of E-cadherin via FAK-Src/ERK signaling pathway;(2) attenuates the H2O2-induced oxidative injury of trophoblast cells by decreasing ROS, MDA production and increasing SOD, CAT activity;(3) inhibits the oxidative stress-induced trophoblast apoptosis via suppressing mitochondria related apoptotic signaling pathway and caspase-3activity;(4) protects trophoblast cells against oxidative damage via promoting the activation of FAK-Src and suppressing the activation of p38MAPK and JNK signaling pathway. Our results suggest that CsA might be used as a unique therapeutics for a series of pregnancy complications, such as miscarriage, preeclampsia, fetal growth restriction, and so on.
引文
1. Kadyrov M, Kingdom JC, Huppertz B. Divergent trophoblast invasion and apoptosis in placental bed spiral arteries from pregnancies complicated by maternal anemia and early-onset preeclampsia/intrauterine growth restriction. Am J Obstet Gynecol 2006; 194(2):557-63.
    2. Lachapelle MH, Miron P, Hemmings R, Roy DC. Endometrial T, B, and NK cells in patients with recurrent spontaneous abortion. Altered profile and pregnancy outcome. J Immunol 1996; 156(10):4027-34.
    3. Shih Ie M, Kurman RJ. Molecular basis of gestational trophoblastic diseases. Curr Mol Med 2002; 2(1):1-12.
    4. Gupta S, Agarwal A, Banerjee J, Alvarez J.:The role of oxidative stress in spontaneous abortion and recurrent pregnancy loss:a systematic review. Obstet Gynecol Surv 2007; 62(5):335-47; quiz 353-4.
    5. Agarwal A, Gupta S, Sekhon L, Shah R. Redox considerations in female reproductive function and assisted reproduction:from molecular mechanisms to health implications. Antioxid Redox Signal 2008; 10(8):1375-403.
    6. Harma M, Harma M, Erel O. Oxidative stress in women with preeclampsia. Am J Obstet Gynecol 2005; 192(2):656-7; author reply 657.
    7. Lunghi L, Ferretti ME, Medici S, Biondi C, Vesce F:Control of human trophoblast function. Reprod Biol Endocrinol 2007; 5:6.
    8. Poston L, Igosheva N, Mistry HD, et al. Role of oxidative stress and antioxidant supplementation in pregnancy disorders. Am J Clin Nutr 2011; 94(6 Suppl): 1980S-1985S.
    9. Burton GJ, Jauniaux. Placental oxidative stress:from miscarriage to preeclampsia. J Soc Gynecol Investig 2004; 11(6):342-52.
    10. Lagod L, Paszkowski T, Sikorski R, Rola R. [The antioxidant-prooxidant balance in pregnancy complicated by spontaneous abortion]. Ginekol Pol 2001; 72(12): 1073-8.
    11. Jenkins C, Wilson R, Roberts J, Miller H, McKillop JH, Walker JJ. Antioxidants: their role in pregnancy and miscarriage. Antioxid Redox Signal 2000; 2(3):623-8.
    12. Aydin S, Benian A, Madazli R, Uludag S, Uzun H, Kaya S. Plasma malondialdehyde, superoxide dismutase, sE-selectin, fibronectin, endothelin-1 and nitric oxide levels in women with preeclampsia. Eur J Obstet Gynecol Reprod Biol 2004; 113(1):21-5.
    13. Fujimaki A, Watanabe K, Mori T, Kimura C, Shinohara K, Wakatsuki A. Placental oxidative DNA damage and its repair in preeclamptic women with fetal growth restriction. Placenta 2011; 32(5):367-72.
    14. Drukteinis JS, Medrano T, Ablordeppey EA, Kitzman JM, Shiverick KT. Benzo[a]pyrene, but not 2,3,7,8-TCDD, induces G2/M cell cycle arrest, p21CIP1 and p53 phosphorylation in human choriocarcinoma JEG-3 cells:a distinct signaling pathway. Placenta 2005; 26 Suppl A:S87-95.
    15. Gundogan F, Elwood G, Mark P, et al. Ethanol-induced oxidative stress and mitochondrial dysfunction in rat placenta:relevance to pregnancy loss. Alcohol Clin Exp Res 2010; 34(3):415-23.
    16. Chen SC, Liao TL, Wei YH, Tzeng CR, Kao SH. Endocrine disruptor, dioxin (TCDD)-induced mitochondrial dysfunction and apoptosis in human trophoblast-like JAR cells. Mol Hum Reprod 2010; 16(5):361-72.
    17. Chen F. Induction of oxidative stress and cytotoxicity by PCB126 in JEG-3 human choriocarcinoma cells. J Environ Sci Health A Tox Hazard Subst Environ Eng 2010; 45(8):932-7.
    18. Poston L, Raijmakers MT. Trophoblast oxidative stress, antioxidants and pregnancy outcome--a review. Placenta 2004; 25 Suppl A:S72-8.
    19. Chappell LC, Seed PT, Briley A, et al. A longitudinal study of biochemical variables in women at risk of preeclampsia. Am J Obstet Gynecol 2002; 187(1): 127-36.
