用户名: 密码: 验证码:
牛羊胰酶提取、胰蛋白酶纯化及其酶学特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
牛羊在人类食物的地位及产生的经济价值很高,但每年肉制品加工产生大量的不可食用的胰脏约有4.472-8.944×10~4t。它不但含有大量的酶,而且易自溶,造成环境污染。所以探讨牛羊胰脏的开发利用研究具有重要的意义。采取新颖的实验设计和数理统计方法,研究其胰酶提取工艺,并用凝胶过滤的方法研究牛羊胰蛋白酶分离纯化,且较深入地研究了牛羊胰蛋白酶的生物学特性。为减少环境污染和牛羊胰脏生物资源开发利用提供理论依据。文中主要述及了以下几方面的研究结果:
     1.牛胰酶壳聚糖絮凝法提取工艺流程确定和参数优化。采用Plackett-Burman设计对影响牛胰酶活力和提取率的13个因子进行筛选,用方差分析筛选出主效因素(p<0.05):壳聚糖、CaCl_2浓度、胰腺与十二指肠配比和激活pH。在此基础上,再运用均匀设计对以上四个显著因子的最佳水平范围进行研究,通过偏最小二乘法(PLS)建立回归方程求解得到牛胰酶提取最适条件为:壳聚糖0.17%、CaCl_20.06%、胰腺与十二指肠配比8.26:1、激活pH5.37。此条件下验证实测值胰蛋白酶、胰脂肪酶、胰淀粉酶活力和胰酶提取率分别为3408.71u/g、33.11ku/g、23.93ku/g和13.22%,与回归方程理论预测值相比,相对误差分别为7.15%、8.56%、10.63%、1.93%。用两种激活剂和壳聚糖絮凝法提取牛胰酶工艺合理,具有可行性。且采用Plackett-Burman和均匀设计相结合并运用PLS回归分析效果显著。
     2.羊胰酶提取工艺流程确定和参数优化。在单因素实验基础上,再运用均匀设计法研究激活时间、异丙醇浓度、提取pH和CaCl_2对羊胰酶提取工艺的影响。以胰蛋白酶、胰淀粉酶、胰脂肪酶活力和胰酶提取率为响应指标,通过PLS回归分析法对羊胰酶提取工艺的影响因素进行优化组合,并建立了具有提取条件的数学模型。结果表明:提取最适条件为:激活时间12h、CaCl_20.08%、提取pH6.34、沉淀和提取异丙醇浓度分别为41%和12.5%,此条件下验证实测值胰蛋白酶、胰淀粉酶、胰脂肪酶的活力和胰酶提取率分别为3062.78u/g、30.06ku/g、32.37Ku/g和6.16%,与数学模型方程的理论预测值相比,相对误差分别为8.11%、1.28%、3.55%和5.29%。该工艺合理,具有可行性。进一步验证了均匀设计在多因素多水平试验设计的优越性和PLS对多因素多指标的综合分析数据结果可靠。
     3.分别用2种胰酶提取方法及工艺参数对牛羊胰脏进行交换试验验证,结果发现羊胰酶壳聚糖絮凝法和牛胰酶异丙醇提取法所得胰酶活力均超过中华人民共和国药典规定的指标,以最低的胰蛋白酶活力作比较,牛羊胰蛋白酶分别3668u/g、2151u/g;超过药典规定6.1倍、3.5倍。干燥失重、残留脂肪在药典规定的指标以下,具有特殊的肉臭味;异丙醇提取胰酶呈灰白色粉末,而壳聚糖絮凝法提取产品则呈淡黄色,胰蛋白酶、胰淀粉酶的活力比同一种类异丙醇法提取胰酶制品的活力低,但羊胰淀粉酶和胰脂肪酶活力相反;在胰酶提取操作方法相同的条件下,用胰蛋白酶活力做参照比较,猪牛羊三种酶活力平均分别为4754.5u/g、3538u/g、2607u/g,猪胰酶的活力最高,羊胰酶活力最小,牛胰酶制品的活力介于二者之间。
     4.胰蛋白酶分离纯化。牛羊胰酶粉分别经过胰蛋白酶粗提、过滤、离心、饱和硫酸铵分级沉淀、丙酮沉淀、凝胶过滤等一系列纯化后,牛羊胰蛋白酶的纯化倍数和蛋白质回收率分别达到19.8、23.2;38.2%、13.6%。2种纯化的蛋白酶在SDS-PAGE电泳胶片上显示单条带,其相对分子量分别约为24kDa和27kDa。纯化后牛羊胰蛋白酶均能水解TAME,且被PMSF、SBTI和TLCK强烈抑制,抑制率分别在81-98%、74-96%的范围,不被EDTA抑制,所以结合其相对分子质量大小、水解特性、抑制特性,可以确定这是2种胰蛋白酶。
     5.胰蛋白酶的生物特性。在波长247nm下,牛羊胰蛋白酶TAME底物时,2种胰蛋白酶的最适温度及稳定温度范围相同,分别是60℃、20-50℃;最适作用pH分别是8.0、9.0,酸碱稳定性范围各为pH8-12和pH7-12;说明2种酶在中性和碱性条件稳定;且CaCl_2对其胰蛋白酶均具有稳定性,不同浓度的NaCl对胰蛋白酶的活力有降低作用。
     6.胰蛋白酶动力学特性。研究表明牛羊胰蛋白酶的米氏常数Km分别是0.28μmmol/L、0.53μmmol/L,2种胰蛋白酶对TAME有很好的亲和力,牛胰蛋白酶对底物TAME的亲和力比羊胰蛋白酶高。同时还发现二者对TAME的亲和力比BAPNA高。其催化效率Kcat、生理转化效率Kcat/Km分别为7.905s~(-1)、7.702s~(-1);28.23s~(-1)μmol~(-1)、14.53s~(-1)μmol~(-1)。明显高于已报道的其它哺乳动物胰蛋白酶。
Flocks and herds have a high status and economic value in human food. But a large amount of inedible pancreas about4.472-8.944×104t in manufactured meat every year. It not only contains a lot of enzymes but also easy to autolysis very quickly post-mortem due to enzymes leaking from the digestive organs, and resulting in environmental pollution. Therefore, the development and utilization of bovine and ovine pancreas has significant. It was reported the process of extraction pancreatin from bovine and ovine pancreases by novel experimental design and mathematical statistical methods, and separation and purification of the trypsin with the gel filtration And it was thoroughly study of the biological characteristics of bovine and ovine trypsin. Provide a theoretical basis for reduce environmental pollution and exploitation of biological resources pancreas. This paper mainly addressed the following aspects of the research results:
