用户名: 密码: 验证码:
MicroRNA-133b对非小细胞肺癌生物学行为的影响和机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景和目的:
     肺癌在我国发病率和死亡率都有明显增高,其中大部分是非小细胞肺癌(NSCLC)。MicroRNA (miRNA)和表皮生长因子受体(EGFR)的表达异常对于NSCLC的发生发展均是一个非常重要的因素。我们应用组织标本和细胞株,研究miR-133b对于肺癌细胞增殖、侵袭转移能力和药物敏感性等生物学行为的影响,通过细胞转染等方法分析miR-133b与EGFR信号通路分子间的相互关系及可能作用机制。
     方法:
     1、应用实时定量逆转录多聚酶链式反应(realtime RT-PCR)检测肺癌组织标本和匹配的正常肺组织标本中miR-133b和EGFR mRNA的表达水平;应用免疫组化化学法(IHC)分析肺癌组织标本中EGFR蛋白的表达水平。
     2、选用生物信息学和双荧光素酶报告基因法确证miR-133b与EGFR mRNA3′非编码区域UTR的靶向结合作用。
     3、采用阳离子脂质体法在四种肺癌细胞株(H1650、A549、H1975和PC-9)中转染miR-133b模拟物或者抑制物,使其过表达或者抑制。随后:(1)应用流式细胞分析(FCM)方法检测癌细胞的凋亡状况;(2)应用四氮唑盐法(MTT比色法)检测癌细胞的增殖活性和对于吉非替尼的药物敏感性;(3)应用划痕法、Transwell/Matrigel试验检测癌细胞的侵袭转移能力;(4)应用realtime RT-PCR法检测癌细胞miR-133b、EGFR及其下游基因mRNA表达(;5)应用Western-blots法检测EGFR及其下游信号通路分子蛋白表达量。
     结果:
     1、在27例匹配的肿瘤组织(T)和相应非肿瘤正常肺组织(N)的检测中,NSCLC癌组织中miR-133b低表达;miR-133的表达水平和区域淋巴结受累程度、分期及脏层胸膜或脉管侵犯之间呈负相关;miR-133b的表达水平和EGFR mRNA转录产物存在着显著的负相关。EGFR mRNA水平和区域淋巴结受累程度之间正相关,EGFR蛋白水平和脏层胸膜或脉管侵犯之间正相关;EGFR蛋白阳性率为66.7%(18/27)与mRNA过表达存在基本一致性。
     2、生物信息学分析显示在EGFR mRNA3′-UTR的50~56位置,具有一个与miR-133b完全互补的7个核酸的种子序列;通过构建和转染EGFR@pMIR-Report-Luc质粒和miR-133b进入细胞,导致了较对照组标化荧光下降。
     3、转染miR-133b模拟物或者抑制物后,四种肺癌细胞的凋亡均较对照组明显增加;并且模拟物引起的凋亡也较抑制物明显增加。
     4、转染miR-133b模拟物后,四种肺癌细胞的侵袭转移能力降低,反之转染miR-133b抑制物后则提高了肺癌细胞的侵袭转移能力,并且对PC-9和A549细胞的调节作用更明显。
     5、H1650、H1975和PC-9肺癌细胞中,转染miR-133b模拟物后表现为对吉非替尼的明显敏感,而在A549、H1975和PC-9肺癌细胞中,转染miR-133b抑制物后表现为对吉非替尼的明显耐药。
     6、四种肺癌细胞中EGFR mRNA和蛋白水平均受到miR-133b过表达或抑制的调节,在PC-9细胞中转染miR-133b模拟物后,EGFR mRNA的下调更明显。在PC-9和A549肺癌细胞中,转染miR-133b模拟物/抑制物后,EGFR、AKT和ERK12磷酸化水平明显下调/上调,而在H1650和H1975细胞中上述改变不明显。
     结论:
     1、MiR-133b低表达促进了NSCLC的增殖、侵袭转移和对EGFR-TKI的耐药。
     2、MiR-133b通过靶向作用于EGFR,在转录后水平调节了内生EGFR蛋白表达水平,进而主要影响EGFR依赖的肺癌细胞中EGFR下游通路的分子活性来产生上述功能变化。该研究为此类肿瘤的靶向治疗提供了重要的理论基础。
Background:
     Morbidity and mortality of lung cancer in China has increased significantly, and mostof them were non-small cell lung cancer (NSCLC). MicroRNAs (miRNAs) play keyroles in tumorigenesis and tumor progression. Both the deregulation of miRNAs andepidermal growth factor receptor (EGFR) are emerging as important areas ofnon-small cell lung cancer (NSCLC). With the tissues and cell lines, the relationshipof the miR-133b expression and the proliferation, invasion and sensitivity toEGFR-TKI of NSCLC was evaluated. After transfected with miR-133b, the possiblemechanisms of miR-133b regulating EGFR signaling pathway were studied.
     Methods:
     1. Expression levels of miR-133b and EGFR mRNA were detected by qRT-PCR inpaired NSCLC specimens and matched normal lung tissue; the expression levels ofEGFR protein were evaluated by immunohistochemical in NSCLC specimens.
     2. Bioinformatics and Dual Luciferase Report Gene System were used to confirm thatmiR-133b could actually bind the sites of EGFR mRNA in3' non-coding region(UTR).
     3. After transfection of miR-133b mimic or inhibitor through cationic liposome infour lung cancer cell lines (H1650, A549, H1975and PC-9), miR-133b wasoverexpressed or inhibited. Then,(1) the apoptosis of cancer cells was detected byFlow cytometry (FCM);(2) the proliferative activity and the sensitivity to gefitinib ofcancer cells was evalutated by MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay;(3) the migration/invasion of cancer cells wasassessed by the scratch test and Transwell Cell Migration/Invasion Matrigel Assay;(4)the expression levels of the miR-133b, EGFR mRNA and its downstream signalingmolecules were detected by qRT-PCR;(5) the protein expression levels of EGFR andits downstream signaling pathway were detected by Western blots.
     Results:
     1. In27lung cancer tissues (T) and corresponding nonneoplastic lung tissues (N), themiR-133b expression level in NSCLC tissues was significantly lower than that inpaired nonneoplastic lung tissues. Negative correlation was found between miR-133bexpression levels and the extent of regional lymph node involvement, stage andvisceral pleura or vessel invasion. Notably, a significant inverse correlation wasfound between miR-133b levels and EGFR mRNA transcripts. Positive correlationwas found between EGFR mRNA levels and the extent of regional lymph nodeinvolvement, and positive correlation was also found between EGFR protein levelsand visceral pleura or vascular invasion; the positive rate of EGFR protein (66.7%,18/27) was basically consistent with mRNA overexpression.
     2. It was shown that EGFR mRNA contained a miR-133b7-nucleotide seed match inthe position50-56of EGFR3′-UTR by bioinformatics analysis; Construction andtransfection of EGFR@pMIR-Report-Luc plasmid and miRNA-133b into cells led tosignificant reduction in normalized luciferase values compared to controls includingpRL-TK reporter plasmids.
     3. After transfected with miR-133b mimic/inhibitor, the percentage of apoptotic lungcancer cells, compared with control, was significantly increased in four lung cancercells; moreover, the mimic induced significantly more apoptosis than the inhibitor.
     4. After transfected with miR-133b mimic, the cell migration/invasiveness wasdecrease in four cancer cells. On the contrary, the loss of miR-133b would promotethe migration/invasiveness of NSCLC cells. We also found stronger regulations in thePC-9and A549cells.
