用户名: 密码: 验证码:
分裂导线电流转移循环融冰试验与方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
输电线路覆冰灾害是威胁电网安全运行最为严重的自然灾害之一。近年来,受全球气候变暖影响,各类极端天气、气候事件频发,当寒冷空气持续来袭时,架空输电线路不可避免的会出现覆冰灾害。输电线路覆冰灾害将导致严重损失,可能造成输电线路过荷载、导线舞动、线路大面积的覆冰倒塔、绝缘子串覆冰闪络等事故,破坏电网结构,威胁电网安全,甚至使电网瘫痪。因输电线路覆冰灾害发生时往往天气恶劣、冰雪封山交通受阻、通信中断、抢修困难,因而经常造成系统长时间停电,给工农业生产和国民经济造成严重损失,影响人民的日常生活。国内外对输电线路覆冰问题进行了长期而广泛的研究并提出了30余种防冰、除冰方法,但是采用电流焦耳热的防冰、除冰方法来应对输电线路覆冰仍是目前最为快速和有效的方法之一。现有的电流的防冰、除冰方法在实施过程中需要融冰导线退出运行,不仅会给电网和社会带来经济损失,还有可能威胁到电力系统的安全运行。随着社会对供电可靠性、安全性要求的提高和智能电网的发展需求,开发一种不断电、实时的除冰方法具有重要意义。
     鉴于高压输电线路多采用分裂导线,本文根据输电线路分裂导线结构特点,提出了一种不需要断电即能实施的除冰方法即分裂导线电流转移循环融冰方法,详细阐述了其基本原理和实施步骤,并从覆冰导线临界融冰电流密度角度论证了该方法的可行性。同时以六分裂导线为例计算融冰实施过程中,线路电感的变化和通与未通流子导线间的电压差。计算结果表明该电压差与导线传输的负荷电流大小、选择的融冰方式和距离短路点的距离有关。为减少子导线间绝缘间隔棒和控制开关断口处的电压,需控制融冰段长度。
     通过覆冰条件下覆冰导线的热平衡分析,本文建立了覆冰条件下覆冰导线电流融冰模型,并利用有限元仿真软件对模型进行了仿真研究。通过对模型的简化分析,提出了覆冰条件下覆冰导线融冰时间的简化计算公式。根据分裂导线电流转移融冰方法的控制要求和融冰时间简化计算公式对分裂导线子导线分组进行初步设计。
     在人工气候室和自然覆冰站进行了大量电流融冰试验,人工气候室试验结果表明,覆冰条件下覆冰导线临界融冰电流计算结果和电流融冰仿真结果与试验结果基本一致,同时还验证了分裂导线电流转移融冰分组设计方法的有效性。自然覆冰试验站现场试验结果表明,采用分裂导线电流转移循环融冰的方法对导线进行分组融冰可有效去除去分裂导线上的覆冰;在现场融冰试验中覆冰导线的脱冰时间具有一定的分散性,且出现了脱冰跳跃现象,脱冰跳跃的幅度与覆冰厚度有关,为限制脱落跳跃幅度需在覆冰达到一定程度后便进行导线融冰。
     通过对人工气候室和自然覆冰站的融冰试验结果和融冰试验过程的分析,提出了基于多种参数的分裂导线电流转移循环融冰模糊控制方法,并对该方法的输入变量、输出结果、模糊隶属度函数以及模糊规则进行了初步的设计。
Icing disaster taken place on transmission line is one of the most serious problemscompared with other natural disaster. In recent years, because of the global climatewarming, kinds of extreme weather were taken place frequently. When continuouscold-air were outbreak, the formation of icing on the outdoor transmission line isinevitable. The icing disaster will cause serious losses, such as overloading, conductorgalloping, tower collapsing, and insulator string flashover accident. It will not onlydamage the grid structure, but also threat to the security of the gird, even failures of thegrid. When the icing disasters were happened, they are always accompanied withinclement weather. Therefore, traffic blocked by the snow and communication was alsodisrupted. So that it is very difficult to repair the damaged power grid, thus resulting inextended power outage, causing serious losses to industrial and agricultural production,affecting the daily life of the people and to the national economy caused huge losses.There are more than30anti-icing and de-icing methods reported in home and abroad.But the de-icing method which used the Joule heating of the current is the fastest andmost effective de-icing method. However, many methods of these kinds are carried outwhen the transmission line is outage. The outage will bring economic losses, reducingthe safety factor of the gird, but also causing great inconvenience to peoples’ living.With the increase requirement of safe reliability of the gird and developing of smart grid,in order to ensure the safe and reliable operation of the power system, the developmentof an uninterruptible, real-time anti-icing and de-icing method is of great significance.
