用户名: 密码: 验证码:
超高速电液比例阀的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电液比例阀是电液比例控制技术的核心元件,它以传统的工业用液压控制阀为基础,采用模拟式电气—机械转换装置,将电气信号转换为位移信号,按输入电气信号指令,连续成比例地控制液压系统的液流压力、流量或方向等参数。电液比例阀与伺服控制系统中的电液伺服阀相比,虽然其性能在某些方面还有一定的差距。但是,其显著的优点是抗污染能力强,减少了由于污染而造成的工作故障,提高了液压系统的工作稳定性和可靠性,因此更适合于工业过程。另一方面,比例阀的成本比伺服阀低,而且不包含敏感和精密的部件,更容易操作和保养,已在许多液压控制场合获得广泛的应用。然而,传统的电液比例阀是以比例电磁铁作为驱动装置的电—液信号转换元件,由于其固有特性的限制,导致电液比例阀无论是响应时间还是响应速度都不是很快。响应速度较快的,流量却比较小。
     为此,本文提出超高速电液比例阀。超高速电液比例阀能实现液压控制系统液流方向和流量的控制,满足电液比例控制系统高速、高精度、大流量、低成本和抗污染的综合要求。超高速电液比例阀采用动圈式电—机械转换器作为驱动装置的电—机械转换元件,控制性能很好,某些性能指标达到甚至超过了电液伺服阀。
     首先,针对常规动圈式电—机械转换器在电磁力、响应时间和响应速度等性能上的不足,从其核心部分——永磁体结构入手,对比单个永磁体不同的磁化技术和多个永磁体不同的磁化阵列结构,提出了一种新颖永磁体沿外磁场磁力线方向磁化、8片瓦型有气隙Halbach磁化阵列型动圈式电—机械转换器。通过对设计的动圈式电—机械转换器静态磁场、参数化磁场、瞬态磁场、温度场、涡流磁场、功率损耗和趋肤效应等的分析,表明该动圈式电—机转换器具有良好的动静态性能,无论电磁力,还是响应时间和响应速度都比常规结构有较大的提高。
     接着,从超高速电液比例阀的液压部分着手,根据其结构和原理,并结合功率键合图法和CFD计算,分析了超高速电液比例直动式先导阀、叠加式单向节流阀和主控阀的静态和动态特性,得到超高速电液比例阀高频和快速响应的机理。
     然后,针对常规电液比例阀建模的局限性,根据包含各种非线性特征的孔流量方程,为超高速电液比例阀模型建立统一的非线性数学方程。获得关于阀芯几何属性和物理模型参数对通过比例阀端口流量的关系式,得到能分析正遮盖、负遮盖和零遮盖比例阀的流量方程,此时流量被表达为关于阀芯遮盖参数和其他常规参数的连续非线性函数。同时,对超高速电液比例阀统一模型的非量纲分析表明,模型的精确性独立于模型参数之外,统一模型的误差仅依赖于液压阻尼系数。
     为了确保超高速电液比例阀的性能可靠,必须监测比例阀的临界参数,以确定故障是否出现。但是,在比例阀运行过程中,直接测量某些参数将会是非常困难的。本文提出三种参数估计方法,一般最小二乘法、极大似然估计法和模糊RBF网络法,用来估算超高速电液比例直动式先导阀的弹簧刚度。估计结果与实际结果相差不大,表明这三种方法是可行的。
     最后,通过对超高速电液比例直动式先导阀的实验研究,可知实验结果与仿真结果基本吻合,表明所设计的电液比例阀具有高频和快速响应特性,能较好地满足高速电液比例控制技术的要求。
The electro-hydraulic proportional valves, based on the conventional industry hydraulic control valves, are key components of electro-hydraulic proportional control techniques. Using analog electro-mechanical conversion devices, they can convert electric signals into displacement signals, and control the parameters such as pressure, flow and direction of hydraulic systems continuously and proportionally according to the electronic input reference signals. The electro-hydraulic proportional valves offer prominent advantages of strong anti-contamination abilities compared to electro-hydraulic servovalves of servo control systems, in spite of certain poor characteristics in some perspectives. They are more suitable for industrial environments because they are less prone to malfunction due to fluid contamination and can improve the stability and reliability of hydraulic systems. In addition, proportional valves are much less expensive, since proportional valves do not contain sensitive, precision components, they are easier to handle and maintain, and are becoming increaingly popular in fluid power control applications. However, the conventional electro-hydraulic proportional valves are the electro-hydraulic signals conversion components by way of the proportional solenoid which offers as the driving device. Due to the limitation of proportional valves' natural characteristics, the response time and response speed of electro-hydraulic proportional valves are not very swift, the response speed is slightly faster while the flow is smaller.