     5. Significant sensitivity to gefitinib was found in H1650, H1975and PC-9cellstransfected with miR-133b mimic compared to the controls. Significant resistance togefitinib was found in A549, H1975and PC-9cells transfected with miR-133binhibitor compared to the controls.
     6. In four lung cancer cells, the level of EGFR mRNA and protein was regulated bymiR-133b overexpression/inhibition. In PC-9cell, EGFR mRNA level wassignificantly down-regulated by transfected with the miR-133b mimic. MiR-133bmimic/inhibitor could significantly abolish/establish the phosphorylation of EGFR,AKT and ERK12in PC-9and A549cells. However, no definite changes of thepEGFR, pAkt, and pERK12expression were found in H1650and H1975cells.
     Conclusion:
     1. Our data supports that the down-regulation of miR-133b could promote cell growth,migration/invasion and resistance to gefitinib in NSCLC.
     2. MiR-133b can target and inhibit the endogenous EGFR protein translation at thepost-transcriptional level, and then regulate the EGFR signaling pathway, especiallyin EGFR-addicted NSCLC cells. Thus it caused the phenotypic changes in cancercells as described above. This finding has important implications in the developmentof targeted therapeutics for a number of EGFR-addicted cancers.
引文
[1] Yarden Y, Sliwkowski MX. Untangling the ErbB signalling network. Nature reviews. Molecularcell biology,2001,2(2):127-37
    [2] Zhang H, Berezov A, Wang Q, Zhang G, Drebin J, Murali R, Greene MI. ErbB receptors: fromoncogenes to targeted cancer therapies. The Journal of clinical investigation,2007,117(8):2051-8
    [3] Downward J, Parker P, Waterfield MD. Autophosphorylation sites on the epidermal growth factorreceptor. Nature,1984,311(5985):483-5
    [4] Herbst RS, Bunn PA, Jr. Targeting the epidermal growth factor receptor in non-small cell lungcancer. Clin Cancer Res,2003,9(16Pt1):5813-24
    [5] Prenzel N, Fischer OM, Streit S, Hart S, Ullrich A. The epidermal growth factor receptor family asa central element for cellular signal transduction and diversification. Endocr Relat Cancer,2001,8(1):11-31
    [6] Rusch V, Baselga J, Cordon-Cardo C, Orazem J, Zaman M, Hoda S, McIntosh J, Kurie J,Dmitrovsky E. Differential expression of the epidermal growth factor receptor and its ligands inprimary non-small cell lung cancers and adjacent benign lung. Cancer Res,1993,53(10Suppl):2379-85
    [7] Onn A, Correa AM, Gilcrease M, Isobe T, Massarelli E, Bucana CD, O'Reilly MS, Hong WK,Fidler IJ, Putnam JB, Herbst RS. Synchronous overexpression of epidermal growth factor receptor andHER2-neu protein is a predictor of poor outcome in patients with stage I non-small cell lung cancer.Clin Cancer Res,2004,10(1Pt1):136-43
    [8] Selvaggi G, Novello S, Torri V, Leonardo E, De Giuli P, Borasio P, Mossetti C, Ardissone F, Lausi P,Scagliotti GV. Epidermal growth factor receptor overexpression correlates with a poor prognosis incompletely resected non-small-cell lung cancer. Ann Oncol,2004,15(1):28-32
    [9] Ohtsuka K, Ohnishi H, Furuyashiki G, Nogami H, Koshiishi Y, Ooide A, Matsushima S, WatanabeT, Goya T. Clinico-pathological and biological significance of tyrosine kinase domain gene mutationsand overexpression of epidermal growth factor receptor for lung adenocarcinoma. J Thorac Oncol,2006,1(8):787-95
    [10] Fujino S, Enokibori T, Tezuka N, Asada Y, Inoue S, Kato H, Mori A. A comparison of epidermalgrowth factor receptor levels and other prognostic parameters in non-small cell lung cancer. Eur JCancer,1996,32A(12):2070-4
    [11] Kanematsu T, Yano S, Uehara H, Bando Y, Sone S. Phosphorylation, but not overexpression, ofepidermal growth factor receptor is associated with poor prognosis of non-small cell lung cancerpatients. Oncol Res,2003,13(5):289-98
    [12] Tracy S, Mukohara T, Hansen M, Meyerson M, Johnson BE, Janne PA. Gefitinib inducesapoptosis in the EGFRL858R non-small-cell lung cancer cell line H3255. Cancer Res,2004,64(20):7241-4
    [13] Engelman JA, Zejnullahu K, Mitsudomi T, Song Y, Hyland C, Park JO, Lindeman N, Gale CM,Zhao X, Christensen J, Kosaka T, Holmes AJ, et al. MET amplification leads to gefitinib resistance inlung cancer by activating ERBB3signaling. Science,2007,316(5827):1039-43
    [14] Murphy M, Stordal B. Erlotinib or gefitinib for the treatment of relapsed platinum pretreatednon-small cell lung cancer and ovarian cancer: a systematic review. Drug Resist Updat,2011,14(3):177-90
    [15] Brennecke J, Stark A, Russell RB, Cohen SM. Principles of microRNA-target recognition. PLoSbiology,2005,3(3):e85
    [16] Corcoran C, Friel AM, Duffy MJ, Crown J, O'Driscoll L. Intracellular and extracellularmicroRNAs in breast cancer. Clin Chem,2011,57(1):18-32
    [17] Cho WC. MicroRNAs: potential biomarkers for cancer diagnosis, prognosis and targets fortherapy. Int J Biochem Cell Biol,2010,42(8):1273-81
    [18] Gao W, Shen H, Liu L, Xu J, Shu Y. MiR-21overexpression in human primary squamous celllung carcinoma is associated with poor patient prognosis. J Cancer Res Clin Oncol,2011,137(4):557-66
    [19] Boyerinas B, Park SM, Hau A, Murmann AE, Peter ME. The role of let-7in cell differentiationand cancer. Endocr Relat Cancer,2010,17(1):F19-36
    [20] Aigner A. MicroRNAs (miRNAs) in cancer invasion and metastasis: therapeutic approaches basedon metastasis-related miRNAs. J Mol Med,2011,
    [21] Crawford M, Batte K, Yu L, Wu X, Nuovo GJ, Marsh CB, Otterson GA, Nana-Sinkam SP.MicroRNA133B targets pro-survival molecules MCL-1and BCL2L2in lung cancer. BiochemBiophys Res Commun,2009,388(3):483-9
    [22] Jemal A, Siegel R, Xu J, Ward E. Cancer statistics,2010. CA Cancer J Clin,2010,60(5):277-300
    [23] Kim J, Inoue K, Ishii J, Vanti WB, Voronov SV, Murchison E, Hannon G, Abeliovich A. AMicroRNA feedback circuit in midbrain dopamine neurons. Science,2007,317(5842):1220-4