     1. Extraction bovine pancreatin process flow and parameter optimization with chitosan flocculation method. Plackett-Burman Design was undertaken to evaluate the effect of the thirteen factors on the activity of pancreatin and extraction rate. Main factors were selected by analysis of variance(p<0.05):chitosan, CaCl2concentration, the pancreas and ratio of the pancreas and duodenum and activation pH. On this basis, a uniform design method was used to study the scope of the optimal level above the four significant factors, and obtained the optimal conditions for extraction bovine pancreatin by partial least squares regression (PLS) equation:chitosan0.17%, CaCl20.06%, ratio8.26:1of pancreas and duodenum and the activation pH5.37. Under these conditions, validation actual value of trypsin, lipase, amylase and extraction rates were3408.71u/g,33.11ku/g,23.93ku/g and13.22%, respectively, and the relative errors of the regression equation theoretical prediction were7.15%,8.56%,10.63%,1.93%, respectively. It was feasible that process of extraction bovine pancreatin with the method of two activators and chitosan flocculation. The results were obvious by the method of combining Plackett-Burman and uniform design and PLS regression analysis.
     2. Extraction ovine pancreatin process flow and parameter optimization with isopropanol. After the process of extraction ovine pancreatin was slight modified with isopropyl alcohol. Based on single factor experiments, Studing activation time, isopropyl alcohol concentration, extraction pH and CaCl2affect on the ovine pancreatin extraction process with a uniform design. With the response result of trypsin, amylase, lipase and extraction rate, the impact factors of ovine pancreatin extracton process were optimized by PLS, and established the mathematical model with the extraction conditions. The results showed that:The optimal conditions of extracton ovine pancreatin were activation time12h, CaCl20.08%, precipitation isopropanol concentration41%, extraction pH6.34, and Extract isopropanol concentration12.5%. Under these conditions, verified the actual value of trypsin, amylase, lipase and extraction rate were3062.78u/g,30.06ku/g,32.37Ku/g and6.16%, respectively, the relative errors of the mathematical model equations theoretical prediction were7.15%,8.56%,10.63%,1.93%, respectively. The process is feasible and further verified superiority of uniform design in multi-factors and multi-level experimental design, and the data result was reliable by multi-factors and Multi index composite analysis with PLS.
     3. On the exchange of experimental verification of extraction pancreatin from bovine and ovine pancreas with chitosan flocculation and isopropyl alcohol method, respectively, and processes parameter. The results showed that pancreatin activity exceeds the targets set in the Chinese Pharmacopoeia. Bovine and ovine pancreatins were3668u/g and2151u/g respectively, which exceed6.1times and3.5times targets set in the Pharmacopoeia compare to the lowest activity of trypsin, respectively. Loss on drying and residual fat of pancreases were low the standards of Pharmacopoeia, which had a special no smell of corruption. Pancreatin with isopropyl alcohol extraction was gray powder, and with chitosan flocculation was pale yellow. Activity of trypsin and amylase with chitosan flocculation extraction was lower than activity with isopropyl alcohol in the same pancreatin, but the ovine amylase and lipase was contrary. Under the same extract conditions, The activity of porcine pancreatin was highest and ovine was smallest among porcine, bovine and ovine pancreatin activity with trypsin activity as the reference, which average activity of porcine, bovine and ovine pancreatin were4754.5u/g,3538u/g and2607u/g, respectively.