     Towards this end, in this paper, an ultra-high-speed electro-hydraulic proportional valve is proposed, which can control the flow and direction of hydraulic control systems, and can satisfy the synthetical requirements of high response, high accuracy, high flow, low cost and anti-contamination characteristics of electro-hydraulic proportional control systems. The moving coil electromechanical converter is used as the electro-mechanical conversion component of the driving device for an ultra-high-speed electro-hydraulic proportional valve. Ultra-high-speed electro-hydraulic proportional valve enjoys advantages of control performance, and some performance indexes are achieved and even exceeded those of electro-hydraulic servovalve.
     Above all, in order to improve the characteristics of conventional moving coil electro-mechanical converter, such as weak points on electro-magnetic force, response time, response speed, studied from permanent magnet structure that is key component of moving coil electro-mechanical converter, different magnetization techniques of single permanent magnet and different magnetization array structures of multiple permanent magnets are compared in this paper. A novel moving coil electro-mechanical converter using eight-pieces tegular Halbach magnet array with air gap magnetized along the external field force lines is proposed as well. The analyses on magnetostatic field, parametric field, transient field, thermal field, eddy current field, power loss and shin effect of moving coil electro-mechanical converter demonstrate that the redesigned moving coil electro-mechanical converter possesses the good dynamic and static performance, electro-magnetic force, the response time and response speed are improved enormously than those of conventional structures.
     Subsequently, this paper studies from the hydraulic parts of electro-hydraulic proportional valve, and analyzes the dynamic and static characteristics of electro-hydraulic proportional direct operated pilot valve, stacked unidirectional throttle valve and main control valve in terms of the structure and principle, with the combination of power bond graph and computational fluid dynamics. The mechanism of high frequency and rapid response is put forward as well.
     Afterwards, aiming at overcoming the limitation of the generic electro-hydraulic proportional valves modeling, the paper first develops an orifice flow equation that involves various nonlinear effects and then proposes the unified nonlinear equations for an ultra-high-speed electro-hydraulic proportional valve model. These equations relate the spool geometric properties and physical model parameters to the flow rate through the proportional valve ports. The development focuses on obtaining the flow rate equations applicable to overlapped, underlapped and critical center proportional valves. Here, the flow rates are expressed as a continuous but nonlinear function of lapping parameters, as well as other conventional parameters. Meanwhile, a non-dimensional analysis of the unified model for an ultra-high-speed electro-hydraulic proportional valve confirms that the accuracy of the model is independent of the choice of model parameters, unified model errors depend on the value of the hydraulic damping coefficient alone.
     To ensure reliable performance of ultra-high-speed electro-hydraulic proportional valves, it is important to be able to monitor certain critical parameters of proportional valves in order to determine whether a fault is occurring. However, direct measurement of these parameters during proportional valves operation may be exceedingly difficult. In this paper, three well-known parameter estimation techniques, the ordinary least squares, the maximum likelihood and fuzzy RBF neural network, are used to estimate the spring constant of an ultra-high-speed electro-hydraulic proportional direct operated pilot valve. The results agree well with the real values, providing a promising indication of their potential.
     Eventually, the experimental investigations of an ultra-high-speed electro-hydraulic proportional direct operated pilot valve present that the experimental results are fairly good agreement with the simulation results. The results show that the developed electro-hydraulic proportional valve offers extremely high frequency and rapid response characteristics, and can satisfy the requirements of high speed electro-hydraulic proportional control techniques.
引文
[1]柯坚。现代水压驱动技术[M].成都:西南交通大学出版社,2002.
    [2]杨尔庄,李晓亚,孙庆军等.比例/伺服阀使机器更聪明[J].现代制造,2006(14):26-30.
    [3]Russ.Henke.P.E.Fluid power for 90s:state of the art,trends and developments[C].Hangzhou,China:2nd ICFP,1989:235-240.
    [4]路甬祥,胡大统.电液比例控制技术[M].北京:机械工业出版社,1988.
    [5]Bora Eryilmaz.Improved nonlinear modeling and control of electro hydraulic systems[D].Boston.Massachusetts:Northeastern University,2000:12-40.
    [6]B.Slusarek,I.Dudzikowski.Application of permanent magnets made from NdFeB powder and from mixtures of powders in DC motors[J].Journal of Magnetism and Magnetic Materials,2002,239:597-599.