    [24] de Mena L, Coto E, Cardo LF, Diaz M, Blazquez M, Ribacoba R, Salvador C, Pastor P,Samaranch L, Moris G, Menendez M, Corao AI, et al. Analysis of the Micro-RNA-133and PITX3genes in Parkinson's disease. Am J Med Genet B Neuropsychiatr Genet,2010,153B(6):1234-9
    [25] Xiao L, Xiao J, Luo X, Lin H, Wang Z, Nattel S. Feedback remodeling of cardiac potassiumcurrent expression: a novel potential mechanism for control of repolarization reserve. Circulation,2008,118(10):983-92
    [26] Sucharov C, Bristow MR, Port JD. miRNA expression in the failing human heart: functionalcorrelates. J Mol Cell Cardiol,2008,45(2):185-92
    [27] Schipper ME, van Kuik J, de Jonge N, Dullens HF, de Weger RA. Changes in regulatorymicroRNA expression in myocardium of heart failure patients on left ventricular assist device support.The Journal of heart and lung transplantation: the official publication of the International Society forHeart Transplantation,2008,27(12):1282-5
    [28] Nielsen S, Scheele C, Yfanti C, Akerstrom T, Nielsen AR, Pedersen BK, Laye MJ. Musclespecific microRNAs are regulated by endurance exercise in human skeletal muscle. The Journal ofphysiology,2010,588(Pt20):4029-37
    [29] Gambardella S, Rinaldi F, Lepore SM, Viola A, Loro E, Angelini C, Vergani L, Novelli G, Botta A.Overexpression of microRNA-206in the skeletal muscle from myotonic dystrophy type1patients. JTransl Med,2010,8(1):48-56
    [30] Perbellini R, Greco S, Sarra-Ferraris G, Cardani R, Capogrossi MC, Meola G, Martelli F.Dysregulation and cellular mislocalization of specific miRNAs in myotonic dystrophy type1.Neuromuscular disorders: NMD,2011,21(2):81-8
    [31] Koutsoulidou A, Mastroyiannopoulos NP, Furling D, Uney JB, Phylactou LA. Expression ofmiR-1, miR-133a, miR-133b and miR-206increases during development of human skeletal muscle.BMC developmental biology,2011,11:34-42
    [32] Zeiger U, Khurana TS. Distinctive Patterns of MicroRNA Expression in Extraocular Muscles.Physiological genomics,2010,41(31):289-96
    [33] Kozakowska M, Ciesla M, Stefanska A, Skrzypek K, Was H, Jazwa A, Grochot-Przeczek A,Kotlinowski J, Szymula A, Bartelik A, Mazan M, Yagensky O, et al. Heme oxygenase-1inhibitsmyoblast differentiation by targeting myomirs. Antioxidants&redox signaling,2012,16(2):113-27
    [34] Palmieri A, Pezzetti F, Brunelli G, Zollino I, Scapoli L, Martinelli M, Arlotti M, Carinci F.Differences in osteoblast miRNA induced by cell binding domain of collagen and silicate-basedsynthetic bone. Journal of biomedical science,2007,14(6):777-82
    [35] Haas JD, Nistala K, Petermann F, Saran N, Chennupati V, Schmitz S, Korn T, Wedderburn LR,Forster R, Krueger A, Prinz I. Expression of miRNAs miR-133b and miR-206in the Il17a/f locus isco-regulated with IL-17production in alphabeta and gammadelta T cells. PLoS One,2011,6(5):e20171
    [36] Bostjancic E, Zidar N, Glavac D. MicroRNA microarray expression profiling in humanmyocardial infarction. Dis Markers,2009,27(6):255-68
    [37] Widera C, Gupta SK, Lorenzen JM, Bang C, Bauersachs J, Bethmann K, Kempf T, Wollert KC,Thum T. Diagnostic and prognostic impact of six circulating microRNAs in acute coronary syndrome.J Mol Cell Cardiol,2011,51(5):872-5
    [38] Wu Y, Crawford M, Yu B, Mao Y, Nana-Sinkam SP, Lee LJ. MicroRNA delivery by cationiclipoplexes for lung cancer therapy. Molecular pharmaceutics,2011,8(4):1381-9
    [39] Kano M, Seki N, Kikkawa N, Fujimura L, Hoshino I, Akutsu Y, Chiyomaru T, Enokida H,Nakagawa M, Matsubara H. miR-145, miR-133a and miR-133b: Tumor suppressive miRNAs targetFSCN1in esophageal squamous cell carcinoma. Int J Cancer,2010,127(12):2804-14
    [40] Bandres E, Cubedo E, Agirre X, Malumbres R, Zarate R, Ramirez N, Abajo A, Navarro A,Moreno I, Monzo M, Garcia-Foncillas J. Identification by Real-time PCR of13mature microRNAsdifferentially expressed in colorectal cancer and non-tumoral tissues. Mol Cancer,2006,5(1):29-38
    [41] Akcakaya P, Ekelund S, Kolosenko I, Caramuta S, Ozata DM, Xie H, Lindforss U, Olivecrona H,Lui WO. miR-185and miR-133b deregulation is associated with overall survival and metastasis incolorectal cancer. Int J Oncol,2011,39(2):311-8
    [42] Hu G, Chen D, Li X, Yang K, Wang H, Wu W. miR-133b regulates the MET proto-oncogene andinhibits the growth of colorectal cancer cells in vitro and in vivo. Cancer Biol Ther,2010,10(2):190-7
    [43] Guo J, Miao Y, Xiao B, Huan R, Jiang Z, Meng D, Wang Y. Differential expression of microRNAspecies in human gastric cancer versus non-tumorous tissues. Journal of gastroenterology andhepatology,2009,24(4):652-7
    [44] Dyrskjot L, Ostenfeld MS, Bramsen JB, Silahtaroglu AN, Lamy P, Ramanathan R, Fristrup N,Jensen JL, Andersen CL, Zieger K, Kauppinen S, Ulhoi BP, et al. Genomic profiling of microRNAs inbladder cancer: miR-129is associated with poor outcome and promotes cell death in vitro. Cancer Res,2009,69(11):4851-60
    [45] Ichimi T, Enokida H, Okuno Y, Kunimoto R, Chiyomaru T, Kawamoto K, Kawahara K, Toki K,Kawakami K, Nishiyama K, Tsujimoto G, Nakagawa M, et al. Identification of novel microRNAtargets based on microRNA signatures in bladder cancer. Int J Cancer,2009,125(2):345-52
    [46] Song T, Xia W, Shao N, Zhang X, Wang C, Wu Y, Dong J, Cai W, Li H. Differential miRNAexpression profiles in bladder urothelial carcinomas. Asian Pacific journal of cancer prevention:APJCP,2010,11(4):905-11
    [47] Wong TS, Liu XB, Chung-Wai Ho A, Po-Wing Yuen A, Wai-Man Ng R, Ignace Wei W.Identification of pyruvate kinase type M2as potential oncoprotein in squamous cell carcinoma oftongue through microRNA profiling. Int J Cancer,2008,123(2):251-7
    [48] Qin W, Dong P, Ma C, Mitchelson K, Deng T, Zhang L, Sun Y, Feng X, Ding Y, Lu X, He J, WenH, et al. MicroRNA-133b is a key promoter of cervical carcinoma development through the activationof the ERK and AKT1pathways. Oncogene,2011, Dec:1-9
    [49] Navon R, Wang H, Steinfeld I, Tsalenko A, Ben-Dor A, Yakhini Z. Novel rank-based statisticalmethods reveal microRNAs with differential expression in multiple cancer types. PLoS One,2009,4(11):e8003