    20. Poston L, Briley AL, Seed PT, Kelly FJ, Shennan AH. Vitamin C and vitamin E in pregnant women at risk for pre-eclampsia (VIP trial):randomised placebo-controlled trial. Lancet 2006; 367(9517):1145-54.
    21. Villar J, Purwar M, Merialdi M, et al. World Health Organisation multicentre randomised trial of supplementation with vitamins C and E among pregnant women at high risk for pre-eclampsia in populations of low nutritional status from developing countries. Bjog 2009; 116(6):780-8.
    22. Rumbold AR, Crowther CA, Haslam RR, Dekker GA, Robinson JS. Vitamins C and E and the risks of preeclampsia and perinatal complications. N Engl J Med 2006; 354(17):1796-806.
    23. Roberts JM, Myatt L, Spong CY, et al. Vitamins C and E to prevent complications of pregnancy-associated hypertension. N Engl J Med 2010; 362(14):1282-91.
    24. Schreiber SL. Chemistry and biology of the immunophilins and their immunosuppressive ligands. Science 1991; 251(4991):283-7.
    25. O'Keefe SJ, Tamura J, Kincaid RL, Tocci MJ, O'Neill EA. FK-506- and CsA-sensitive activation of the interleukin-2 promoter by calcineurin. Nature 1992; 357(6380):692-4.
    26. Emmel EA, Verweij CL, Durand DB, Higgins KM, Lacy E, Crabtree GR. Cyclosporin A specifically inhibits function of nuclear proteins involved in T cell activation. Science 1989; 246(4937):1617-20.
    27. Alvarez-Arroyo MV, Yague S, Wenger RM, et al. Cyclophilin-mediated pathways in the effect of cyclosporin A on endothelial cells:role of vascular endothelial growth factor. Circ Res 2002; 91(3):202-9.
    28. Chen HW, Chien CT, Yu SL, Lee YT, Chen WJ. Cyclosporine A regulate oxidative stress-induced apoptosis in cardiomyocytes:mechanisms via ROS generation, iNOS and Hsp70. Br J Pharmacol 2002; 137(6):771-81.
    29. Murakami R, Kambe F, Mitsuyama H, et al. Cyclosporin A enhances interleukin-8 expression by inducing activator protein-1 in human aortic smooth muscle cells. Arterioscler Thromb Vase Biol 2003; 23(11):2034-40.
    30. Kiely B, Feldman G, Ryan MP. Modulation of renal epithelial barrier function by mitogen-activated protein kinases (MAPKs):mechanism of cyclosporine A-induced increase in transepithelial resistance. Kidney Int 2003; 63(3):908-16.
    31. Hojo M, Morimoto T, Maluccio M, et al. Cyclosporine induces cancer progression by a cell-autonomous mechanism. Nature 1999; 397(6719):530-4.
    32. Lemasters JJ, Nieminen AL, Qian T, et al. The mitochondrial permeability transition in cell death:a common mechanism in necrosis, apoptosis and autophagy. Biochim Biophys Acta 1998; 1366(1-2):177-96.
    33. Crompton M. The mitochondrial permeability transition pore and its role in cell death. Biochem J 1999; 341 (Pt 2):233-49.
    34. Ding WX, Shen HM, Ong CN. Critical role of reactive oxygen species and mitochondrial permeability transition in microcystin-induced rapid apoptosis in rat hepatocytes. Hepatology 2000; 32(3):547-55.
    35. Du MR, Dong L, Zhou WH, Yan FT, Li DJ. Cyclosporin a improves pregnancy outcome by promoting functions of trophoblasts and inducing maternal tolerance to the allogeneic fetus in abortion-prone matings in the mouse. Biol Reprod 2007; 76(5): 906-14.
    36. Du MR, Zhou WH, Dong L, et al. Cyclosporin A promotes growth and invasiveness in vitro of human first-trimester trophoblast cells via MAPK3/MAPK1-mediated AP1 and Ca2+/calcineurin/NFAT signaling pathways. Biol Reprod 2008; 78(6):1102-10.
    37. Du MR, Zhou WH, Yan FT, et al. Cyclosporine A induces titin expression via MAPK/ERK signalling and improves proliferative and invasive potential of human trophoblast cells. Hum Reprod 2007; 22(9):2528-37.
    38. Zhou WH, Du MR, Dong L, et al. Cyclosporin A increases expression of matrix metalloproteinase 9 and 2 and invasiveness in vitro of the first-trimester human trophoblast cells via the mitogen-activated protein kinase pathway. Hum Reprod 2007; 22(10):2743-50.
    39. Lewis GJ, Lamont CA, Lee HA, Slapak M. Successful pregnancy in a renal transplant recipient taking cyclosporin A. Br Med J (Clin Res Ed) 1983; 286(6365): 603.
    40. Cochat P, Decramer S, Robert-Gnansia E, Dubourg L, Audra P. Renal outcome of children exposed to cyclosporine in utero. Transplant Proc 2004; 36(2 Suppl): 208S-210S.
    41. Cimaz R, Meregalli E, Biggioggero M, et al. Alterations in the immune system of children from mothers treated with immunosuppressive agents during pregnancy. Toxicol Lett 2004; 149(1-3):155-62.