    [7]Maxime Sadre.Electromechanical converters associated to wind turbines and their control[J].Solar Energy,1997,6(2):119-125.
    [8]Bin Yao,Li Xu.Adaptive robust motion control of linear motors for precision manufacturing[J].Mechatronics,2002,12:595-616.
    [9]陈惠民。电液比例元件发展概况[J].液压与气动,1984(1):8-10.
    [10]W.Backe.Grundlagen der olhydraullk umdruok 2ur vorlesung[C].Aachen,West Germeny:RWTH,1979.4.
    [11]Von Jonaohin,Heiser.Proportional ventile mit lagegereltern magnetsellglied[R].Bosch Techninische Berichte,1977.1.
    [12]广州机床研究所液压室.国外电液比例阀的概况[J].机床与液压,1975(2):64-76.
    [13]Lu Yong-Xiang.Entwicklung vorgestenerter proportional ventile mit 2-weg-einbauventile als stellglied und mit gerateinterner ruokfuhrung[D].Aachen:Aachen TH,1981.
    [14]Lu Yong-Xiang.Hydraulisches stetigventile:West Germany,DE3032411A1[P].1983.
    [15]路甬祥.新原理比例溢流阀基型的开发[J].浙江大学学报,1985,18(1):32-43.
    [16]Yong-Xiang Lu.A new approach to improving performances of proportional pressure valve[C].Tokyo:Int Sym on 1st FCM,1985:18-22.
    [17]Kai-yuan Yu.Development and research of a pilot proportional pressure reducing valve with new concept[C].Binmingham,UK:8th Int Sym on Fluid Power,1988:19-21.
    [18]Zimmerman H.Statischen and dynamischen verhaltens vorgestenerte druckminderventile[J].International Journal of Fluid Power,1984,29(10):622-629.
    [19]W.Baoke.Umdruck 2ur vorlesung stenerung und shaltungstechnik Ⅱ[R].IHP,RWIH,Aachen,2 Anflage 1985.
    [20]F.zehner.Direkte druckmessung vorbessert statischen and dynamischen verhaltens vorgestenerte druckventile[J].International Journal of Fluid Power,1988,32(6):442-446.
    [21]伊藤.比例电磁式制御弁の複合化[J].油压技术,1986,11:20-28.
    [22]#12
    [23]#12
    [24]#12
    [25]Quan Long.Development and research on electric feedback three way proportional pressure reducing valve[C].Hangzhou,China:2nd Int Conf on ICFP,1989:132-136.
    [26]N.schmidt.Senseren fur druck and temperatur[J].International Journal of Fluid Power,1989,132(9):626-632
    [27]骆涵秀.数字式电液控制系统和元件[J].机床与液压,1986(3):4-11.
    [28]R.Robinson.Digital Control of Electrohydraulic Valve[J].Design Engineer- ing,1983(6):127-131.
    [29]川崎忠幸.高速电磁弁[J].油圧と空気圧,1985,16(1):12-18.
    [30]康天增.锥阀式数字压力阀:中国,85102790[P].1986.
    [31]长谷川.电磁比例制御弁の特性と応用[J].油压技术,1985,124(4):19-26.
    [32]山本和夫.比例电磁式制御弁[J].油压技术,1985,124(4):27-32.
    [33]Lu Yong-Xiang.Development and research of new type three way pilot proportional pressure reducing valve[C].Tokyo:1st JHPS Int Sym on Fluid Power,1989:393-400.
    [34]H.Zimmermann.Untersuchung des statischen und dynamischen verhaltens Vorgesteuerter Druckminderventil[D].Aachen:Aachen TH,1984.
    [35]F.Zehner.Vergesteuerte druckventile mit direkter hydraulisch mechanischer und elektrischer Druckmessung[D].Aachen:Aachen TH,1987.
    [36]郁凯元.节流调节式电液压力控制器件性能优化研究[D].杭州:浙江大学,1988.4.
    [37]Wu Liang-bao.A computer aided analysis of the dynamic characteristics of proportional pressure valve[C].Hangzhou,China:1st ICFP,1985:1347-1355.
    [38]田树军.Y型先导溢流阀动态特性的数字模拟与试验研究[R].大连:大连工学院液压教研室,1981.12.
    [39]K.Dasgupta,J.Watton.Dynamic analysis of proportional solenoid controlled piloted relief valve by bondgraph[J].Simulation Modelling Practice and Theory,2005,13:21-38.