    [50] Goldstraw P, Crowley J, Chansky K, Giroux DJ, Groome PA, Rami-Porta R, Postmus PE, RuschV, Sobin L. The IASLC Lung Cancer Staging Project: proposals for the revision of the TNM stagegroupings in the forthcoming (seventh) edition of the TNM Classification of malignant tumours. JThorac Oncol,2007,2(8):706-14
    [51] Travis WD CT, Corrin B, et al. Histological typing of lung and pleural tumours.3rd ed.Berlin:Springer-Verlag,,1999,
    [52] Masuda N, Ohnishi T, Kawamoto S, Monden M, Okubo K. Analysis of chemical modification ofRNA from formalin-fixed samples and optimization of molecular biology applications for suchsamples. Nucleic Acids Res,1999,27(22):4436-43
    [53] Tsao MS, Sakurada A, Cutz JC, Zhu CQ, Kamel-Reid S, Squire J, Lorimer I, Zhang T, Liu N,Daneshmand M, Marrano P, da Cunha Santos G, et al. Erlotinib in lung cancer-molecular and clinicalpredictors of outcome. N Engl J Med,2005,353(2):133-44
    [54] Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4encodes small RNAswith antisense complementarity to lin-14. Cell,1993,75(5):843-54
    [55] Lee Y, Kim M, Han J, Yeom KH, Lee S, Baek SH, Kim VN. MicroRNA genes are transcribed byRNA polymerase II. EMBO J,2004,23(20):4051-60
    [56] Cai X, Hagedorn CH, Cullen BR. Human microRNAs are processed from capped, polyadenylatedtranscripts that can also function as mRNAs. RNA,2004,10(12):1957-66
    [57] Tanno B, Cesi V, Vitali R, Sesti F, Giuffrida ML, Mancini C, Calabretta B, Raschella G. Silencingof endogenous IGFBP-5by micro RNA interference affects proliferation, apoptosis and differentiationof neuroblastoma cells. Cell Death Differ,2005,12(3):213-23
    [58] Cimmino A, Calin GA, Fabbri M, Iorio MV, Ferracin M, Shimizu M, Wojcik SE, Aqeilan RI,Zupo S, Dono M, Rassenti L, Alder H, et al. miR-15and miR-16induce apoptosis by targeting BCL2.Proc Natl Acad Sci U S A,2005,102(39):13944-9
    [59] He L, Thomson JM, Hemann MT, Hernando-Monge E, Mu D, Goodson S, Powers S,Cordon-Cardo C, Lowe SW, Hannon GJ, Hammond SM. A microRNA polycistron as a potentialhuman oncogene. Nature,2005,435(7043):828-33
    [60] Hayashita Y, Osada H, Tatematsu Y, Yamada H, Yanagisawa K, Tomida S, Yatabe Y, Kawahara K,Sekido Y, Takahashi T. A polycistronic microRNA cluster, miR-17-92, is overexpressed in human lungcancers and enhances cell proliferation. Cancer Res,2005,65(21):9628-32
    [61] O'Donnell KA, Wentzel EA, Zeller KI, Dang CV, Mendell JT. c-Myc-regulated microRNAsmodulate E2F1expression. Nature,2005,435(7043):839-43
    [62] Takamizawa J, Konishi H, Yanagisawa K, Tomida S, Osada H, Endoh H, Harano T, Yatabe Y,Nagino M, Nimura Y, Mitsudomi T, Takahashi T. Reduced expression of the let-7microRNAs inhuman lung cancers in association with shortened postoperative survival. Cancer Res,2004,64(11):3753-6
    [63] Johnson SM, Grosshans H, Shingara J, Byrom M, Jarvis R, Cheng A, Labourier E, Reinert KL,Brown D, Slack FJ. RAS is regulated by the let-7microRNA family. Cell,2005,120(5):635-47
    [64] Liu L, Shao X, Gao W, Bai J, Wang R, Huang P, Yin Y, Liu P, Shu Y. The role of human epidermalgrowth factor receptor2as a prognostic factor in lung cancer: a meta-analysis of published data. JThorac Oncol,2010,5(12):1922-32
    [65] Weiss GJ, Bemis LT, Nakajima E, Sugita M, Birks DK, Robinson WA, Varella-Garcia M, BunnPA, Jr., Haney J, Helfrich BA, Kato H, Hirsch FR, et al. EGFR regulation by microRNA in lung cancer:correlation with clinical response and survival to gefitinib and EGFR expression in cell lines. AnnOncol,2008,19(6):1053-9
    [66] Seike M, Goto A, Okano T, Bowman ED, Schetter AJ, Horikawa I, Mathe EA, Jen J, Yang P,Sugimura H, Gemma A, Kudoh S, et al. MiR-21is an EGFR-regulated anti-apoptotic factor in lungcancer in never-smokers. Proc Natl Acad Sci U S A,2009,106(29):12085-90
    [67] Zhou X, Ren Y, Moore L, Mei M, You Y, Xu P, Wang B, Wang G, Jia Z, Pu P, Zhang W, Kang C.Downregulation of miR-21inhibits EGFR pathway and suppresses the growth of human glioblastomacells independent of PTEN status. Lab Invest,2010,90(2):144-55
    [68] Cho WC, Chow AS, Au JS. MiR-145inhibits cell proliferation of human lung adenocarcinoma bytargeting EGFR and NUDT1. RNA Biol,2011,8(1):125-31
    [69] Kefas B, Godlewski J, Comeau L, Li Y, Abounader R, Hawkinson M, Lee J, Fine H, Chiocca EA,Lawler S, Purow B. microRNA-7inhibits the epidermal growth factor receptor and the Akt pathwayand is down-regulated in glioblastoma. Cancer Res,2008,68(10):3566-72
    [70] Webster RJ, Giles KM, Price KJ, Zhang PM, Mattick JS, Leedman PJ. Regulation of epidermalgrowth factor receptor signaling in human cancer cells by microRNA-7. J Biol Chem,2009,284(9):5731-41
    [71] Lee KM, Choi EJ, Kim IA. microRNA-7increases radiosensitivity of human cancer cells withactivated EGFR-associated signaling. Radiother Oncol,2011,
    [72] Selbach M, Schwanhausser B, Thierfelder N, Fang Z, Khanin R, Rajewsky N. Widespreadchanges in protein synthesis induced by microRNAs. Nature,2008,455(7209):58-63
    [73] Hurst DR, Edmonds MD, Scott GK, Benz CC, Vaidya KS, Welch DR. Breast cancer metastasissuppressor1up-regulates miR-146, which suppresses breast cancer metastasis. Cancer Res,2009,69(4):1279-83
    [74] Li Y, Vandenboom TG,2nd, Wang Z, Kong D, Ali S, Philip PA, Sarkar FH. miR-146a suppressesinvasion of pancreatic cancer cells. Cancer Res,2010,70(4):1486-95
    [75] Meert AP, Martin B, Delmotte P, Berghmans T, Lafitte JJ, Mascaux C, Paesmans M, Steels E,Verdebout JM, Sculier JP. The role of EGF-R expression on patient survival in lung cancer: asystematic review with meta-analysis. The European respiratory journal: official journal of theEuropean Society for Clinical Respiratory Physiology,2002,20(4):975-81
    [76] Calin GA, Ferracin M, Cimmino A, Di Leva G, Shimizu M, Wojcik SE, Iorio MV, Visone R,Sever NI, Fabbri M, Iuliano R, Palumbo T, et al. A MicroRNA signature associated with prognosis andprogression in chronic lymphocytic leukemia. N Engl J Med,2005,353(17):1793-801