    42. Sivaraman P. Management of pregnancy in transplant recipients. Transplant Proc 2004; 36(7):1999-2000.
    43. Kaufmann P, Black S, Huppertz B. Endovascular trophoblast invasion: implications for the pathogenesis of intrauterine growth retardation and preeclampsia. Biol Reprod 2003; 69(1):1-7.
    44. Bose P, Kadyrov M, Goldin R, et al. Aberrations of early trophoblast differentiation predispose to pregnancy failure:lessons from the anti-phospholipid syndrome. Placenta 2006; 27(8):869-75.
    45. Torry DS, Labarrere CA, McIntyre JA Uteroplacental vascular involvement in recurrent spontaneous abortion. Curr Opin Obstet Gynecol 1998; 10(5):379-82.
    46. Schaller MD. Cellular functions of FAK kinases:insight into molecular mechanisms and novel functions. J Cell Sci 2010; 123(Pt 7):1007-13.
    47. Schlaepfer DD, Mitra SK. Multiple connections link FAK to cell motility and invasion. Curr Opin Genet Dev 2004; 14(1):92-101.
    48. Mitra SK, Schlaepfer DD. Integrin-regulated FAK-Src signaling in normal and cancer cells. Curr Opin Cell Biol 2006; 18(5):516-23.
    49. MacPhee DJ, Mostachfi H, Han R, Lye SJ, Post M, Caniggia I. Focal adhesion kinase is a key mediator of human trophoblast development. Lab Invest 2001; 81(11): 1469-83.
    50. Ilic D, Genbacev O, Jin F, et al. Plasma membrane-associated pY397FAK is a marker of cytotrophoblast invasion in vivo and in vitro. Am J Pathol 2001; 159(1): 93-108.
    51. Arimoto-Ishida E, Sakata M, Sawada K, et al. Up-regulation of alpha5-integrin by E-cadherin loss in hypoxia and its key role in the migration of extravillous trophoblast cells during early implantation. Endocrinology 2009; 150(9):4306-15.
    52.吴霞,李大金,袁敏敏,王明雁.人早孕期绒毛和绒毛外细胞滋养细胞的分离、培养及鉴定.生殖与避孕2004;24(2):70-73.
    53. Huang Y, Zhu XY, Du MR, Wu X, Wang MY, Li DJ. Chemokine CXCL16, a scavenger receptor, induces proliferation and invasion of first-trimester human trophoblast cells in an autocrine manner. Hum Reprod 2006; 21(4):1083-91.
    54. Sato Y, Fujiwara H, Zeng BX, Higuchi T, Yoshioka S, Fujii S. Platelet-derived soluble factors induce human extravillous trophoblast migration and differentiation: platelets are a possible regulator of trophoblast infiltration into maternal spiral arteries. Blood 2005; 106(2):428-35.
    55. Pollheimer J, Knofler M. Signalling pathways regulating the invasive differentiation of human trophoblasts:a review. Placenta 2005; 26 Suppl A:S21-30.
    56. Chodniewicz D, Klemke RL. Regulation of integrin-mediated cellular responses through assembly of a CAS/Crk scaffold. Biochim Biophys Acta 2004; 1692(2-3): 63-76.
    57. Toutant M, Costa A, Studler JM, Kadare G, Carnaud M, Girault JA. Alternative splicing controls the mechanisms of FAK autophosphorylation. Mol Cell Biol 2002; 22(22):7731-43.
    58. Poullet P, Gautreau A, Kadare G, Girault JA, Louvard D, Arpin M. Ezrin interacts with focal adhesion kinase and induces its activation independently of cell-matrix adhesion. J Biol Chem 2001; 276(40):37686-91.
    59. Damsky CH, Librach C, Lim KH, et al. Integrin switching regulates normal trophoblast invasion. Development 1994; 120(12):3657-66.
    60. Ishimatsu S, Itakura A, Okada M, et al. Angiotensin Ⅱ augmented migration and invasion of choriocarcinoma cells involves PI3K activation through the AT1 receptor. Placenta 2006; 27(6-7):587-91.
    61. Gleeson LM, Chakraborty C, McKinnon T, Lala PK. Insulin-like growth factor-binding protein 1 stimulates human trophoblast migration by signaling through alpha 5 beta 1 integrin via mitogen-activated protein Kinase pathway. J Clin Endocrinol Metab 2001; 86(6):2484-93.
    62. Meisser A, Chardonnens D, Campana A, Bischof P. Effects of tumour necrosis factor-alpha, interleukin-1 alpha, macrophage colony stimulating factor and transforming growth factor beta on trophoblastic matrix metalloproteinases. Mol Hum Reprod 1999; 5(3):252-60.
    63. Meisser A, Cameo P, Islami D, Campana A, Bischof P. Effects of interleukin-6 (IL-6) on cytotrophoblastic cells. Mol Hum Reprod 1999; 5(11):1055-8.
    64. Staun-Ram E, Goldman S, Gabarin D, Shalev E. Expression and importance of matrix metalloproteinase 2 and 9 (MMP-2 and -9) in human trophoblast invasion. Reprod Biol Endocrinol 2004; 2:59.