    [40]Liu Nenghong.Theoretical analysis and experimental research of static and dynamic performance of oartridge relief valve[C].Hangzhou,China:2nd ICFP,1989:183-188.
    [41]S.Manco.Pilot operated pressure reducing valve computer simulation vs experimental analysis[C].Hangzhou,China:2nd ICFP,1989:520-525.
    [42]郁凯元.电液比例溢流阀特性的计算机仿真及参数优化研究[J]。计算机仿真.1987(3):17-21.
    [43]R.M.Trudzinski.Einfluβ der betriebsgroβer auf die stromuberhohung vor 2-wege-stromregeventile[J].International Journal of Fluid Power,1980,124(10):765-768.
    [44]曾祥荣.稳态液动力补偿形单级溢流阀及其试验研究[J]。机床与液压.1984(6):12-19.
    [45]李松年.滑阀稳态液动力补偿新技术及应用[J].西安交通大学学报,1986,120(5):63-70。
    [46]F.Weigarten.Aufbau hydraulischer zeitglieder und ihr einstz im signalzweig hydranlish mechanischer regelungen[D].Aachen:Aachen TH,1983.
    [47]D.Avramovic.Storverhalter eins druckbegrenzungsventile mit nachlaufsteuerung[M].
    ?Aachen:S-AFK,Band 1,1982:325-341.
    
    [48]季秀。应用状态反馈改善电液比例阀的动态性能[J].机床与液压,1989(4):17-22.
    [49]Lu Yong-Xiang.Hydraulisches stetigventile:West Germany,DE3620195A1[P].1986.
    [50]黄勇.新型电液比例阀的设计及其控制方法的研究[D].长沙:湖南大学,2007.9.
    [51]林峰,刘影,陈漫.电液比例阀在车辆换档离合器缓冲控制中的应用[J].兵工学报,2006,27(5):784-787.
    [52]权龙.新型电液比例阀的研究[D].西安:西安交通大学,1993.4。
    [53]G.Scheffel.Ventile der 2 generation stetig verstellbar 2-weg-einbauventile[J].International Journal of Fluid Power,1984,129(10):604-608.
    [54]Wu Gen-mao,Research on static and dynamic performance of 2 way proportional throttle valve with displacement force feedback[C].Hangzhou,China:1st ICFP,1985:273-290.
    [55]周洪,路甬祥.采用不同流量反馈方式的二通插装型电液比例流量阀的研究[J].流体控制工程,1985(3):1-10.
    [56]P.Wu.The mathematical analysis and experiments of dynamitic characteristics a poppet valve with series restriction chockes[J].JSME,1987,153(493):2824-2810.
    [57]P.Wu.Proposition of new type logic valve[J].JSME,1988,154(498):404-410.
    [58]增田建二.油圧にゎる補償[J]。油压と空気圧,1989,19(2):54-59.
    [59]付周东,路甬祥.耐高动态流量计的研究[J].液压与气动,1986.2:2-9.
    [60]W.Backe.Neues prinzip fur Volumenstromregelunger mit 2-weg-einbauventile oder verstellpumps als stellglied[J].International Journal of Fluid Power,1982,126(9):604-610.
    [61]路甬祥.流量控制的新进展[J].液压与气动,1982(2):23-29.
    [62]Y.Oda.Betriebsverhalter von 2-wege-stromregeventile under schiedlicher bauprinzipion[J].International Journal of Fluid Power,1985,129(8):612-616.
    [63]B.R Andersson.A proportional controled seat valve[D].Sweden:Linko ping university,1984.
    [64]B.R Andersson.Entwicklung eins lastdruck kompensierter load sensing wegeventiles mit stetig wirkerden 2-weg-einbauventile[C].Aachen,West Germeny:6-AFK,RWIH,1984.
    [65]Yong-Xiang Lu.Betriebeverhalter vorgesteuerter 2-wege-stromregeventile under schiedlicher Bauform[J].International Journal of Fluid Power,1981,125(9):703-708.
    [66]王庆丰.新型压力补偿器的电反馈比例方向流量阀研究[D].杭州:浙江大学,1988.
    [67]Greg Schoenau,Rich Burton,Alireza Ansarian.Parameter estimation in a solenoid proportional valve using OLS and MLH techniques[EB/OL].(2003)[2007-04-18].http://fluid.power.net/techbriefs/hangzhou.html.