     4. A series purification of trypsins from bovine and ovine pancreatin after crude extraction, filtration, centrifugation, saturated sulfate ammonium fractionation precipitation, acetone precipitation and gel filtration, respetively, the purification factor of trypsins and recovery of protein were19.8,23.2;38.2%,13.6%, respectively. Purified two trypsins showed a single band on SDS-PAGE electrophoresis film, and approximately molecular weights were24kDa and27kDa, respectively. Trypsins could both hydrolyze TAME, and was strongly inhibited by PMSF, SBTI and TLCK. Which inhibit ratio were81-98%and74-96%, respetively, and was not inhibited by EDTA. Therefore, two enzymes were serine trypsins by molecular weight, hydrolysis properties, and inhibited characteristics.
     5. The optimume and stability temperatur range of bovine and ovine trypsins were60℃and20-50℃, respectively, when trypsins hydrolyze TAME substrate under the absorbance at274nm wavelength; Optimum pH were8.0and9.0, respectively, and PH stability range were8-12and7-12, respectively. The result showed that bovine and ovine trypsins were stability in neutral and alkaline conditions and two typsins has stability in CaCl2solution, and the trypsin activity could be decreased in different concentration NaCl.
     6. Kinetic studies had shown that Michaelis constant Km of trypsins were0.28μmmol/L and0.53μmmol/L, respectively. They had a good affinity for substrate TAME, and bovine trypsin had a higher affinity for TAME than did ovine trypsin. Meanwhile, trypsins had a higher affinity for TAME than did BAPNA, of which the Kcat and Kcat/Km was7.905s-1,7.702s-1,28.23s-μmol-1and14.53s-μmol-1respectively. It was significantly higher than those reported in other mammal's trypsin.
引文
[]杨华,刘玉花,马俪珍等.羊骨蛋白酶解物免疫活性及酶解条件的研究[J].中国农业科学,2008,41(10):3214-3221.
    [2]Kishimura H., Hayashi K., Miyashita Y., et al. Characteristics of trypsins from the viscera of true sardine (Sardinops melanostictus) and the pyloric ceca of arabesque greenling (pleuroprammus azonus)[J]. Food Chemistry,2006,97:65-70.
    [3]Webster J D., Ledward D A., Lawrie R A.. Protein hydrolysates from mest industry by-products [J]. Meat Science.1982,7:147-157.
    [4]钟晓勤,赫毅,何泽超.胰酶中镉的除去研究[J].天然产物研究与开发.2008,20:117-120.
    [5]Haard N F.. Specialty enzymes from marine organism [J]. Food Tech,1998,52:64-67.
    [6]Buck F F., Vithayathil A J., Bier M., et al. On the mechanism of enzyme action. LXXIII. Studies on trypsins from beef, sheep and pig pancreas [J]. Arch. Biochem, Biophys.1962,97:417-425.
    [7]朱振齐,张德安,苟仕金等.激肽释放酶联产工艺的研究[J].中国生化药物杂志.1992,59(1):5-8.
    [8]周祖荫,蔡国强,陈浩然.激肤释放酶、弹性蛋白酶和糜胰蛋白酶联产研究[J].中国生化药物杂志.1992,61(3):33-36.
    [9]Folk J E., Schirmer E W.. The porcine pancreatic carboxypeptidase A system [J]. J Biol Chem,1963:3883-3894.
    [0]潘雪,李兆申.胰酶与消化[J].胰腺病学,2007,7(5):345-347.
    [1]Berdutina A V., Neklyudov A D., Ivankin A I, et al.. Comparison of proteolytic activities of the enzyme complex from mammalian pancreas and pancreatin[J]. Applied Biochemistry and Microbiology,2000,36(4):363-367.
    [2]Walsh K A., Kauffman D L., Sampath Kumar K S V., et al.. On the Structure and function of bovine trypsinogen and trypsin [J]. Biochemistry,1964,51:301-308.
    [3]张向辉,谭树华,李泰民.肠激酶特点及其基因工程的研究进展[J].药物生物 技术,2005,12(5):347-350.
    [4]王海燕,李富伟,高秀华.脂肪酶的研究进展及其在饲料中的应用[J].饲料工业.2007,28(6):14-17.
    [5]张艺川.糜蛋白酶临床应用进展[J].亚太传统医药.2007,3(7):94-96.
    [6]Krieger M., Kay L M., Stroud R M.. Structure and specific binding of trypsin: comparision of inhibited derivatives and a model for substrate binding article [J]. Mol Biol,1974,83:209.