    65. Shimonovitz S, Hurwitz A, Dushnik M, Anteby E, Geva-Eldar T, Yagel S. Developmental regulation of the expression of 72 and 92 kd type Ⅳ collagenases in human trophoblasts:a possible mechanism for control of trophoblast invasion. Am J Obstet Gynecol 1994; 171(3):832-8.
    66. Merchant SJ, Crocker IP, Baker PN, Tansinda D, Davidge ST, Guilbert LJ. Matrix metalloproteinase release from placental explants of pregnancies complicated by intrauterine growth restriction. J Soc Gynecol Investig 2004; 11(2):97-103.
    67. Lim KH, Zhou Y, Janatpour M, et al. Human cytotrophoblast differentiation/invasion is abnormal in pre-eclampsia. Am J Pathol 1997; 151(6): 1809-18.
    68. Yamamoto H, Flannery ML, Kupriyanov S, et al. Defective trophoblast function in mice with a targeted mutation of Ets2. Genes Dev 1998; 12(9):1315-26.
    69. Kolli-Bouhafs K, Boukhari A, Abusnina A, et al. Thymoquinone reduces migration and invasion of human glioblastoma cells associated with FAK, MMP-2 and MMP-9 down-regulation. Invest New Drugs 2011; [Epub ahead of print].
    70. Jia YL, Shi L, Zhou JN, et al. Epimorphin promotes human hepatocellular carcinoma invasion and metastasis through activation of focal adhesion kinase/extracellular signal-regulated kinase/matrix metalloproteinase-9 axis. Hepatology 2011; 54(5):1808-18.
    71. Liu KC, Huang AC, Wu PP, et al. Gallic acid suppresses the migration and invasion of PC-3 human prostate cancer cells via inhibition of matrix metalloproteinase-2 and -9 signaling pathways. Oncol Rep 2011; 26(1):177-84.
    72. van Nimwegen MJ, van de Water B. Focal adhesion kinase:a potential target in cancer therapy. Biochem Pharmacol 2007; 73(5):597-609.
    73. Han EK, McGonigal T. Role of focal adhesion kinase in human cancer:a potential target for drug discovery. Anticancer Agents Med Chem 2007; 7(6):681-4.
    74. Hao H, Naomoto Y, Bao X, et al. Focal adhesion kinase as potential target for cancer therapy (Review). Oncol Rep 2009; 22(5):973-9.
    75. Nagafuchi A. Molecular architecture of adherens junctions. Curr Opin Cell Biol 2001; 13(5):600-3.
    76. Perez-Moreno M, Jamora C, Fuchs E. Sticky business:orchestrating cellular signals at adherens junctions. Cell 2003; 112(4):535-48.
    77. Christofori G, Semb H. The role of the cell-adhesion molecule E-cadherin as a tumour-suppressor gene. Trends Biochem Sci 1999; 24(2):73-6.
    78. Mukhina S, Mertani HC, Guo K, Lee KO, Gluckman PD, Lobie PE. Phenotypic conversion of human mammary carcinoma cells by autocrine human growth hormone. Proc Natl Acad Sci U S A 2004; 101(42):15166-71.
    79. Floridon C, Nielsen O, Holund B, et al. Localization of E-cadherin in villous, extravillous and vascular trophoblasts during intrauterine, ectopic and molar pregnancy. Mol Hum Reprod 2000; 6(10):943-50.
    80. Shih Ie M, Hsu MY, Oldt RJ,3rd, Herlyn M, Gearhart JD, Kurman RJ. The Role of E-cadherin in the Motility and Invasion of Implantation Site Intermediate Trophoblast. Placenta 2002; 23(10):706-15.
    81. Wheelock MJ, Johnson KR. Cadherins as modulators of cellular phenotype. Annu Rev Cell Dev Biol 2003; 19:207-35.
    82. Kohen R, Nyska A. Oxidation of biological systems:oxidative stress phenomena, antioxidants, redox reactions, and methods for their quantification. Toxicol Pathol 2002; 30(6):620-50.
    83. Martin KR, Barrett JC. Reactive oxygen species as double-edged swords in cellular processes:low-dose cell signaling versus high-dose toxicity. Hum Exp Toxicol 2002; 21(2):71-5.
    84. Huppertz B, Kadyrov M, Kingdom JC. Apoptosis and its role in the trophoblast Am J Obstet Gynecol 2006; 195(1):29-39.
    85. Allaire AD, Ballenger KA, Wells SR, McMahon MJ, Lessey BA. Placental apoptosis in preeclampsia. Obstet Gynecol 2000; 96(2):271-6.
    86. Baczyk D, Dunk C, Huppertz B, et al. Bi-potential behaviour of cytotrophoblasts in first trimester chorionic villi. Placenta 2006; 27(4-5):367-74.
    87. McAleer MF, Tuan RS. Metallothionein protects against severe oxidative stress-induced apoptosis of human trophoblastic cells. In Vitr Mol Toxicol 2001; 14(3): 219-31.
    88. Shoji H, Franke C, Demmelmair H, Koletzko B. Effect of docosahexaenoic acid on oxidative stress in placental trophoblast cells. Early Hum Dev 2009; 85(7):433-7.