    [68]汪国胜,凌云,樊庆华.电液比例阀的设计与实验研究[J].流体力学实验与测量,2004,18(1):48-52。
    [69]冯靖,彭光正.先导式比例流量阀控制系统的建模和仿真[J].机床与液压,2007,35(1):136-138.
    [70]李强,徐宝云,王文瑞.电磁比例节流阀稳态特性仿真分析[J].计算机仿真,2005,22(10):232-234.
    [71]胡均平,吴伟辉,朱桂华。压差-电气-面积补偿型高压大流量电液比例调速阀的研制[J].机械传动,2004,28(2):50-52.
    [72]吴伟辉.BT25高压大流量电液比例调速阀的设计与研究[D].长沙:小南大学,2004.9
    [73]High performance CETOP5 four-way proportional flow control valve offers servo-performance at proportional price[R],Canda:Microhydraulic Inc,Information,2000:28-30.
    [74]电子技术与液压技术[EB/OL].(2007)[2008-03-18].http://www.gdydt.com/bbs/dispbbs.asp.
    [75]郝鸿雁,计青山,刘国平.高性能电液比例阀的现场总线接口[J].液压与气动,2006,(6):66-68.
    [76]李勇,于韶辉.电液比例阀的双闭环控制技术[J].微特电机,2005,(6):35-36.
    [77]黄官升,丁华荣,杨青.高速响应电磁阀的研究[J].兵工学报,1998,19(2):189-192.
    [78]黄官升,吴纬,丁华荣.高速响应电磁阀可靠性试验研究[J].北京理工大学学报,1998,18(3):189-192。
    [79]Aso J,Haruguchi T,Horinouchi S.High response actuator with tilt function for 1217 mm slim optical disc drives[C].Hawaii,USA:International Symposium on Optical Memory and Optical Data Storage Topical Meeting,2002:326-328.
    [80]Eizo Urata.Influence of fringing on servovalve torque motor characteristic[C].Nara,Japan:Proceeding of the Second JHPS International Symposium on Fluid Power,2002:769-774.
    [81]Delnoa F,Procopio R,Rossi M.Evaluation of forces in magnetic materials by means of energy and co-energy methods[J].The European Physical Journal B-Condensed,1999,25(1):31-38.
    [82]Deng K,Dewa A.S,Ritter D.C.Characterization of gear pumps fabricated by LIGA[J].Microsystem Technologies,1998,(4):163-167.
    [83]方平,丁凡,李其朋.高频动铁式电-机械转换器的研究[J].中国机械工程,2005,16(23):2089-2094.
    [84]S.Zhao,K.K Tan.Adaptive feedforward compensation of force ripples in linear motors[J].Control Engineering Practice,2005,13:1081-1092.
    [85]George Abdou,William Tereshkovich.Performance evaluation of a permanent magnet brushless DC linear drive for high speed machining using finite element analysis[J].Finite Elements in Analysis and Design,2000,35:169-188.
    [86]#12
    [87]Maxime Sadre,Electromechanical converters associated to wind turbines and their control[J].Solar Energy,1997,6(2):119-125.
    [88]Murrenhoff H.液压控制技术发展趋势[J].吴根茂译,工程设计,1997,3:20-29.
    [89]Lindler J.E,Anderson E.H.Piezoelectric direct drive servo valve.Industrial and Commercial Applications of Smart Structures Technologies[M].San Diego:SPIE Paper,2002:46-53.
    [90]秦剑,于兰英,王国志等.超高速比例电磁铁控制技术的研究[J].机床与液压,2003,2:31-32.
    [91]于振燕,杨逢瑜,韩清娟.动圈式力马达的优化设计[J].机床与液压,2004.16:37-38。
    [92]李其朋,方平,丁凡.新型双向比例电-机械转换器的研制[J].液压与气动,2005,12:62-63.
    [93]张弓,于兰英,柯坚。高频动圈式电-机械转换器[J].电机与控制学报,2007,11(3):298-302.
    [94]张弓,于兰英,柯坚等.高频动圈式电-机械转换器的优化设计[J].微特电机,2007,35(11):1-4.
    [95]张弓,于兰英,柯坚.新颖高频动圈式永磁直线电机的研究[J].机械科学与技术,2008,27(4):456-461.
    [96]钱庆镳。动圈式永磁直线电机的磁场和电磁力[J].微特电机,2000,6:20-22.
    [97]谭松涛,于兰英,王国志等.超高速比例电磁铁的静态研究[J].液压与气动,2007,7:49-51.
    [98]J.T(?)pfer,V.Christoph.Multi-pole magnetization of NdFeB sintered magnets and thick films for magnetic micro actuators[J].Sensors and Actuators,2004,113:257-263.