    [7]Huber R., Kukl A D., Bode W., et al. Structure of the complex formed by bovine trypsin and bovine pancreatic trypsin inhibitor:Ⅱ. crystallographic refinemenr at119resolution article [J]. Mol Biol,1974,89:73
    [8]Geiger R.. In:Bergmayer HU, editor. Pancreatic Elastase [J]. Methods of Enzymatic Analysis.1984,5:170-175.
    [19]Lungarella G., Menegazzi R., Gardi C., et al.. Identification of elastase in human eosinophils:Immunolocalization, isolation and partial characterization [J]. Arch Biochem Biophys.1992,292:128-135.
    [20]Balo J., Banga J.. The elastolytic activity of pancrtic extracts [J]. Biochem J.1950,46:384-387.
    [21]贺稚非,陈宗道,李洪军等.胞外弹性蛋白酶的理化特性及其影响因素[J].食品与发酵工业.2005,31(4):10-13.
    [22]刘小杰,陈启和,孙桥.弹性蛋白酶的研究进展[J].中国食品添加剂,2004,4:29-32.
    [23]中华人民共和国药典委员会.中华人民共和国药典(二部)[M].北京:化学工业出版社,2005,631-633.
    [24]余冰宾.生物化学实验指导[M].清华大学出版社,2004,194-197.
    [25]Hans Schultze.. Isolation of pancreatin [P].1986, US:4623624.
    [26]Klomklao S., Benjakul S., Visessanguan W.. Comparative studies on proteolytic activity of spleen extract from three tuna species commonly used in Thailand [J]. Journal of Food Biochemistry,2004,28:355-372.
    [27]Klomklao S., Benjakul S., Visessanguan W., et al.. Partitioning and recovery of proteinase from tuna spleen by aqueous two-phase systems [J]. Process Biochemistry,2005,40:3061-3067.
    [28]Vijayalakshmi K A., Lemieux L., Amiot J.. High performance size exclusion liquid chromatography of small molecular weight peptides from protein hydrolysates using methanol as mobile phase additive [J]. Journal of liquid Chromatography,1986,9:3559-3576.
    [29]Vithayathil A J., Buck F., Bier M., et al.. Comparative studies on trypsins of various origins [J]. Arch. Biochem. Biophys.1961,92:532-540.
    [30]Mahmood M I, Malone W T., Cordle C T.. Enzymatic hydrolysates of casein: effect of degree of hydrolysis antigenicity and physical properties [J]. Journal of Food Science,1992,57:1223-1229.
    [31]Alder-Nissen J.. Enzymatic hydrolysis of proteins for increased solubility [J]. J Agric Food Chem1976,24:1090-1093.
    [32]Silvestre M P C. Review of methods for the analysis of protein hydrolysates [J]. Food Chemistry,1997,60:263-271.
    [33]赵江,刘鹏,宋庆明等.胰酶固定化条件的优化与应用[J].中国酿造,2008,(1):22.
    [34]Ge S J, Zhang L X.. The immobilized porcine pancreatic exopeptidases and its ap-plication in casein hydrolysates debittering [J]. Appl Biochem Biotechnol,1996,59:159-165.
    [35]彭必雨,王毓霞,王剑等.制革常用蛋白酶活力测定方法及结果比较[J].皮革科学与工程,2004,14(3):7-11.
    [36]David A J., Battina J.. Culture of human keratinocyte in defined serum free medium[J]. FOCUS (GIBCO Co,Ltd),1997:19:2-5.
    [37]Hirosuke O., Chikara K., Tomoyuki M., et al.. Serum-free culture of rat okeratincyte [J]. In Vitro Cell Dev Biol,1994,30:496-503.
    [38]Liu J Y., Zhou Y L.. Bovine pituitary extracta essential ingredient for culturing keratinocytes [J]. N Bethune UnivMed Sci,2000,26:17-19.
    [39]Y-C Ng., Berry J M., Butler M.. Optimization of physical Parameters for cell attachment and growth on macroporous microcarriers [J]. Biotech&Bioeng,1996,50:627-635.
    [40]Marthinuss J., Andrade-Gordon P., Seiberg M.. A secreted serine protease can induce apoptosis in Pam212keratinocytes [J]. Radiat Res,1992,132(1):124-125.
    [41]Hans Schultze, Isolation of pancreatin [P].1986, US:4623624.
    [42]范秀娟,张达磊,李桂生.温度及不同浓度乙醇对胰酶活力的影响[J].中国生化药物杂志,2001,22(2):95-96.
    [43]吴晓英,张聚宝,林影等.胰酶制备新工艺研究[J].广东药学院学报,2005,21(1):64-67.