    89. Pavan L, Tsatsaris V, Hermouet A, Therond P, Evain-Brion D, Fournier T. Oxidized low-density lipoproteins inhibit trophoblastic cell invasion. J Clin Endocrinol Metab 2004; 89(4):1969-72.
    90. Aye IL, Waddell BJ, Mark PJ, Keelan JA. Oxysterols inhibit differentiation and fusion of term primary trophoblasts by activating liver X receptors. Placenta 2011; 32(2):183-91.
    91. Onogi A, Naruse K, Sado T, et al. Hypoxia inhibits invasion of extravillous trophoblast cells through reduction of matrix metalloproteinase (MMP)-2 activation in the early first trimester of human pregnancy. Placenta 2011; 32(9):665-70.
    92.张斌,夏作理,赵晓民,张和平.氧化应激模型的建立及其评价.中国临床康复2006;10(44):112-4.
    93. Agarwal A, Gupta S, Sharma RK. Role of oxidative stress in female reproduction. Reprod Biol Endocrinol 2005; 3:28.
    94. Myatt L, Cui X. Oxidative stress in the placenta. Histochem Cell Biol 2004; 122(4):369-82.
    95. Jauniaux E, Hempstock J, Greenwold N, Burton GJ. Trophoblastic oxidative stress in relation to temporal and regional differences in maternal placental blood flow in normal and abnormal early pregnancies. Am J Pathol 2003; 162(1):115-25.
    96. Fujii J, luchi Y, Okada F. Fundamental roles of reactive oxygen species and protective mechanisms in the female reproductive system. Reprod Biol Endocrinol 2005; 3:43.
    97. Wall PD, Pressman EK, Woods JR Jr. Preterm premature rupture of the membranes and antioxidants:the free radical connection. J Perinat Med 2002; 30(6): 447-57.
    98. Huppertz B, Kingdom JC. Apoptosis in the trophoblast--role of apoptosis in placental morphogenesis. J Soc Gynecol Investig 2004; 11(6):353-62.
    99. Ishihara N, Matsuo H, Murakoshi H, Laoag-Fernandez JB, Samoto T, Maruo T. Increased apoptosis in the syncytiotrophoblast in human term placentas complicated by either preeclampsia or intrauterine growth retardation. Am J Obstet Gynecol 2002; 186(1):158-66.
    100. Crocker IP, Cooper S, Ong SC, Baker PN. Differences in apoptotic susceptibility of cytotrophoblasts and syncytiotrophoblasts in normal pregnancy to those complicated with preeclampsia and intrauterine growth restriction. Am J Pathol 2003; 162(2):637-43.
    101. Yuan B, Ohyama K, Bessho T, Uchide N, Toyoda H. Imbalance between ROS production and elimination results in apoptosis induction in primary smooth chorion trophoblast cells prepared from human fetal membrane tissues. Life Sci 2008; 82(11-12):623-30.
    102. Tannetta DS, Sargent IL, Linton EA, Redman CW. Vitamins C and E inhibit apoptosis of cultured human term placenta trophoblast. Placenta 2008; 29(8):680-90.
    103. Stowe DF, Camara AK. Mitochondrial reactive oxygen species production in excitable cells:modulators of mitochondrial and cell function. Antioxid Redox Signal 2009; 11(6):1373-414.
    104. Gottlieb RA. Mitochondria and apoptosis. Biol Signals Recept 2001; 10(3-4): 147-61.
    105. Mammucari C, Rizzuto R. Signaling pathways in mitochondrial dysfunction and aging. Mech Ageing Dev 2010; 131(7-8):536-43.
    106. Levine AJ. p53, the cellular gatekeeper for growth and division. Cell 1997; 88(3): 323-31.
    107. Robertson JD, Orrenius S. Molecular mechanisms of apoptosis induced by cytotoxic chemicals. Crit Rev Toxicol 2000; 30(5):609-27.
    108. Martinou JC, Youle RJ. Mitochondria in apoptosis:Bcl-2 family members and mitochondrial dynamics. Dev Cell 2011; 21(1):92-101.
    109.苏玉慧,漆正堂,丁树哲.p53与线粒体的关系.生命的化学2012;30(3):354-9.
    110. Desagher S, Osen-Sand A, Nichols A, et al. Bid-induced conformational change of Bax is responsible for mitochondrial cytochrome c release during apoptosis. J Cell Biol 1999; 144(5):891-901.
    111. Moll UM, Zaika A. Nuclear and mitochondrial apoptotic pathways of p53. FEBS Lett 2001; 493(2-3):65-9.
    112. Yu J, Zhang L The transcriptional targets of p53 in apoptosis control. Biochem Biophys Res Commun 2005; 331(3):851-8.
    113. Jiang P, Du W, Heese K, Wu M. The Bad guy cooperates with good cop p53:Bad is transcriptionally up-regulated by p53 and forms a Bad/p53 complex at the mitochondria to induce apoptosis. Mol Cell Biol 2006; 26(23):9071-82.
    114. Budihardjo I, Oliver H, Lutter M, Luo X, Wang X. Biochemical pathways of caspase activation during apoptosis. Annu Rev Cell Dev Biol 1999; 15:269-90.
    115. Tewari M, Quan LT, O'Rourke K, et al. Yama/CPP32 beta, a mammalian homolog of CED-3, is a CrmA-inhibitable protease that cleaves the death substrate poly(ADP-ribose) polymerase. Cell 1995; 81(5):801-9.