    [99]David Brown,Bao-Min Ma,ZhongMin Chen.Developments in the processing and properties of NdFeb-type permanent magnets[J].Journal of Magnetism and Magnetic Materials,2002,248:432-440.
    [100]B.M Ma,J.W Herchenroeder,B.Smith.Recent development in bonded NdFeB magnets[J].Journal of Magnetism and Magnetic Materials,2002,239:418-423.
    [101]J.D Jackson.Classical Electrodynamics[M].2nd Edition.Wiley,New York,1975:185.
    [102]Arvi Kruusing.Optimizing magnetization orientation of permanent magnets for maximal gradient force[J].Journal of Magnetism and Magnetic Materials,2001,234:550-551.
    [103]Halbach K.Design of permanent multipole magnets with oriented rare earth cobalt material[J].Nucllnstrum Meth.,1980,169(1 ):1-10.
    [104]Moon G.Lee,Sung Q.Lee,Dae-Gab Gweon.Analysis of Halbach magnet array and its application to linear motor[J].Mechatronics,2004,14:115-128.
    [105]B.P Hills,K.M Wright,D.G Gillies.A low-field,low-cost Halbach magnet array for open-access NMR[J].Journal of Magnetic Resonance,2005,175:336-339.
    [106]刘国强,赵凌志,蒋继娅.Ansoft工程电磁场有限元分析[M].北京:电子工业出版社,2005.
    [107]金建铭(美).电磁场有限元方法[M].西安:西安电子科技大学出版社,1998.
    [108]P.S Zung,M.H Perng.Nonlinear dynamic model of a two-stage pressure relief valve for designers[J].ASME,Dyn.Syst.,Meas.Controls,2002,124:62-66.
    [109]R.Maiti,R.Saha,J.Watton.The static and dynamic characteristics of a pressure relief valve with a proportional solenoid-controlled pilot stage[J].IMechE,Part Ⅰ,J.Syst.Control Eng,2002,216:143-156.
    [110]Y.C Chin.Static and dynamic characteristics of two stage pilot relief valve[J].ASME,Dyn.Syst.,Meas.Controls,1991,113:280-288.
    [111]K.Dasgupta,R.Karmakar.Dynamic analysis of a pilot operated pressure relief valve[J].Simulation Modelling Practice and Theory,2002,10:35-49.
    [112]Borutzky W,Barnard B,Thoma J.Describing bond graph models of hydraulic components in modelica[J].Mathematics and Computers in Simulation,2000,53:381-387.
    [113]卢贵主,胡国清.一种改进了的液压系统动态特性分析方法[J].厦门大学学报:自然科学版,2001,40(4):878-881。
    [114]John H.Lumkes,Jr.DESIGN.Simulation and validation of a bond graph model and controller to switch betweed pumb and motor operation using four on/off valves with a hydraulic axial piston pump/motor[C].Chicago,Illinois:Proceedings of the American Control Conference,2000.
    [115]Borutzky W,Barnard B,Thoma J.An orifice flow model for laminar and turbulent conditions[J].Simulation Modelling Practice and Theory,2002,10:141-152.
    [116]H.M Paynter.Analysis and design of engineering systems[M],Cambridge,Mass:MIT Press.,1961.
    [117]D.C Karnopp,R.C Rosenberg.Analysis and simulation of multiport systems-the bond graph approach to physical system dynamics[M].Cambridge,Mass:MIT Press.,1968.
    [118]R.C Rosenberg,D.C Karnopp,Introduction to physical system dynamics[M].New York:McGraw Hill,1983.
    [119]D.C Karnopp,R.C Rosenburg.System dynamics:a unified approach[M].Wiley Intersciences,1975.
    [120]D.C卡诺普,R.C罗森堡(著),胡大纺,邓延光(译)。系统动力学-应用键合图方法[M].北京:机械工业出版社,1975.
    [121]潘亚东.键合图概论-一种系统动力学方法.重庆:重庆大学出版社,1991.
    [122]M.Delgado,C.Brie,A survey of bond graph,Theory applications and programs[J].Journal of the Franklin for Institute,1991,328(6):565-586.
    [123]J.L Top.Conceptual modeling of physical systems[D].Netherlands:University of Twente,1993.
    [124]Borutzky W.Bond graph modeling from an object oriented modeling point of view[J].Simulation Practice and Theory,1999,7:439-461.