    [44]Hoek S., Weesp H., Method of producing pancreatin [P].1965, US Patent3,223,594
    [45]Kawasak K, smith RS, Hsieh CM, et al. Activation of the phosphatidylinesitol3-kinasel/protein Kinase Akt pathway mediates nitric oxide-induced endothelial cell migration and angioenesis [J]. Mol cell Biol,2003,23:576.
    [46]赵小兰.胰酶制备工艺研究[J].青海医药杂志,2000,30(4):56-57.
    [47]唐爱星,何泽超,郭丽.絮凝法生产胰酶[J].中国生化药物杂志,2005,26(3):166-168.
    [48]郑建仙.功能性食品(Vol.Ⅱ.)[M].北京:中国轻工业出版社,1999,65-79..
    [49]Knorr D.. Nutritioal quality, food processing and biotechnology aspect of chitin&Chitosan [J]. Process Biochemistry,1986,6:90-92.
    [50]Darmadji P., Izumimoto M.. Effect of Chitosan in Meat Preservation [J]. Meat Science,1994,38:243-254.
    [51]张光华,谢曙辉,郭炎等.一类新型壳聚糖改性聚合物絮凝剂的制备与性能[J].西安交通大学学报,2002,36(5):541-544.
    [52]Luda Khait., Ravi K., Birla.. Effect of thyroid hormone on the contractility of self-organized heart muscle [J]. The Society for In Vitro Biology,2008,44:204-213.
    [53]张廷红,万海清.壳聚糖提取动物胰脏中胰酶的工艺研究[J].西南科技大学学报,2005,20(1):72-74.
    [54]何执中,徐丽珊,何执静等.胰脏综合利用[J].中国生化药物杂志,1997,18(6):292-295.
    [55]许浩鸿,余蓉,李晓红等.制备高活力胰酶的安全低污染新工艺[J].华西药学杂志,2005,20(3):245-246.
    [56]Abboudi E I., Beaulieu M., Bellavance F.. Method for producing pancreatin which contains low amounts of residual organic solvent and product thereof [P].1999, US:5861291.
    [57]Mukherjee S., Roy D., Bhattacharya P.. Comparative performance study of poly-thersulfone and polysulfone membranes for trypsin isolation from goat pancreas using affinity ultrafiltration [J]. Separation and Purification Technology,2008,60:345-351.
    [58]何新霞,冯高德,张旭,徐丽珊.胰酶生产工艺研究[J].现代应用药学,1994,11(3):35-36.
    [59]傅渝滨,母昭德,景淑华等.从猪胰脏中提取胰酶的优化工艺探索[J].重庆医科人学学报,1995,20(4):305.
    [60]Arteaga G E., Li-Chan E., Vazquez-Arteaga M C., Nakai S. Systematic experimental designs for product formula optimization[J]. Trends Food Sci Technol,1994,5:243-254.
    [61]高静,邓利,王芳等.响应面法优化脂肪酶催化废油脂合成生物柴油工艺的研究[J].现代化工,2005,25(增刊):224—227.
    [62]Guasch A., Coll M., Aviles F X., Huber R. Three dimensional structure of porcine pancreatic procarboxypeptidase A [J]. J Mol Bio,1992,224:141-157.
    [63]任娇艳,赵谋明,崔春等.基于响应面分析法的草鱼蛋白酶解工艺[J].华南理工大学学报(自然科学版),2006,34(3):95-100.
    [64]何国庆,熊皓平,阮晖等.啤酒花多酚类化合物提取工艺的优化研究[J].农业工程学报,2005,21(4):163—166.
    [65]Plackett R L., Burman J P. The design of optimum multifactorial experiments [J]. Biometrika,1946,33:305-325.
    [66]方开泰,均匀设计与均匀设计表[M],北京:科学出版社,1994:22-55.
    [67]唐启义,唐洁.偏最小二乘回归分析在均匀设计试验建模分析中的应用[J].数理统计与管理,2005,25(5):45-51.
    [68]Castillo-Yanez F J., Pacheco-Aguilar R., Garcia-Carreno F L., Toro M A N., Isolation and characterization of trypsin from pyloric caeca of Monterey sardine Sardinops sagax caerulea[J]. Comp. Biochem. Physiol,2005, B140:91-98.
    [69]Barkia A., Bougatef A., Nasri R., et.al. Trypsin from the viscera of Bogue (Boopsboops):isolation and characterization[J]. Fish Physiol Biochem,2009,8:365-375.
    [70]Fuchise T, Kishimura H, Sekizaki H, et al. Purification and characteristics of trypsins from cold-zone fish, Pacific cod (Gadus macrocephalus) and saffron cod (Eleginus gracilis)[J]. Food Chemi stry,2009,116:611-616.
    [71]Amrutlal K., Petel, Doug olson, et al.. Proteomic analysis of bovine nucleolus [J]. Genomics, Proteomics&Bioinformatics,2010,8(3):9-22.