     Because of the bundled conductors are widely used in HV and EHV transmission,the paper propose a novel, uninterruptible, and real-time de-icing methods, i.e.icing-melting method by channel load current of bundled conductor into sub-conductorscircularly(IMCLC), based on the special structure of bundled conductors. Thefundamental principle and control scheme of this method were represented in detail.Based on the six-bundled conductor, this paper calculated electrical inductance atdifferent condition and the voltage difference between sub-conductors with and withoutcurrent. The calculated results reveal that this voltage difference corresponding to theload current, ice-melting model and the distance far away from the short point. In orderto reduce the voltage on the insulation spacer and the switch, the ice-melting distance ofconductor should be reduced.
     Through the analysis of thermal balance of icing conductor, this paper establishedthe critical ice-melting model and current ice-melting model, and their impact factorswere also studied. At the same time, the COMSOL Multiphysics was used to simulatethis model. The simplified calculation formula of ice-melting time was proposed bysimplifying this current ice-melting model. According to the control demand of IMCLCand the simplified ice-melting time, the grouping method of the sun-conductor wasdesigned.
     Many ice-melting experiments were carried out in the artificial climate chamberand the natural icing test station. The test results reveal that the calculated results ofcritical ice-melting current and simulated results were in a line with test results, thegrouping method of sub-conductor was also be examine to be correct. The fieldice-melting test show that the ice layer on the conductor can be removed effectively byusing the IMCLC method, the ice-melting time is dispersed, and the jumping caused bythe ice shedding will generate huge displacement of the conductor which affected by theamount of ice layer on the conductor. Therefore, the ice-melting work should be carriedout when the ice thickness reach a threshold to limit the jumping magnitude.
     Based on the test results in the artificial climate chamber and field test at thenatural icing station, this paper proposed a Fuzzy Expert control method of CMCLCwhich based on multiple parameters. The input and output parameter, membershipfunction, and fuzzy rules were also designed.
引文
[1]蒋兴良,易辉.输电线路覆冰及防护[M].北京:中国电力出版社.2001.
    [2] A. Ichiro II. Studies on Ice Accretion[J]. Researches on Snow and Ice,1953,1:35-44.
    [3] M. Farzaneh. Atmospheric Icing of Power Networks[M]. New York: Springer.2008.
    [4] R. Z. Blackmore, E. P. Lozowski. A theoretical spongy spray icing model with surficialstructure[J]. Atmospheric Research,1998,49(4):267-288.
    [5] M. Farzaneh, K. Savadjiev. Statistical analysis of field data for precipitation icing accretion onoverhead power lines[J]. Power Delivery, IEEE Transactions on,2005,20(2):1080-1087.
    [6] S. Fikke. Modern meteorology and atmospheric icing [C]. Proc11th International Workshop onAtmospheric Icing of Structures(IWAIS2005), Montreal, Canada,2005:
    [7] M. Huneault, C. Langheit, R. S. Arnaud, et al. A dynamic programming methodology todevelop de-icing strategies during ice storms by channeling load currents in transmissionnetworks [J]. IEEE Transactions on Power Delivery,2005,20(2):1604-1610.
    [8]刘泽洪.直流输电线路覆冰与防治[M].北京:中国电力出版社.2012.
    [9] A. S. Richardson. Dynamic analysis of lightly iced conductor galloping in two degrees offreedom[J]. Generation, Transmission and Distribution, IEE Proceedings C,1981,128(4):211-218.
    [10] V. T. Morgan, D. A. Swift. Effect of ice loads on overhead-line conductors[J]. Electronics andPower,1965,11(1):22-23.
    [11] L. Makkonen. Estimation of wet snow accretion on structures[J]. Cold Regions Science andTechnology,1989,17(1):83-88.
    [12] S. Ihara, C. Yamabe, S. Ushio. Breaking of ice using pulsed power [C]. Power ModulatorSymposium,2006. Conference Record of the2006Twenty-Seventh International,2006:342-342.
    [13] L. L. Baliberdin, M. A. Kozlova, Y. A. Shershnev. Model group of controlled installation formelting ice on transmission line conductors [C]. Power Tech,2005IEEE Russia,2005:1-5.
    [14] K. Kannus, K. Lahti. Laboratory Investigations of the Electrical Performance of Ice-coveredInsulators and a Metal Oxide Surge Arrester[J]. Dielectrics and Electrical Insulation, IEEETransactions on,2007,14(6):1357-1372.
    [15]李支那.黔秀220kV输电线路覆冰机理及冰害事故防治措施的研究[D].重庆:重庆大学.2006.