    [77] Chiyomaru T, Enokida H, Tatarano S, Kawahara K, Uchida Y, Nishiyama K, Fujimura L,Kikkawa N, Seki N, Nakagawa M. miR-145and miR-133a function as tumour suppressors anddirectly regulate FSCN1expression in bladder cancer. Br J Cancer,2010,102(5):883-91
    [78] Betel D, Koppal A, Agius P, Sander C, Leslie C. Comprehensive modeling of microRNA targetspredicts functional non-conserved and non-canonical sites. Genome Biol,2010,11(8):R90
    [79] Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell,2004,116(2):281-97
    [80] Du L, Pertsemlidis A. Cancer and neurodegenerative disorders: pathogenic convergence throughmicroRNA regulation. Journal of molecular cell biology,2011,3(3):176-80
    [81] Brodersen P, Voinnet O. Revisiting the principles of microRNA target recognition and mode ofaction. Nature reviews. Molecular cell biology,2009,10(2):141-8
    [82] Jorissen RN, Walker F, Pouliot N, Garrett TP, Ward CW, Burgess AW. Epidermal growth factorreceptor: mechanisms of activation and signalling. Exp Cell Res,2003,284(1):31-53
    [83] Paez JG, Janne PA, Lee JC, Tracy S, Greulich H, Gabriel S, Herman P, Kaye FJ, Lindeman N,Boggon TJ, Naoki K, Sasaki H, et al. EGFR mutations in lung cancer: correlation with clinicalresponse to gefitinib therapy. Science,2004,304(5676):1497-500
    [84] Vivanco I, Sawyers CL. The phosphatidylinositol3-Kinase AKT pathway in human cancer. NatRev Cancer,2002,2(7):489-501
    [85] Ogata T, Teshima T, Inaoka M, Minami K, Tsuchiya T, Isono M, Furusawa Y, Matsuura N. Carbonion irradiation suppresses metastatic potential of human non-small cell lung cancer A549cells throughthe phosphatidylinositol-3-kinase/Akt signaling pathway. Journal of radiation research,2011,52(3):374-9
    [86] Mercer KE, Pritchard CA. Raf proteins and cancer: B-Raf is identified as a mutational target.Biochim Biophys Acta,2003,1653(1):25-40
    [87] Krysan K, Reckamp KL, Dalwadi H, Sharma S, Rozengurt E, Dohadwala M, Dubinett SM.Prostaglandin E2activates mitogen-activated protein kinase/Erk pathway signaling and cellproliferation in non-small cell lung cancer cells in an epidermal growth factor receptor-independentmanner. Cancer Res,2005,65(14):6275-81
    [88] Das G, Shiras A, Shanmuganandam K, Shastry P. Rictor regulates MMP-9activity and invasionthrough Raf-1-MEK-ERK signaling pathway in glioma cells. Mol Carcinog,2010,50(6):412-23
    [89] Langlois B, Perrot G, Schneider C, Henriet P, Emonard H, Martiny L, Dedieu S. LRP-1promotescancer cell invasion by supporting ERK and inhibiting JNK signaling pathways. PLoS One,2010,5(7):e11584
    [90] Cappuzzo F, Magrini E, Ceresoli GL, Bartolini S, Rossi E, Ludovini V, Gregorc V, Ligorio C,Cancellieri A, Damiani S, Spreafico A, Paties CT, et al. Akt phosphorylation and gefitinib efficacy inpatients with advanced non-small-cell lung cancer. J Natl Cancer Inst,2004,96(15):1133-41
    [91] Sordella R, Bell DW, Haber DA, Settleman J. Gefitinib-sensitizing EGFR mutations in lungcancer activate anti-apoptotic pathways. Science,2004,305(5687):1163-7
    [92] Thomson S, Buck E, Petti F, Griffin G, Brown E, Ramnarine N, Iwata KK, Gibson N, Haley JD.Epithelial to mesenchymal transition is a determinant of sensitivity of non-small-cell lung carcinomacell lines and xenografts to epidermal growth factor receptor inhibition. Cancer Res,2005,65(20):9455-62
    [93] Sharma SV, Bell DW, Settleman J, Haber DA. Epidermal growth factor receptor mutations in lungcancer. Nat Rev Cancer,2007,7(3):169-81
    [94] Weinstein IB. Cancer. Addiction to oncogenes--the Achilles heal of cancer. Science,2002,297(5578):63-4
    [95] Socinski MA, Novello S, Brahmer JR, Rosell R, Sanchez JM, Belani CP, Govindan R, Atkins JN,Gillenwater HH, Pallares C, Tye L, Selaru P, et al. Multicenter, phase II trial of sunitinib in previouslytreated, advanced non-small-cell lung cancer. J Clin Oncol,2008,26(4):650-6
    [96] Natale RB, Bodkin D, Govindan R, Sleckman BG, Rizvi NA, Capo A, Germonpre P, EberhardtWE, Stockman PK, Kennedy SJ, Ranson M. Vandetanib versus gefitinib in patients with advancednon-small-cell lung cancer: results from a two-part, double-blind, randomized phase ii study. J ClinOncol,2009,27(15):2523-9
    [97] Schiller JH, Larson T, Ou SH, Limentani S, Sandler A, Vokes E, Kim S, Liau K, Bycott P,Olszanski AJ, von Pawel J. Efficacy and safety of axitinib in patients with advanced non-small-celllung cancer: results from a phase II study. J Clin Oncol,2009,27(23):3836-41
    [98] Goss GD, Arnold A, Shepherd FA, Dediu M, Ciuleanu TE, Fenton D, Zukin M, Walde D, LabergeF, Vincent MD, Ellis PM, Laurie SA, et al. Randomized, double-blind trial of carboplatin andpaclitaxel with either daily oral cediranib or placebo in advanced non-small-cell lung cancer: NCICclinical trials group BR24study. J Clin Oncol,2010,28(1):49-55
    [99] Gauler TC, Besse B, Mauguen A, Meric JB, Gounant V, Fischer B, Overbeck TR, Krissel H,Laurent D, Tiainen M, Commo F, Soria JC, et al. Phase II trial of PTK787/ZK222584(vatalanib)administered orally once-daily or in two divided daily doses as second-line monotherapy in relapsed orprogressing patients with stage IIIB/IV non-small-cell lung cancer (NSCLC). Ann Oncol,2012,23(3):678-87
    [100] Blumenschein GR, Jr., Kabbinavar F, Menon H, Mok TS, Stephenson J, Beck JT, Lakshmaiah K,Reckamp K, Hei YJ, Kracht K, Sun YN, Sikorski R, et al. A phase II, multicenter, open-labelrandomized study of motesanib or bevacizumab in combination with paclitaxel and carboplatin foradvanced nonsquamous non-small-cell lung cancer. Ann Oncol,2011,22(9):2057-67
    [101] Altorki N, Lane ME, Bauer T, Lee PC, Guarino MJ, Pass H, Felip E, Peylan-Ramu N, Gurpide A,Grannis FW, Mitchell JD, Tachdjian S, et al. Phase II proof-of-concept study of pazopanibmonotherapy in treatment-naive patients with stage I/II resectable non-small-cell lung cancer. J ClinOncol,2010,28(19):3131-7