    [72]姜彬.蛋白质免疫印记分析法实验条件的研究[J].实验技术与管理,2008,25(5):58-60.
    [73]梁为民.凝聚与絮凝[M].北京:冶金工业出版社,1987:1-3.
    [74]Lippert K., Galinski E A.. Enzyme stabilization by ectoine-type compatible solutes: protection against heating, freezing and drying[J]. Appl Microbiol Biotechnol,1992,37:61-65.
    [75]Shikama K., Yamazaki I.. Denaturation of catalase by freezing and thawing. Nature[J],1961,190:83-84.
    [76]Tanhunan A H., Yudistira, Kisdiyani. Freeze drying charaeteristic of medicinal herbs [J]. Drying Technology,2001,19(6):325-331.
    [77]Carapeue A., Henrist M., Rabeeki F.. A study of vaeuum freeze-drying of frozen wet papers[J]. Drying Technology,2001,19(6):1113-1124.
    [78]Alves J., Chumpitaz L., Da Silva L., et al.. Partitioning of whey proteins, bovine serum albumin and porcine insulin in aqueous two-phase sestems [J]. J Chroma-togrB,2000,743:235-239.
    [79]唐启义,冯明光.实用统计分析及其DPS数据处理系统.北京:科学出版社,2002:156-159.
    [80]Kay J., Kassell B.. The autoactivation of trypsinogen [J]. J. Biol. Chem.,1971,246:6661-6665.
    [81]武中会,韩向敏.胆汁酸复合乳化剂对肉鸡生产性能及肠道消化酶活性的影 响.畜牧兽医杂志,2008,27(5):1-4.
    [82]Klomklao S., Benjakul S., Visessanguan W., et al..29KDa Trypsin from the pyloric ceca of Atlantic Bonito (Sarda sanda):Recovery and Characterization[J]. J. Agric. Food Chem,2007,55:4548-4553.
    [83]毕金峰.两种淀粉酶的酶学性质及应用研究[J].农业工程学报,2005,21(2)增刊:238-241.
    [84]张向辉,谭树华,李泰民.肠激酶特点及其基因工程的研究进展[J].药物生物技术,2005,12(5):347-350.
    [85]方安平,叶卫平Origin7.5科技绘图及数据分析[M].北京:机械工业出版社.2006.
    [86]黎春怡,黄卓烈,何平等.异丙醇对猪胰脂肪酶催化动力学和分子光谱的影响[J].化学与生物工程,2007,24(9):46-50.
    [87]郭兆斌,韩玲,刘亮亮等.猪胰脏中胰酶的提取工艺优化研究[J].食品科学,2009,(22):167-172.
    [88]Haard N F.. Sepcialty enzymes from marine organisms [J]. Food Tech,1998,52:64-67.
    [89]Aquist S., Anfinsen C. The isolation and characterization of ribonuclease from sheep pancreas [J]. J Biol Chem1959,234:1112-1117.
    [90]Shahidi F., Janak Kamil Y V A.. Enzymes from fish and aquatie invertebrates and their application in the food industry [J]. Trends Food Sci Tech,2001,12:435-564.
    [91]Mukherjee S., Roy D., Bhattacharya P.. Comparative performance study of polythersulfone and polysulfone membranes for trypsin isolation from goat pancreas using affinity ultrafiltration [J].2008,60:345-351.
    [92]Cao M J., Osatomi K., Suzuki M., et al.. Purification and characterization of two anionic trypsins from the hepatopancreas of carp [J]. Fish Sci,2000,66:1172-1179.
    [93]王贤纯,范春明,唐新科等.牛血清白蛋白酶胰蛋白酶解产物的色谱-质谱联用分析及其三种数据库搜寻鉴定方法的比较[J].中国生物化学与分子生物学报,2004,20(3):393-398.
    [94]谈智,扬丹,鲁伟等.17β-雌二醇抑制内皮素诱导的血管平滑肌细胞增殖作用 [J].中国应用生理学杂志,2001,17(3):251-254.
    [95]赵玉华,杨继虞.人胰岛素固相酶促半合成的研究[J].华西医大学报,1998,29(3):275-277.
    [96]Guyonnet V., Tluscik F., Long P L., et al.. Purification and partial characterization of the pancreatic photeolytic enzymes trypsin, chymotrypsin, and elastase from the chicken [J]. J Chromatogr A,1999,852:217-225.
    [97]Luciana P M., Diana R., Guillermo A.P., et al.. Purification of trypsinogen from bovine pancreas by combining aqueous two-phase partitioning and precipitation with charged flexible chain polymers [J]. Separation and Purification Technology,2009,65:40-45.
    [98]Gisela T., Guillermo A.P., Bibiana B.N., Extraction of trypsin from bovine pancreas by applying polyethyleneglycol/sodium citrate aqueous two-phase systems[J]. Journal of Chromatography B,2009,877:115-120.