    116. Oliver FJ, de la Rubia G, Rolli V, Ruiz-Ruiz MC, de Murcia G, Murcia JM. Importance of poly(ADP-ribose) polymerase and its cleavage in apoptosis. Lesson from an uncleavable mutant. J Biol Chem 1998; 273(50):33533-9.
    117. Alahari SK, Reddig PJ, Juliano RL. Biological aspects of signal transduction by cell adhesion receptors. Int Rev Cytol 2002; 220:145-84.
    118. Song H, Cha MJ, Song BW, et al. Reactive oxygen species inhibit adhesion of mesenchymal stem cells implanted into ischemic myocardium via interference of focal adhesion complex. Stem Cells; 28(3):555-63.
    119. Hungerford JE, Compton MT, Matter ML, Hoffstrom BG, Otey CA. Inhibition of pp125FAK in cultured fibroblasts results in apoptosis. J Cell Biol 1996; 135(5): 1383-90.
    120. An J, Zheng L, Xie S, et al. Down-regulation of focal adhesion kinase by short hairpin RNA increased apoptosis of rat hepatic stellate cells. Apmis 2011; 119(6): 319-29.
    121. Boutros T, Chevet E, Metrakos P. Mitogen-activated protein (MAP) kinase/MAP kinase phosphatase regulation:roles in cell growth, death, and cancer. Pharmacol Rev 2008; 60(3):261-310.
    122. McCubrey JA, Lahair MM, Franklin RA. Reactive oxygen species-induced activation of the MAP kinase signaling pathways. Antioxid Redox Signal 2006; 8(9-10):1775-89.
    123. Horowitz JC, Ajayi 10, Kulasekaran P, et al. Survivin expression induced by endothelin-1 promotes myofibroblast resistance to apoptosis. Int J Biochem Cell Biol 2012; 44(1):158-69.
    124. Parsons JT. Focal adhesion kinase:the first ten years. J Cell Sci 2003; 116(Pt 8): 1409-16.
    125. Calalb MB, Polte TR, Hanks SK. Tyrosine phosphorylation of focal adhesion kinase at sites in the catalytic domain regulates kinase activity:a role for Src family kinases. Mol Cell Biol 1995; 15(2):954-63.
    126. Calalb MB, Zhang X, Polte TR, Hanks SK. Focal adhesion kinase tyrosine-861 is a major site of phosphorylation by Src. Biochem Biophys Res Commun 1996; 228(3):662-8.
    127. Schlaepfer DD, Hunter T. Evidence for in vivo phosphorylation of the Grb2 SH2-domain binding site on focal adhesion kinase by Src-family protein-tyrosine kinases. Mol Cell Biol 1996; 16(10):5623-33.
    128. Lee JS, Kim SY, Kwon CH, Kim YK. EGFR-dependent ERK activation triggers hydrogen peroxide-induced apoptosis in OK renal epithelial cells. Arch Toxicol 2006; 80(6):337-46.
    129. Lee WC, Choi CH, Cha SH, Oh HL, Kim YK. Role of ERK in hydrogen peroxide-induced cell death of human glioma cells. Neurochem Res 2005; 30(2): 263-70.
    130. Guyton KZ, Liu Y, Gorospe M, Xu Q, Holbrook NJ. Activation of mitogen-activated protein kinase by H2O2. Role in cell survival following oxidant injury. J Biol Chem 1996; 271(8):4138-42.
    131. Xia Z, Dickens M, Raingeaud J, Davis RJ, Greenberg ME. Opposing effects of ERK and JNK-p38 MAP kinases on apoptosis. Science 1995; 270(5240):1326-31.
    132. Kamata H, Honda S, Maeda S, Chang L, Hirata H, Karin M. Reactive oxygen species promote TNFalpha-induced death and sustained JNK activation by inhibiting MAP kinase phosphatases. Cell 2005; 120(5):649-61.
    133. Juric V, Chen CC, Lau LF. TNFalpha-Induced Apoptosis Enabled by CCN1/CYR61:Pathways of Reactive Oxygen Species Generation and Cytochrome c Release. PLoS One; 7(2):e31303.
    134. Wu HY, Lin CY, Lin TY, Chen TC, Yuan CJ. Mammalian Ste20-like protein kinase 3 mediates trophoblast apoptosis in spontaneous delivery. Apoptosis 2008; 13(2):283-94.
    135. Sonoda Y, Matsumoto Y, Funakoshi M, Yamamoto D, Hanks SK, Kasahara T. Anti-apoptotic role of focal adhesion kinase (FAK). Induction of inhibitor-of-apoptosis proteins and apoptosis suppression by the overexpression of FAK in a human leukemic cell line, HL-60. J Biol Chem 2000; 275(21):16309-15.
    136. Ilic D, Almeida EA, Schlaepfer DD, Dazin P, Aizawa S, Damsky CH. Extracellular matrix survival signals transduced by focal adhesion kinase suppress p53-mediated apoptosis. J Cell Biol 1998; 143(2):547-60.