    [102] Reck M, Kaiser R, Eschbach C, Stefanic M, Love J, Gatzemeier U, Stopfer P, von Pawel J. Aphase II double-blind study to investigate efficacy and safety of two doses of the triple angiokinaseinhibitor BIBF1120in patients with relapsed advanced non-small-cell lung cancer. Ann Oncol,2011,22(6):1374-81
    [103] Pietanza MC, Lynch TJ, Jr., Lara PN, Jr., Cho J, Yanagihara RH, Vrindavanam N, Chowhan NM,Gadgeel SM, Pennell NA, Funke R, Mitchell B, Wakelee HA, et al. XL647-A Multitargeted TyrosineKinase Inhibitor: Results of a Phase II Study in Subjects with Non-small Cell Lung Cancer Who HaveProgressed after Responding to Treatment with Either Gefitinib or Erlotinib. J Thorac Oncol,2012,7(1):219-26
    [104] Spigel D, Ervin T, Ramlau R, Daniel D, Goldschmidt J, Blumenschein G, Krzakowski M,Robinet G, Clement-Duchene C, Barlesi F. Final efficacy results from OAM4558g, a randomized phaseII study evaluating MetMAb or placebo in combination with erlotinib in advanced NSCLC. J ClinOncol,2011,29(Suppl):abstract7505
    [1] Jemal A, Siegel R, Xu J, Ward E. Cancer statistics,2010. CA Cancer J Clin,2010,60(5):277-300
    [2] Goldstraw P, Crowley J, Chansky K, Giroux DJ, Groome PA, Rami-Porta R, Postmus PE, Rusch V,Sobin L. The IASLC Lung Cancer Staging Project: proposals for the revision of the TNM stagegroupings in the forthcoming (seventh) edition of the TNM Classification of malignant tumours. JThorac Oncol,2007,2(8):706-14
    [3] Miller YE. Pathogenesis of lung cancer:100year report. American journal of respiratory cell andmolecular biology,2005,33(3):216-23
    [4] Najafi-Shoushtari SH, Kristo F, Li Y, Shioda T, Cohen DE, Gerszten RE, Naar AM. MicroRNA-33and the SREBP host genes cooperate to control cholesterol homeostasis. Science,2010,328(5985):1566-9
    [5] Friedman RC, Farh KK, Burge CB, Bartel DP. Most mammalian mRNAs are conserved targets ofmicroRNAs. Genome research,2009,19(1):92-105
    [6] Du L, Pertsemlidis A. microRNAs and lung cancer: tumors and22-mers. Cancer Metastasis Rev,2010,29(1):109-22
    [7] Garzon R, Marcucci G, Croce CM. Targeting microRNAs in cancer: rationale, strategies andchallenges. Nat Rev Drug Discov,2010,9(10):775-89
    [8] Lin PY, Yu SL, Yang PC. MicroRNA in lung cancer. Br J Cancer,2010,103(8):1144-8
    [9] Croce CM. Causes and consequences of microRNA dysregulation in cancer. Nature reviews.Genetics,2009,10(10):704-14
    [10] Patz EF, Jr., Caporaso NE, Dubinett SM, Massion PP, Hirsch FR, Minna JD, Gatsonis C, Duan F,Adams A, Apgar C, Medina RM, Aberle DR. National Lung Cancer Screening Trial American Collegeof Radiology Imaging Network Specimen Biorepository originating from the Contemporary Screeningfor the Detection of Lung Cancer Trial (NLST, ACRIN6654): design, intent, and availability ofspecimens for validation of lung cancer biomarkers. J Thorac Oncol,2010,5(10):1502-6
    [11] Barba M, Felsani A, Rinaldi M, Giunta S, Malorni W, Paggi MG. Reducing the risk ofoverdiagnosis in lung cancer: a support from molecular biology. J Cell Physiol,2011,226(9):2213-4
    [12] Volinia S, Calin GA, Liu CG, Ambs S, Cimmino A, Petrocca F, Visone R, Iorio M, Roldo C,Ferracin M, Prueitt RL, Yanaihara N, et al. A microRNA expression signature of human solid tumorsdefines cancer gene targets. Proc Natl Acad Sci U S A,2006,103(7):2257-61
    [13] Yanaihara N, Caplen N, Bowman E, Seike M, Kumamoto K, Yi M, Stephens RM, Okamoto A,Yokota J, Tanaka T, Calin GA, Liu CG, et al. Unique microRNA molecular profiles in lung cancerdiagnosis and prognosis. Cancer Cell,2006,9(3):189-98
    [14] Navarro A, Marrades RM, Vinolas N, Quera A, Agusti C, Huerta A, Ramirez J, Torres A, MonzoM. MicroRNAs expressed during lung cancer development are expressed in human pseudoglandularlung embryogenesis. Oncology,2009,76(3):162-9
    [15] Kumar MS, Erkeland SJ, Pester RE, Chen CY, Ebert MS, Sharp PA, Jacks T. Suppression ofnon-small cell lung tumor development by the let-7microRNA family. Proc Natl Acad Sci U S A,2008,105(10):3903-8
    [16] Johnson CD, Esquela-Kerscher A, Stefani G, Byrom M, Kelnar K, Ovcharenko D, Wilson M,Wang X, Shelton J, Shingara J, Chin L, Brown D, et al. The let-7microRNA represses cellproliferation pathways in human cells. Cancer Res,2007,67(16):7713-22
    [17] Chin LJ, Ratner E, Leng S, Zhai R, Nallur S, Babar I, Muller RU, Straka E, Su L, Burki EA,Crowell RE, Patel R, et al. A SNP in a let-7microRNA complementary site in the KRAS3'untranslated region increases non-small cell lung cancer risk. Cancer Res,2008,68(20):8535-40
    [18] Raponi M, Dossey L, Jatkoe T, Wu X, Chen G, Fan H, Beer DG. MicroRNA classifiers forpredicting prognosis of squamous cell lung cancer. Cancer Res,2009,69(14):5776-83
    [19] Crawford M, Batte K, Yu L, Wu X, Nuovo GJ, Marsh CB, Otterson GA, Nana-Sinkam SP.MicroRNA133B targets pro-survival molecules MCL-1and BCL2L2in lung cancer. BiochemBiophys Res Commun,2009,388(3):483-9
    [20] Rotunno M, Zhao Y, Bergen AW, Koshiol J, Burdette L, Rubagotti M, Linnoila RI, Marincola FM,Bertazzi PA, Pesatori AC, Caporaso NE, McShane LM, et al. Inherited polymorphisms in theRNA-mediated interference machinery affect microRNA expression and lung cancer survival. Br JCancer,2010,103(12):1870-4
    [21] Kumarswamy R, Mudduluru G, Ceppi P, Muppala S, Kozlowski M, Niklinski J, Papotti M,Allgayer H. MicroRNA-30a inhibits epithelial-to-mesenchymal transition by targeting Snai1and isdownregulated in non-small cell lung cancer. Int J Cancer,2012,130(9):2044-53
    [22] Seike M, Goto A, Okano T, Bowman ED, Schetter AJ, Horikawa I, Mathe EA, Jen J, Yang P,Sugimura H, Gemma A, Kudoh S, et al. MiR-21is an EGFR-regulated anti-apoptotic factor in lungcancer in never-smokers. Proc Natl Acad Sci U S A,2009,106(29):12085-90
    [23] Ebi H, Sato T, Sugito N, Hosono Y, Yatabe Y, Matsuyama Y, Yamaguchi T, Osada H, Suzuki M,Takahashi T. Counterbalance between RB inactivation and miR-17-92overexpression in reactiveoxygen species and DNA damage induction in lung cancers. Oncogene,2009,28(38):3371-9