    [99]Bradford M M.. A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein dye binding [J]. Anal Biochem.1976,72:248-254.
    [100]Klomklao S., Benjakul S., Visessanguan, W., et al.. Trypsin from the pyloric ceca of blufish(Pomatomus Saltatrix)[J]. Comparative Biochemistry and Physiology,2007,148B:382-389.
    [101]Hummel B C W.. A modified spectrophotometric determination of chymotrypsin, trypsin and thrombin [J]. Candian Journal of Biochemistry and physiology,1959,37:1393-1399.
    [102]Laemmli U K.. Cleavage of structural proteins during the assembly of the head of bacteriophage T4[J], Nature,1970,227:680-685.
    [03]Khantaphant S., Benjakul S.. Comparative study on the proteases from fish pyloric caeca and the use for production of gelatin hydrolysate with antioxidative activity [J]. Comparative Biochemistry and Physiology,2008,151B:410-419.
    [04]Simpson B K., Haard N F.. Characterization of the trypsin fraction from cunner (Tautogolabrus adspersus)[J]. Comp. Biochem. Physiol,1985,80B:475-480.
    [05]Kristjansson M.. Purification and characterization of trypsin from the pyloric caeca of rainbow tront(Oncorhynchus mykiss)[J].J.Agric.Food Chem,1991,39:1738-1742.
    [06]Johnson K D.,Clark A.,Marshall S..A functional comparison of ovine and porcine trypsin[J].Comparative Biochemistry and Physiology Part B,2002,131:423-431.
    [07]Castillo-Yanez F J.,Pacheco-Aguilar R.,Garcia-Carreno F L.,et al..Isolation and characterization of trypsin from pyloric caeca of Monterey sardine Saradinops sagax carulea[J].Comp.Biochem.Physiol,2005,B140:91-98.
    [08]Shi C.,Marshell S N.,&Simpson B K..Purfication and characterization of trypsin from the pyloric caeca ofthe New Zealand hoki fish(Macruronus Novae-zealandlae)[J].Journal of Food Biochemistry,2007,31:772-796.
    [09]Kurtovic I.,Marshall S N.,&Simpson,B K..Isolation and characterization of a trypsin fraction from the pyloric ceca of chinook salmon(Oncorhynchus tshawy-tscha)[J].Comparative Biochemistry and Physiology,2006,143B:432-440.
    [10]Bezerra R S.,Santos J F.,Paiva P M G.,et al..Partial purincation and characterization of a thermostable trypsin from pyloric caeca of tambaqui (Colossoma macropomum)[J].Journal of Food Biochemistry,2001,25:199-210.
    [111]Lemos D.,Ezquena J M.,Gareia-Carreno F L..Protein digestion in Penaeid shrimp:digestive Proteinases,proteinase inhibitprs and feed digestibility[J]. Aquaculture,2000,186:89-105.
    [12]Gareia-Carreno F L.,Dimes L E.,Haard N F.,Substrate-Gel electrophoresis for composition and molecular weight of proteinases or proteinaceous proteinase inhibitors[J].Analytical Biochem,1993,214:65-69.
    [113]Reeck G R.,Walsh K A.,Neurath H..Isolation and characterization of carboxypeptidases A and B from activated pancreatic juice[J].Biochemistry,1971.10:4690-4698.
    [114]Dua R,Gupta K..Mechanistic studies on Carboxypeptidase A from poat pancreas: role of arginine residue at the active site[J].Arch Biochem Biophys,1985,236:479-486.
    [115]David L.,Spector J.,Robert D.,et al..Cells a laboratory manual[M].California: cold spring harbor laboratory press,1998,10-11.
    [16]Bryjak J., Liesiene J., Kolarz B N.. Application and properties of butyl acrylate/pentaerythrite triacrylate copolymers and cellulose-based Granocel as carriers for trypsin immobilization [J]. Colloids Surf B:Biointer faces,2008,61(1):66-74.
    [17]Benjakul S., Morrissey M T.. Protein hydrolysates from Pacific whiting solid wastes [J]. J Agric Food Chem,1997,45:3423-3430.
    [18]Kishimura H., Klomklao S., Benjakul, S., et al.. Characteristics of trypsin from the pyloric cera of walleye pollock(Theragra chalcogramma)[J]. Food chemist-ry,2008,106:194-199.
    [119]Klomklao S., Benjakul S., Visessanguan W., et al..29kDa trypsin from the pyloric ceca of Atlontic binito(Sarda Sarda):Recovery and Characterization[J]. Journal of Agricultural and Food Chemistry,2007,55(11):4548-4553.
    [120]Klomklao S., Benjakul S., Visessanguan W., et al.. Trypsin from the pyloric ceca of blufish(Pomatomus Saltatrix)[J]. Comparative Biochemistry and Physiology,2006,148B:382-389.