    [16]张志劲,黄海舟,蒋兴良,等.交流输电导线覆冰增长及临界防冰电流的试验研究[J].高电压技术,2012,38(2):469-475.
    [17]蒋兴良,马俊,王少华,等.输电线路冰害事故及原因分析[J].中国电力,2005,38(11):27-30.
    [18]路杰.500kV交流支柱绝缘子覆冰闪络特性研究[D].北京:华北电力大学.2010.
    [19]程登峰,蒋兴良,郭守贤,等.不同型式绝缘子的覆冰直流闪络特性[J].高电压技术,2009,35(4):965-970.
    [20]周卫华,蒋兴良.输电线路绝缘子冰闪防治措施的研究[J].湖南电力,2008,28(1):1-5.
    [21]常浩,石岩,殷威扬,等.交直流线路融冰技术研究[J].电网技术,2008,32(5):1-6.
    [22]吴文辉.湖南电网覆冰输电线路跳闸事故分析及措施[J].高电压技术,2006,32(2):110-111.
    [23]徐涛,王海明,王琳琳,等.500kV瓷支柱绝缘子加装复合增爬裙后的覆冰闪络特性[J].高电压技术,2012,38(1):167-172.
    [24]段旭,段玮,陶云,等.云南冰冻灾害研究与电线覆冰区划[M].北京:气象出版社.2010.
    [25]中国南方电网公司.电网防冰融冰技术及应用[M].北京:中国电力出版社.2010.
    [26]曹岚.输电线路除冰影响及除冰技术综述[J].浙江电力,2008,4:29-32.
    [27]顾广新,武利民.防覆冰涂料的研究与进展[J].供用电,2008,25(3):35-37.
    [28]郭海峰,刘甜甜,李西泉,等.湖南电网冰冻灾害及其应对措施的回顾与思考[J].防灾科技学院学报,2008,10(2):25-28.
    [29]蒋兴良.贵州电网冰灾事故分析及预防措施[J].电力建设,2008,29(4):1-4.
    [30]蒋兴良,范松海,孙才新,等.低居里点铁磁材料在输电线路防冰中应用前景分析[J].南方电网技术,2008,2(2):19-22.
    [31]蒋兴良,肖代波,孙才新.憎水性涂料在输电线路防冰中的应用前景[J].南方电网技术,2008,2(2):13-18.
    [32]刘有飞,蔡斌,吴素农.电网冰灾事故应急处理及反思[J].电力系统自动化,2008,32(8):10-13.
    [33]陆佳政,蒋正龙,雷红才,等.湖南电网2008年冰灾事故分析[J].电力系统自动化,2008,32(11):16-19.
    [34]陆棚.南方地区高压架空线路覆冰原因分析及预防措施研究[D].广州:华南理工大学.2008.
    [35]申屠刚.电力系统输电线路抗冰除冰技术研究进展综述[J].机电工程,2008,25(7):72-76.
    [36]夏正春.特高压输电线路覆冰舞动及脱冰跳跃研究[D].武汉:华中科技大学.2008.
    [37]易辉,查宜萍,何慧雯.防覆冰涂覆材料的应用分析与研究[J].电力设备,2008,9(6):16-19.
    [38]范松海.输电线路短路电流融冰过程与模型研究[D].重庆:重庆大学.2010.
    [39] C. L. Phan, J. L. Laforte. The influence of elector-freezing on ice formation on high-voltageDC transmission lines[J]. Cold Regions Science and Technology,1981,4(1):15-25.
    [40] H. M. Merrill, J. W. Feltes. Transmission icing: A physical risk with a physical hedge [C].2006IEEE Power Engineering Society General Meeting, PES,2006:
    [41]焦重庆,齐磊,崔翔,等.输电线路外施中频电源融冰技术[J].电工技术学报,2010,25(7):159-164.
    [42]蒋兴良,张丽华.输电线路除冰防冰技术综述[J].高电压技术,1997,23(1):73-76.
    [43]刘顺新,罗浩东,邓小磊.架空输电线路除冰技术分析[J].高压电器,2011,47(7):72-76.
    [44]倪喜军,赵剑锋,杨铭,等.基于高频谐振集肤电流法的线路除冰研究[J].电力系统自动化设备,2009,29(2):6-9.
    [45] M. Huneault, C. Langheit, J. Caron. Combined models for glaze ice accretion and de-icing ofcurrent-carrying electrical conductors[J]. Power Delivery, IEEE Transactions on,2005,20(2):1611-1616.