    [125]W.Borutzky.Bond graphs-a methodology for modeling ultidisciplinary dynamic[M].Erlangen,San Diego:SCS Publishing House,2004.
    [126]许益民.电液比例控制系统分析与设计[M].北京:机械工业出版社,2005.
    [127]吴根茂,邱敏秀,王庆丰等.新编实用电液比例技术[M].杭州:浙江大学出版社,2006.
    [128]宋鸿尧,丁忠尧.液压阀设计与计算[M].北京:机械工业出版社,1982
    [129]J.E Bobrow,K.Lum.Adaptive high bandwidth control of a hydraulic actuator[C].Seattle,USA:Proceedings of the 1995 American Control Conference,1995:71-75.
    [130]G.A Sohl,J.E Bobrow.Experiments and simulations on the nonlinear control of a hydraulic servosystem[C].Albuquerque,USA:Proceedings of the 1997 American Control Conference,1997:631-635.
    [131]A.Alleyne,J.K Hedrick.Nonlinear adaptive control of active suspensions[J].IEEE Trans.Control Syst.Technol.,1995,3(1):94-101.
    [132]G.W Linden,P.Valk.Digital control of an experimental hydraulic manipulator[C].Baltimore,USA:Proceedings of the 1994 American Control Conference,1994:2455-2459.
    [133]R.B Walters.Hydraulic and electro-hydraulic control systems[M].New York:Elsevier Science,1991.
    [134]H.M Handroos,M.J.Vilenius.Flexible semi-emprical models for hydraulic flow control valves[J].ASME J.Mech.Des.1991,113:232-238.
    [135]汪世益,岑豫皖.步进式输送系统仿真分析及减小压力冲击的措施[J].系统仿真学报,2003,15(8):1173-1174.
    [136]N.D Vanghan,J.B Gamble.The modeling and simulation of a proportional valve[J].ASME Journal of Dynamic Systems,Measurement and Control,1996,118:120-125.
    [137]D.Wang,R.Dolid,M.Donath,et al.Development and verification of two-stage flow control servovalve model[C].San Francisco,USA:Proceedings of the ASME Fluid Power Systems and Technology Division,1995,2:121-129.
    [138]H.Wright,A.Alleyne,R.Liu.On the stability and performance of twostage hydraulic servovalves[J].Journal of Fluids Engineering,Transactions of the ASME,1997,4:215-222.
    [139]H.E Merritt.Hydraulic control systems[M].New York:Wiley,1967.
    [140]A.Alleyne,J.K Hedrick.Nonlinear adaptive control of active suspensions[J].IEEE Trans.Control Syst.Technol.1995,3(1):94-101.
    [141]G.A Sohl,J.E Bobrow.Experiments and simulations on the nonlinear control of a hydraulic servosystem[C].Albuquerque,USA:Proceedings of the 1997 American Control Conference,1997:631-635.
    [142]G.Tao,P.V Kokotovic.Adaptive control of plants with unknown deadzones[J].IEEE Trans.Autom.Control,1994,39(1):59-68.
    [143]D.A Recker.Adaptive control of systems containing piecewise linear nonlinearities[D],Illinois:University of Illinois,Urbana-Champaign,1993.
    [144]R.Amirante,A.Innone,L.A Catalano.Boosted PWM open loop control of hydraulic proportional valves[J].Energy Conversion & Management,2008,2:1-12.
    [145]M.K Zavarehi.On-line condition monitoring and fault diagnosis in hydraulic system components parameter estimation and pattern classification[D],Vancouver,Canada:University of British Columbia,1997.
    [146]T.Ramden.On condition monitoring of fluid power pumps and systems[D].Linkoping,Sweden:Linkoping University,1995.
    [147]Y.F Lu,R.T Burton,G.J Schoenau.A neural network based incipient fault detection system for an axial piston hydraulic pump[C].Las Vegas,USA:Proceedings of 1995 IASTED International Conference,1995,95:147-150.
    [148]张弓,邱容,张永相.基于SIMULINK的汽车发动机怠速模糊神经网络控制[J].小型内燃机与摩托车,2005,34(5):1-5.
    [149]Plackett R.L.The discovery of the method of least squares[J].Biometrika,1972,(59):239-251.
    [150]贾小勇,徐传胜,白欣.最小二乘法的创立及其思想方法[J].西北大学学报(自然科学版),2006,36(3):507-511.
    [151]Shernin O.B.Gauss and the theory of error[J].Archive for History of Exact Science.1979,(20):21-72.