    [21]Hjelmeland, K.,&Raa, J. Characteristics of two trypsin type isozymes isolated from the Arctic fish capelin (Mallotus uillosus)[J]. Comparative Biochemistry and Physiology B,1982.71,557-562.
    [22]Osnes K K, Mohr V. On the Purification and characterization of three anionie, serine-type peptide hydrolases from Antarctie krill, euphauia superba [J].Comp Biochem Physiol,1985,82B:607-619.
    [23]Martinez A., Olsen R., Serra J L.. Purification and characterization of two trypsin-like enzymes from the digestive tract of anchovy, Engraulis encrasicholus[J].Comp. Biochem. Physiol,1988, B79:613-622.
    [24]Damodaran S.. Amino acids, peptides, and protein. In:Fennema, O.R.(Ed)[J], Food Chemistry Quality. Marcel Dekker, New York,1996, pp:322-429.
    [25]Benjakul S., Visessanguan W., Leelapongwattana K.. Purification and char-acterization of heat-stable alkaline proteinase from bigeye snapper (Priacanthus macracanthus) muscle [J]. Comp. Biochem. Physiol,2003, B124:107-127.
    [26]Buck F F., Vithayathil A J., Bier M., et al.. Studies on trypsins from beef, pig and sheep pancreas [J]. Arch. Biochem. Biophys,1962,97:414-417.
    [127]Kishimura H., Hayashi K., Miyashita Y., et al.. Characteristics of trypsins from the viscera of true sardine (Sardinops melanostictus) and the pyloric ceca of arabesque greenling(Pleuroprammus azonuts)[J]. Food Chemistry,2006,97:65-70.
    [28]Kishimura H., Tokuda Y., Yabe M., et al.. Trypsin from the pyloric ceca of jacpever(Sebastes schlegeli) and elkorn sculpin (Alcichthys alcicornis):Isolation and characterization. Food Chemistry,2007,100,1490-1495.
    [29]De-Vecchi S D., Coppes Z.. Marine fish digestive proteases:relevance to food industry and South-West Atlantic region-a review [J]. J Food Biochem,1996,20:193-214.
    [130]Delaage M., Abita J P.&Lazdunski M.. Physiochemical properties of bovine chymotrypsinogen A [J]. Eur:J. Biochem,1968,5:285-293.
    [31]Kristjansson M.. Purification and characterization of trypsin from the pyloric caeca of rainbow trout(Oncorhynchus mykiss)[J]. J Agric.Food Chem,1991,39:1738-1742.
    [132]Kloklao S., Benjakul S., Visessanguan W., et al.. Purification and characterization of trypsins from the spleen of skipjack tuna (Katsuwonuts pelamis)[J]. Food Chem,2006, in press.
    [33]Kloklao S., Benjakul S., Visessanguan W., et al.. Trypsins from yellowfin tuna (Thunnus albacores) spleen:Purification and characterization [J]. Comp. Biochem. Physiol., Part B:Biochem. Mol. Biol,2006,144:47-56.
    [34]Cleland W W.. The statistical analysis of enzyme kinetic data. Adv. Enzymol. Relat [J]. Areas Mol. Biol,1967,29:1-32.
    [35]Kim H R., Meyers S P., Pyeum J H., et al.. Enzymatic properies of anionic trypsins from the hepatopancreas of crayfish, Procambarus clarkia [J], Comp. Biochem. Physiol., part B:Biochem. Mol. Biol.1994,107:197-203.
    [36]Kunitz M.. Isolation from beef pancreas of crystalline trypsinogen, trypsin, a trypsin inhibitor and an inhibitor-trypsin compound [J]. J. Gen. Physiol.1947,30:291-300.
    [137]Travis J., Liener I E., The crystallization and partial characterization of porcine trypsin [J]. J. Biol. Chem,1965,240:1962-1970.
    [38]Travis J., Studies on the active sites of sheep trypsin [J]. Biochem. Biophys. Res. Co.1968,30:730-737.
    [39]Buck F F., Vithayathil A J., Bier M., et al.. On the mechanism of enzyme action. LⅩⅩⅢ. Studies on trypsin from beef, sheep and pig pancreas [J]. Arch. Biochem. Biophys.1962,97:417-427.
    [40]Das S K., Sinha N K., Goat trypsin:purification, properties&amino acid composition [J]. Indian:J. Biochem.Bio,1972,9:287-296.
    [41]Stevenson K., Voordouw J.. Characterzation of trypsin and elastase from the moose(Alces alces). I. Amino acide composition and specificity towards polypeptides [J]. Biochem Biophys, Acta.1975,386:324-331.
    [42]Simpson B.K.. Digestive proteinases from marine animals. In:Haard, N.M., Simpson, B.K.(Eds.), Seafood enzymes:utilization and influence on postharvest seafood quality [J]. Marcel Dekker, New York,2000, pp.531-540.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700