    [46]山霞,舒乃秋.关于架空输电线路除冰措施的研究[J].高电压技术,2006,32(4):25-27.
    [47]李培国,高继法,李永军,等.输电线路除冰技术与装置[J].电力设备,2002,3(2):85-87.
    [48] F. Songhai, J. Xingliang, S. Lichun, et al. DC Ice-Melting Model for Elliptic Glaze IcedConductor[J]. Power Delivery, IEEE Transactions on,2011,26(4):2697-2704.
    [49]张志劲,蒋兴良,孙才新,等.四分裂导线运行电流分组融冰方法与现场试验[J].电网技术,2012,36(7):54-59.
    [50] Z. Peter, C. Volat, M. Farzaneh, et al. Numerical investigations of a new thermal de-icingmethod for overhead conductors based on high current impulses[J]. Generation, Transmission&Distribution, IET,2008,2(5):666-675.
    [51] Z. Gui-xin, C. Sheng, X. Shu-guang, et al. Application and research of laser de-icing in powersystem [C]. Power Modulator and High Voltage Conference (IPMHVC),2010IEEEInternational,2010:470-473.
    [52] C. Horwill, C. C. Davidson, M. Granger, et al. An Application of HVDC to the de-icing ofTransmission Lines [C]. Transmission and Distribution Conference and Exhibition,2005/2006IEEE PES,2006:529-534.
    [53] L. Gang, P. Hui, M. Lehtonen, et al. De-icing Schemes and Operations for Overhead PowerLine Based on Shunt Capacitor Over-compensation Method [C]. Electrical and ControlEngineering (ICECE),2010International Conference on,2010:3525-3528.
    [54] C. Olive. Sleet and ice troubles on transmission lines in New England[J]. AIEE paper,1925:
    [55] B. H.亚历山德罗夫, B.A.阿莫萨夫, H.E.戈卢勤科夫,等.巴什基尔电网防治覆冰研究[J].电力安全技术,1999,1(电力安全技术):14-16.
    [56] W. Adolphe. Ice melting of sub-transmission lines [C]. CEA paper, Manitoba Hydro, Toronto,,1992:
    [57] J. C. Polhman, P. Landers. Present state-of-the-art of transmission line icing[J]. IEEETransactions on Power Apparatus System,1982, PAS-101(8):2443-2450.
    [58]陆佳政,李波,张红先,等.新型交直流融冰装置在湖南电网的应用[J].南方电网技术,2009,4(4):77-79.
    [59]刘刚,赵学增,陈永辉,等.电容补偿电感调负融冰方法[J].电网技术,2008,32(S2):99-102.
    [60]许树楷,赵杰.电网冰灾案例及抗冰融冰技术综述[J].南方电网技术,2008,2(2):1-2.
    [61]雷红才,陆佳政,李波,等.可调电容串联补偿式交流融冰装置在湖南电网的应用[J].湖南电力,2009,29(5):28-30.
    [62]王超.输电线路直流融冰技术研究[D].北京:华北电力大学.2011.
    [63] A. Dery, J. Gingras. Hydro-Quebec de-icing projects [C]. Presented at the11th Int. Workshopon Atmospheric Icing of Structures, Montreal, Canada,2005:
    [64] C. Horwill, C. C. Davidson, M. Granger. An application of HVDC to the de-icing oftransmission lines [C]. Transmission and Distribution Conference and Exhibition, PESDallas,USA,2005:
    [65] M. Granger, A. Dutil, A. Nantel. Performance aspects of Levis substation de-icing project usingDC technology [C].11th Int. Workshop on Atmospheric Icing of Structures, Montreal, Canada,June,2005:
    [66]郭捷,江道灼,李海翔.可控整流器型直流融冰兼SVC装置在SVC模式下控制域解析[J].电力系统保护与控制,2010,38(14):93-97.
    [67]许树楷,黎小林,饶宏,等.南方电网500kW直流融冰装置样机的研制和试验[J].南方电网技术,2008,2(4):32-36.
    [68]陆以夫.500kV桂林变直流融冰兼SVC装置控制保护配置及其应用[J].红水河,2012,31(5):66-70.
    [69] C. R. Sullivan, V. F. Petrenko, J. D. McCurdy, et al. Breaking the ice [transmission lineicing][J]. Industry Applications Magazine, IEEE,2003,9(5):49-54.
    [70] J. D. McCurdy, C. R. Sullivan, V. F. Petrenko. Using dielectric losses to de-ice powertransmission lines with100kHz high-voltage excitation [C]. Industry Applications Conference,2001. Thirty-Sixth IAS Annual Meeting. Conference Record of the2001IEEE,2001:2515-2519vol.4.