    [24] Heneghan HM, Miller N, Kerin MJ. Circulating miRNA signatures: promising prognostic toolsfor cancer. J Clin Oncol,2010,28(29):e573-4; author reply e5-6
    [25] Chen X, Ba Y, Ma L, Cai X, Yin Y, Wang K, Guo J, Zhang Y, Chen J, Guo X, Li Q, Li X, et al.Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and otherdiseases. Cell research,2008,18(10):997-1006
    [26] Foss KM, Sima C, Ugolini D, Neri M, Allen KE, Weiss GJ. miR-1254and miR-574-5p:serum-based microRNA biomarkers for early-stage non-small cell lung cancer. J Thorac Oncol,2011,6(3):482-8
    [27] Shen J, Todd NW, Zhang H, Yu L, Lingxiao X, Mei Y, Guarnera M, Liao J, Chou A, Lu CL, JiangZ, Fang H, et al. Plasma microRNAs as potential biomarkers for non-small-cell lung cancer. Lab Invest,2011,91(4):579-87
    [28] Boeri M, Verri C, Conte D, Roz L, Modena P, Facchinetti F, Calabro E, Croce CM, Pastorino U,Sozzi G. MicroRNA signatures in tissues and plasma predict development and prognosis of computedtomography detected lung cancer. Proc Natl Acad Sci U S A,2011,108(9):3713-8
    [29] Hennessey PT, Sanford T, Choudhary A, Mydlarz WW, Brown D, Adai AT, Ochs MF, Ahrendt SA,Mambo E, Califano JA. Serum microRNA Biomarkers for Detection of Non-Small Cell Lung Cancer.PLoS One,2012,7(2):e32307
    [30] Xing L, Todd NW, Yu L, Fang H, Jiang F. Early detection of squamous cell lung cancer in sputumby a panel of microRNA markers. Mod Pathol,2010,23(8):1157-64
    [31] Yu L, Todd NW, Xing L, Xie Y, Zhang H, Liu Z, Fang H, Zhang J, Katz RL, Jiang F. Earlydetection of lung adenocarcinoma in sputum by a panel of microRNA markers. Int J Cancer,2010,127(12):2870-8
    [32] Rosenfeld N, Aharonov R, Meiri E, Rosenwald S, Spector Y, Zepeniuk M, Benjamin H, Shabes N,Tabak S, Levy A, Lebanony D, Goren Y, et al. MicroRNAs accurately identify cancer tissue origin. NatBiotechnol,2008,26(4):462-9
    [33] Landi MT, Zhao Y, Rotunno M, Koshiol J, Liu H, Bergen AW, Rubagotti M, Goldstein AM,Linnoila I, Marincola FM, Tucker MA, Bertazzi PA, et al. MicroRNA expression differentiateshistology and predicts survival of lung cancer. Clin Cancer Res,2010,16(2):430-41
    [34] Bishop JA, Benjamin H, Cholakh H, Chajut A, Clark DP, Westra WH. Accurate classification ofnon-small cell lung carcinoma using a novel microRNA-based approach. Clin Cancer Res,2010,16(2):610-9
    [35] Lebanony D, Benjamin H, Gilad S, Ezagouri M, Dov A, Ashkenazi K, Gefen N, Izraeli S, RechaviG, Pass H, Nonaka D, Li J, et al. Diagnostic assay based on hsa-miR-205expression distinguishessquamous from nonsquamous non-small-cell lung carcinoma. J Clin Oncol,2009,27(12):2030-7
    [36] Del Vescovo V, Cantaloni C, Cucino A, Girlando S, Silvestri M, Bragantini E, Fasanella S,Cuorvo LV, Palma PD, Rossi G, Papotti M, Pelosi G, et al. miR-205Expression levels in nonsmall celllung cancer do not always distinguish adenocarcinomas from squamous cell carcinomas. Am J SurgPathol,2011,35(2):268-75
    [37] Miko E, Margitai Z, Czimmerer Z, Varkonyi I, Dezso B, Lanyi A, Bacso Z, Scholtz B. miR-126inhibits proliferation of small cell lung cancer cells by targeting SLC7A5. FEBS Lett,2011,585(8):1191-6
    [38] Lu Y, Govindan R, Wang L, Liu PY, Goodgame B, Wen W, Sezhiyan A, Pfeifer J, Li YF, Hua X,Wang Y, Yang P, et al. MicroRNA profiling and prediction of recurrence/relapse-free survival in stage Ilung cancer. Carcinogenesis,2012,
    [39] Rabinowits G, Gercel-Taylor C, Day JM, Taylor DD, Kloecker GH. Exosomal microRNA: adiagnostic marker for lung cancer. Clin Lung Cancer,2009,10(1):42-6
    [40] Xie Y, Todd NW, Liu Z, Zhan M, Fang H, Peng H, Alattar M, Deepak J, Stass SA, Jiang F. AlteredmiRNA expression in sputum for diagnosis of non-small cell lung cancer. Lung Cancer,2010,67(2):170-6
    [41] Barshack I, Lithwick-Yanai G, Afek A, Rosenblatt K, Tabibian-Keissar H, Zepeniuk M, Cohen L,Dan H, Zion O, Strenov Y, Polak-Charcon S, Perelman M. MicroRNA expression differentiatesbetween primary lung tumors and metastases to the lung. Pathology, research and practice,2010,206(8):578-84
    [42] Zhang JG, Wang JJ, Zhao F, Liu Q, Jiang K, Yang GH. MicroRNA-21(miR-21) represses tumorsuppressor PTEN and promotes growth and invasion in non-small cell lung cancer (NSCLC). ClinChim Acta,2010,411(11-12):846-52
    [43] Wang X, Ling C, Bai Y, Zhao J. MicroRNA-206is associated with invasion and metastasis of lungcancer. Anat Rec (Hoboken),2011,294(1):88-92
    [44] Jiang L, Huang Q, Zhang S, Zhang Q, Chang J, Qiu X, Wang E. Hsa-miR-125a-3p andhsa-miR-125a-5p are downregulated in non-small cell lung cancer and have inverse effects on invasionand migration of lung cancer cells. BMC Cancer,2010,10:318
    [45] Donnem T, Fenton CG, Lonvik K, Berg T, Eklo K, Andersen S, Stenvold H, Al-Shibli K, Al-SaadS, Bremnes RM, Busund LT. MicroRNA signatures in tumor tissue related to angiogenesis innon-small cell lung cancer. PLoS One,2012,7(1):e29671
    [46] Ceppi P, Mudduluru G, Kumarswamy R, Rapa I, Scagliotti GV, Papotti M, Allgayer H. Loss ofmiR-200c expression induces an aggressive, invasive, and chemoresistant phenotype in non-small celllung cancer. Mol Cancer Res,2010,8(9):1207-16
    [47] Arora S, Ranade AR, Tran NL, Nasser S, Sridhar S, Korn RL, Ross JT, Dhruv H, Foss KM,Sibenaller Z, Ryken T, Gotway MB, et al. MicroRNA-328is associated with (non-small) cell lungcancer (NSCLC) brain metastasis and mediates NSCLC migration. Int J Cancer,2011,129(11):2621-31
    [48] Gaur A, Jewell DA, Liang Y, Ridzon D, Moore JH, Chen C, Ambros VR, Israel MA.Characterization of microRNA expression levels and their biological correlates in human cancer celllines. Cancer Res,2007,67(6):2456-68
    [49] Liu H, D'Andrade P, Fulmer-Smentek S, Lorenzi P, Kohn KW, Weinstein JN, Pommier Y,Reinhold WC. mRNA and microRNA expression profiles of the NCI-60integrated with drug activities.Mol Cancer Ther,2010,9(5):1080-91
    [50] Blower PE, Chung JH, Verducci JS, Lin S, Park JK, Dai Z, Liu CG, Schmittgen TD, Reinhold WC,Croce CM, Weinstein JN, Sadee W. MicroRNAs modulate the chemosensitivity of tumor cells. MolCancer Ther,2008,7(1):1-9