    [152]Waterhouse W.C.Gauss's first argument for least squares[J].Archive for History of Exact Science,1991,(41 ):41-52.
    [153]Lancaster H.O.Encyclopedia of statistical science[M].New York:Wiley,1988.
    [154]A.Bjorck.Numerical methods for least squares problems[M].Philadelphia:SIAM,1996:340-360.
    [155]毕庆涛,姜国萍,丁树云.含水量对红粘土抗剪强度的影响[J].地球与环境,2005,33(3):144-147.
    [156]张雪峰.最小二乘与最小二乘支撑向量机[D].成都:电子科技大学,2007.5.
    [157]Beck J.V,Arnold K.J.Parameter estimation in engineering and science[M].New York:Wiley,1977.
    [158]R.R Bahadur.Example of inconsistency of maximum likelihood estimates[J].Sankhya,1958,20:207-210.
    [159]L.Le Cam,Maximum likelihood,an introduction[J].International Statistical Review,1990,58(2):153-171.
    [160]J.O Berger,R.L Wolpert.The likelihood principle[R].Hayward,California: Institute of Math.Statist.,1984.
    [161]戴树森.可靠性试验及其统计分析(下册)[M].北京:国防工业出版社,1984.
    [162]Howard Andrew,Mataric Maja J.An analysis of the maximum likelihood estimator for localization problems[C].Boston,USA:Proceedings of the 2nd IEEE/Create Net International Workshop on Broadband Advanced Sensor Networks,2005:982-990.
    [163]翟国富,王淑娟,姜守旭.电器可靠性失效分析中极大似然估计方法的研究[J]。2001,21(3):90-92.
    [164]Wang R,Fei H.Uniqueness of the Maximum likelihood estimate of the weibull distribution tampered failure rate model[J].Commun.StatistTheory Meth.,2003,32(12):365-374.
    [165]白鹏.生长曲线模型中回归系数阵的极大似然估计的精确分布,应用数学学报,2007,30(1):35-38.
    [166]Kosko B.Neural network and fuzzy system:A dynamical systems approach to machine intelligence[M].NJ:Prentice Hall Inc,1992.
    [167]Takagi H,Hayashi I.NN-driven fuzzy reasoning[J],Int.J.of Approximate Reasoning,1991,5(3):191-212.
    [168]鲍鸿,黄心汉.用模糊RBF神经网络简化模型设计多变量自适应模糊控制器[J].控制理论与应用,2000,17(2):169-170.
    [169]杨纶标,高英仪。模糊数学原理及应用(第三版)[M].广州:华南理工大学出版社,2001.3.
    [170]李人厚。智能控制理论和方法[M].西安:西安电子科技大学出版社,1999.1.
    [171]孙增析.智能控制理论与技术(第一版)[M].北京:清华大学出版社,1997.4:24-55.
    [172]Robert J,Schilling,James J,et al.Approximation of nonlinear systems with radial basis function neural networks[J].IEEE Transactions on Neural Networks,2001,12:1-15.
    [173]Gorinevsky,D.,Feldkamp.RBF network feedforward compensation of load disturbance in idle speed control[J].IEEE Control System Magazine,1996,12:18-27.
    [174]侯宏,杨建华.RBF网络用于边界层转换中抽吸流优化控制[J].航空学 报,2002,23(6):556-557.
    [175]Byungkyu P.Clustering based RBF neural network model for short-term freeway traffic volume forecasting[C].USA:ASCE.Proc of the Int Conf on Appl of Advanced Tech in Transportation,1998:280-287.
    [176]Lin W,Yang C,Lin J,et al.A fault classification method by RBF neural network with OSL learning procedure[J].IEEE Trans on Power Delivery,2001,16(4):473-477.
    [177]飞思科技产品研发中心.MATLAB6.5辅助神经网络分析与设计[M].北京:电子工业出版社,2003.
    [178]Alippi C.A fine control of the air-to-fuel ratio with recurrent neural networks[J].IEEE Instrumentation and Measurement Technology Conference,1998,18(6):233-242.
    [179]R.Amirante,P.G Moscatelli,L.A Catalano.Evaluation of the flow forces on a direct(single stage) proportional valve by means of a computational fluid dynamic analysis[J].Energy Conversion & Management,2007,48:942-953.
    [180]Jos(?) R.Vald(?)s,Mario J.Miana,Jos(?) L.N(?)ez,et al.Reduced order model for estimation of fluid flow and flow forces in hydraulic proportional valves[J].Energy Conversion & Management,2008,4:1-13.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700