    137. Qiao S, Murakami K, Zhao Q, et al. Mimosine-induced apoptosis in C6 glioma cells requires the release of mitochondria-derived reactive oxygen species and p38, JNK activation. Neurochem Res 2012; 37(2):417-27.
    138. Daoud G, Le bellego F, Lafond J. PP2 regulates human trophoblast cells differentiation by activating p38 and ERK1/2 and inhibiting FAK activation. Placenta 2008; 29(10):862-70.
    139. Tafolla E, Wang S, Wong B, Leong J, Kapila YL. JNK1 and JNK2 oppositely regulate p53 in signaling linked to apoptosis triggered by an altered fibronectin matrix: JNK links FAK and p53. J Biol Chem 2005; 280(20):19992-9.
    1. Mitra SK, Schlaepfer DD. Integrin-regulated FAK-Src signaling in normal and cancer cells. Curr Opin Cell Biol 2006; 18:516-523.
    2. Agochiya M, Brunton VG, Owens DW, Parkinson EK, Paraskeva C, Keith WN, Frame MC. Increased dosage and amplification of the focal adhesion kinase gene in human cancer cells. Oncogene 1999; 18:5646-5653.
    3. Streblow DN, Vomaske J, Smith P, Melnychuk R, Hall L, Pancheva D, Smit M, Casarosa P, Schlaepfer DD, Nelson JA. Human cytomegalovirus chemokine receptor US28-induced smooth muscle cell migration is mediated by focal adhesion kinase and Src. J Biol Chem 2003; 278:50456-50465.
    4. Chen R, Kim O, Li M, Xiong X, Guan JL, Kung HJ, Chen H, Shimizu Y, Qiu Y. Regulation of the PH-domain-containing tyrosine kinase Etk by focal adhesion kinase through the FERM domain. Nat Cell Biol 2001; 3:439-444.
    5. Schlaepfer DD, Mitra SK, Ilic D. Control of motile and invasive cell phenotypes by focal adhesion kinase. Biochim Biophys Acta 2004; 1692: 77-102.
    6. Chodniewicz D, Klemke RL. Regulation of integrin-mediated cellular responses through assembly of a CAS/Crk scaffold. Biochim Biophys Acta 2004; 1692:63-76.
    7. Toutant M, Costa A, Studler JM, Kadare G, Carnaud M, Girault JA. Alternative splicing controls the mechanisms of FAK autophosphorylation. Mol Cell Biol 2002; 22:7731-7743.
    8. Poullet P, Gautreau A, Kadare G, Girault JA, Louvard D, Arpin M. Ezrin interacts with focal adhesion kinase and induces its activation independently of cell-matrix adhesion. J Biol Chem 2001; 276:37686-37691.
    9. Richardson A, Shannon JD, Adams RB, Schaller MD, Parsons J. Identification of integrin-stimulated sites of serine phosphorylation in FRNK, the separately expressed C-terminal domain of focal adhesion kinase:a potential role for protein kinase A. Biochem J 1997; 324 (Pt 1):141-149.
    10. Sundberg LJ, Galante LM, Bill HM, Mack CP, Taylor JM. An endogenous inhibitor of focal adhesion kinase blocks Racl/JNK but not Ras/ERK-dependent signaling in vascular smooth muscle cells. J Biol Chem 2003; 278:29783-29791.
    11. Aguirre Ghiso JA. Inhibition of FAK signaling activated by urokinase receptor induces dormancy in human carcinoma cells in vivo. Oncogene 2002; 21: 2513-2524.
    12. Abbi S, Ueda H, Zheng C, Cooper LA, Zhao J, Christopher R, Guan JL. Regulation of focal adhesion kinase by a novel protein inhibitor FIP200. Mol Biol Cell 2002; 13:3178-3191.
    13. Hunger-Glaser I, Fan RS, Perez-Salazar E, Rozengurt E. PDGF and FGF induce focal adhesion kinase (FAK) phosphorylation at Ser-910:dissociation from Tyr-397 phosphorylation and requirement for ERK activation. J Cell Physiol 2004; 200:213-222.
    14. Zeng L, Si X, Yu WP, Le HT, Ng KP, Teng RM, Ryan K, Wang DZ, Ponniah S, Pallen CJ. PTP alpha regulates integrin-stimulated FAK autophosphorylation and cytoskeletal rearrangement in cell spreading and migration. J Cell Biol 2003; 160:137-146.
    15. Roberts WG, Ung E, Whalen P, Cooper B, Hulford C, Autry C, Richter D, Emerson E, Lin J, Kath J, Coleman K, Yao L, Martinez-Alsina L, Lorenzen M, Berliner M, Luzzio M, Patel N, Schmitt E, LaGreca S, Jani J, Wessel M, Marr E, Griffor M, Vajdos F. Antitumor activity and pharmacology of a selective focal adhesion kinase inhibitor, PF-562,271. Cancer Res 2008; 68:1935-1944.
    16. Tamura M, Gu J, Takino T, Yamada KM. Tumor suppressor PTEN inhibition of cell invasion, migration, and growth:differential involvement of focal adhesion kinase and p130Cas. Cancer Res 1999; 59:442-449.