    [51] Kong W, He L, Coppola M, Guo J, Esposito NN, Coppola D, Cheng JQ. MicroRNA-155regulatescell survival, growth, and chemosensitivity by targeting FOXO3a in breast cancer. J Biol Chem,2010,285(23):17869-79
    [52] Voortman J, Goto A, Mendiboure J, Sohn JJ, Schetter AJ, Saito M, Dunant A, Pham TC, Petrini I,Lee A, Khan MA, Hainaut P, et al. MicroRNA expression and clinical outcomes in patients treated withadjuvant chemotherapy after complete resection of non-small cell lung carcinoma. Cancer Res,2010,70(21):8288-98
    [53] Galluzzi L, Morselli E, Vitale I, Kepp O, Senovilla L, Criollo A, Servant N, Paccard C, Hupe P,Robert T, Ripoche H, Lazar V, et al. miR-181a and miR-630regulate cisplatin-induced cancer celldeath. Cancer Res,2010,70(5):1793-803
    [54] Gao W, Lu X, Liu L, Xu J, Feng D, Shu Y. MiRNA-21: A biomarker predictive for platinum-basedadjuvant chemotherapy response in patients with non-small cell lung cancer. Cancer Biol Ther,2012,13(6)
    [55] Ranade AR, Cherba D, Sridhar S, Richardson P, Webb C, Paripati A, Bowles B, Weiss GJ.MicroRNA92a-2*: a biomarker predictive for chemoresistance and prognostic for survival in patientswith small cell lung cancer. J Thorac Oncol,2010,5(8):1273-8
    [56] Sarkar FH, Li Y, Wang Z, Kong D, Ali S. Implication of microRNAs in drug resistance fordesigning novel cancer therapy. Drug Resist Updat,2010,13(3):57-66
    [57] Arora H, Qureshi R, Jin S, Park AK, Park WY. miR-9and let-7g enhance the sensitivity toionizing radiation by suppression of NFkappaB1. Experimental&molecular medicine,2011,43(5):298-304
    [58] Weiss GJ, Bemis LT, Nakajima E, Sugita M, Birks DK, Robinson WA, Varella-Garcia M, BunnPA, Jr., Haney J, Helfrich BA, Kato H, Hirsch FR, et al. EGFR regulation by microRNA in lung cancer:correlation with clinical response and survival to gefitinib and EGFR expression in cell lines. AnnOncol,2008,19(6):1053-9
    [59] Cho WC, Chow AS, Au JS. Restoration of tumour suppressor hsa-miR-145inhibits cancer cellgrowth in lung adenocarcinoma patients with epidermal growth factor receptor mutation. Eur J Cancer,2009,45(12):2197-206
    [60] Garofalo M, Di Leva G, Romano G, Nuovo G, Suh SS, Ngankeu A, Taccioli C, Pichiorri F, AlderH, Secchiero P, Gasparini P, Gonelli A, et al. miR-221&222regulate TRAIL resistance and enhancetumorigenicity through PTEN and TIMP3downregulation. Cancer Cell,2009,16(6):498-509
    [61] Lee JK, Havaleshko DM, Cho H, Weinstein JN, Kaldjian EP, Karpovich J, Grimshaw A,Theodorescu D. A strategy for predicting the chemosensitivity of human cancers and its application todrug discovery. Proc Natl Acad Sci U S A,2007,104(32):13086-91
    [62] Takamizawa J, Konishi H, Yanagisawa K, Tomida S, Osada H, Endoh H, Harano T, Yatabe Y,Nagino M, Nimura Y, Mitsudomi T, Takahashi T. Reduced expression of the let-7microRNAs inhuman lung cancers in association with shortened postoperative survival. Cancer Res,2004,64(11):3753-6
    [63] Yu SL, Chen HY, Chang GC, Chen CY, Chen HW, Singh S, Cheng CL, Yu CJ, Lee YC, Chen HS,Su TJ, Chiang CC, et al. MicroRNA signature predicts survival and relapse in lung cancer. Cancer Cell,2008,13(1):48-57
    [64] Patnaik SK, Kannisto E, Knudsen S, Yendamuri S. Evaluation of microRNA expression profilesthat may predict recurrence of localized stage I non-small cell lung cancer after surgical resection.Cancer Res,2010,70(1):36-45
    [65] Gao W, Yu Y, Cao H, Shen H, Li X, Pan S, Shu Y. Deregulated expression of miR-21, miR-143and miR-181a in non small cell lung cancer is related to clinicopathologic characteristics or patientprognosis. Biomed Pharmacother,2010,64(6):399-408
    [66] Gao W, Shen H, Liu L, Xu J, Shu Y. MiR-21overexpression in human primary squamous celllung carcinoma is associated with poor patient prognosis. J Cancer Res Clin Oncol,2011,137(4):557-66
    [67] Hu Z, Chen X, Zhao Y, Tian T, Jin G, Shu Y, Chen Y, Xu L, Zen K, Zhang C, Shen H. SerummicroRNA signatures identified in a genome-wide serum microRNA expression profiling predictsurvival of non-small-cell lung cancer. J Clin Oncol,2010,28(10):1721-6
    [68] Tian T, Shu Y, Chen J, Hu Z, Xu L, Jin G, Liang J, Liu P, Zhou X, Miao R, Ma H, Chen Y, et al. Afunctional genetic variant in microRNA-196a2is associated with increased susceptibility of lungcancer in Chinese. Cancer Epidemiol Biomarkers Prev,2009,18(4):1183-7
    [69] Wu Y, Crawford M, Yu B, Mao Y, Nana-Sinkam SP, Lee LJ. MicroRNA delivery by cationiclipoplexes for lung cancer therapy. Molecular pharmaceutics,2011,8(4):1381-9
    [70] Trang P, Medina PP, Wiggins JF, Ruffino L, Kelnar K, Omotola M, Homer R, Brown D, Bader AG,Weidhaas JB, Slack FJ. Regression of murine lung tumors by the let-7microRNA. Oncogene,2010,29(11):1580-7
    [71] Trang P, Wiggins JF, Daige CL, Cho C, Omotola M, Brown D, Weidhaas JB, Bader AG, Slack FJ.Systemic delivery of tumor suppressor microRNA mimics using a neutral lipid emulsion inhibits lungtumors in mice. Molecular therapy: the journal of the American Society of Gene Therapy,2011,19(6):1116-22
    [72] Mudduluru G, Ceppi P, Kumarswamy R, Scagliotti GV, Papotti M, Allgayer H. Regulation of Axlreceptor tyrosine kinase expression by miR-34a and miR-199a/b in solid cancer. Oncogene,2011,30(25):2888-99
    [73] Xi Y, Nakajima G, Gavin E, Morris CG, Kudo K, Hayashi K, Ju J. Systematic analysis ofmicroRNA expression of RNA extracted from fresh frozen and formalin-fixed paraffin-embeddedsamples. RNA,2007,13(10):1668-74
    [74] Taylor DD, Gercel-Taylor C. MicroRNA signatures of tumor-derived exosomes as diagnosticbiomarkers of ovarian cancer. Gynecologic oncology,2008,110(1):13-21
    [75] Larsen JE, Pavey SJ, Passmore LH, Bowman RV, Hayward NK, Fong KM. Gene expressionsignature predicts recurrence in lung adenocarcinoma. Clin Cancer Res,2007,13(10):2946-54

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700