    17. Huang C, Jacobson K, Schaller MD. MAP kinases and cell migration. J Cell Sci 2004; 117:4619-4628.
    18. Hao H, Naomoto Y, Bao X, Watanabe N, Sakurama K, Noma K, Motoki T, Tomono Y, Fukazawa T, Shirakawa Y, Yamatsuji T, Matsuoka J, Wang ZG, Takaoka M. Focal adhesion kinase as potential target for cancer therapy (Review). Oncol Rep 2009; 22:973-979.
    19. van Nimwegen MJ, van de Water B. Focal adhesion kinase:a potential target in cancer therapy. Biochem Pharmacol 2007; 73:597-609.
    20. Reiske HR, Kao SC, Cary LA, Guan JL, Lai JF, Chen HC. Requirement of phosphatidylinositol 3-kinase in focal adhesion kinase-promoted cell migration. J Biol Chem 1999; 274:12361-12366.
    21. Bianchi M, De Lucchini S, Marin O, Turner DL, Hanks SK, Villa-Moruzzi E. Regulation of FAK Ser-722 phosphorylation and kinase activity by GSK3 and PP1 during cell spreading and migration. Biochem J 2005; 391:359-370.
    22. Mitra SK, Mikolon D, Molina JE, Hsia DA, Hanson DA, Chi A, Lim ST, Bernard-Trifilo JA, Ilic D, Stupack DG, Cheresh DA, Schlaepfer DD. Intrinsic FAK activity and Y925 phosphorylation facilitate an angiogenic switch in tumors. Oncogene 2006; 25:5969-5984.
    23. Kurenova E, Xu LH, Yang X, Baldwin AS, Jr., Craven RJ, Hanks SK, Liu ZG, Cance WG. Focal adhesion kinase suppresses apoptosis by binding to the death domain of receptor-interacting protein. Mol Cell Biol 2004; 24: 4361-4371.
    24. Xie B, Zhao J, Kitagawa M, Durbin J, Madri JA, Guan JL, Fu XY. Focal adhesion kinase activates Statl in integrin-mediated cell migration and adhesion. J Biol Chem 2001; 276:19512-19523.
    25. Hauck CR, Sieg DJ, Hsia DA, Loftus JC, Gaarde WA, Monia BP, Schlaepfer DD. Inhibition of focal adhesion kinase expression or activity disrupts epidermal growth factor-stimulated signaling promoting the migration of invasive human carcinoma cells. Cancer Res 2001; 61:7079-7090.
    26. Benlimame N, He Q, Jie S, Xiao D, Xu YJ, Loignon M, Schlaepfer DD, Alaoui-Jamali MA. FAK signaling is critical for ErbB-2/ErbB-3 receptor cooperation for oncogenic transformation and invasion. J Cell Biol 2005; 171: 505-516.
    27. Ball E, Bulmer JN, Ayis S, Lyall F, Robson SC. Late sporadic miscarriage is associated with abnormalities in spiral artery transformation and trophoblast invasion. J Pathol 2006; 208:535-542.
    28. Kadyrov M, Kingdom JC, Huppertz B. Divergent trophoblast invasion and apoptosis in placental bed spiral arteries from pregnancies complicated by maternal anemia and early-onset preeclampsia/intrauterine growth restriction. Am J Obstet Gynecol 2006; 194:557-563.
    29. Hustin J, Jauniaux E, Schaaps JP. Histological study of the materno-embryonic interface in spontaneous abortion. Placenta 1990; 11: 477-486.
    30. Pollheimer J, Knofler M. Signalling pathways regulating the invasive differentiation of human trophoblasts:a review. Placenta 2005; 26 Suppl A: S21-30.
    31. MacPhee DJ, Mostachfi H, Han R, Lye SJ, Post M, Caniggia I. Focal adhesion kinase is a key mediator of human trophoblast development. Lab Invest 2001; 81:1469-1483.
    32. Uic D, Genbacev O, Jin F, Caceres E, Almeida EA, Bellingard-Dubouchaud V, Schaefer EM, Damsky CH, Fisher SJ. Plasma membrane-associated pY397FAK is a marker of cytotrophoblast invasion in vivo and in vitro. Am J Pathol 2001; 159:93-108.
    33. Ishimatsu S, Itakura A, Okada M, Kotani T, Iwase A, Kajiyama H, Ino K, Kikkawa F. Angiotensin Ⅱ augmented migration and invasion of choriocarcinoma cells involves PI3K activation through the ATI receptor. Placenta 2006; 27:587-591.
    34. Arimoto-Ishida E, Sakata M, Sawada K, Nakayama M, Nishimoto F, Mabuchi S, Takeda T, Yamamoto T, Isobe A, Okamoto Y, Lengyel E, Suehara N, Morishige K, Kimura T. Up-regulation of alpha5-integrin by E-cadherin loss in hypoxia and its key role in the migration of extravillous trophoblast cells during early implantation. Endocrinology 2009; 150:4306-4315.
    35. Daoud G, Le bellego F, Lafond J. PP2 regulates human trophoblast cells differentiation by activating p38 and ERK1/2 and inhibiting FAK activation. Placenta 2008; 29:862-870.
    36. Parsons JT. Focal adhesion kinase:the first ten years. J Cell Sci 2003; 116: 1409-1416.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700