    [71] T. R. CEA. De-icing techniques before, during and following ice storms[R]. CanadianElectrical Association Ice Storm Mitigation Interest Group2002.
    [72] A. Leblond, S. Montambault, M. St-Louis, et al. Development of new ground wire de-icingmethod.[C]. Proc10th International Workshop on Atmospheric Icing of Structure, Brno,2002:
    [73] A. Leblond, B. Lamarche, D. Bouchard, et al. Development of a protable de-icing device foroverhead ground wires [C]. Proc11th International Workshop on Atmospheric Icing ofStructure, Montreal, Canada,2005:
    [74]陈胜,张贵新,徐曙光,等.电网中激光除冰技术分析[J].清华大学学报(自然科学版),2011,51(1):47-52.
    [75]朱卫华,朱晓,朱长虹. CO2激光热熔法除冰的研究[J].光学与广电技术,2007,5(3):41-42.
    [76]谷山强,陈家宏,蔡炜.输电线路激光除冰技术试验分析及工程应用设计[J].高电压技术,2009,35(9):2243-2249.
    [77] P. Couture. Smart power line and photonic de-icer concepts for transmission-line capacity andreliability improvement[J]. Cold Regions Science and Technology,2011,65:13-22.
    [78]朱卫华.输电线路上CO2激光除冰的研究[D].武汉:华中科技大学.2007.
    [79] Chang Guanghui, Su sheng, L. Mingming, et al. Novel Deicing Approach of Overhead BundledConductors of EHV Tansmission Systems[J]. IEEE TRANSACTIONS ON POWERDELIVERY,,2009,24(3):1745-1747.
    [80] M. Farzaneh, I. Fofana, H. Hemmatjou. Effects of temperature and impurities on the DCconductivity of snow[J]. IEEE Transactions on Dielectrics and Electrical Insulation,2007,14(1):185-193.
    [81]孙才新,蒋兴良,熊启新,等.导线覆冰及其干湿增长临界条件分析[J].中国电机工程学报,2003,23(3):141-145.
    [82]蒋兴良,范松海,胡建林,等.输电线路直流短路融冰的临界电流分析[J].中国电机工程学报,2010,30(111-116):
    [83]杨世铭,陶文铨.传热学(第四版)[M].北京:高等教育出版社.2006.
    [84]郭思顺.架空送电线路设计基础[M].北京:中国电力出版社出版.2010.
    [85]夏道止.电力系统分析[M].北京:中国电力出版社.2011.
    [86]顾乐观,孙才新.超高压设备及其周围环境保护[M].重庆:重庆大学出版社.1996.
    [87]罗保松.分裂导线循环电流防冰融冰方法的控制方案研究[D].重庆:重庆大学.2012.
    [88]同济大学应用数学系.高等数学[M].北京:高等教育出版社.2002.
    [89]严波,郭跃明,陈科全,等.架空输电线脱冰跳跃高度的计算公式[J].重庆大学学报,2009,32(11):1306-1310.
    [90]孟晓波,王黎明,侯镭,等.特高压输电线路导线脱冰跳跃动态特性[J].清华大学学报(自然科学版),2010,29(4):1631-1636.
    [91]阳林.架空线路在线监测覆冰计算、评估和预测研究[D].广州:华南理工大学.2012.
    [92] R. R. Yager, D. P. Filev. On the reasoning in fuzzy logic control and fuzzy expert systems [C].Fuzzy Systems,1993., Second IEEE International Conference on,1993:839-844vol.2.
    [93] K. Nara, S. Yamashiro, Y. Yanaura. Application of an expert system to decisions oncountermeasures against snow accretion on transmission lines[J]. Power Systems, IEEETransactions on,1988,3(3):1052-1058.
    [94]顾力栩,沈晋惠.人工智能智能系统指南[M].北京:机械工业出版社.2006.
    [95] Y. Hao, D. Yongsheng, L. Shaokuan, et al. Comparison of necessary conditions for typicalTakagi-Sugeno and Mamdani fuzzy systems as universal approximators[J]. Systems, Man andCybernetics, Part A: Systems and Humans, IEEE Transactions on,1999,29(5):508-514.
    [96]阳林,郝艳捧,李立浧,等.架空输电线路覆冰状态评估模糊专家系统[J].高电压技术,2011,37(12):3028-3035.
    [97] P. M. Chaine, G. Casfonguay. New Approach to Radial Ice Thichness Concept Applied toBundle-like Conductors[R]. Industial Metecrology study, Enwironment Canada, Tnronto,1974.
    [98] E. J. Goodwin, J. D. Mozer, A. M. D. Gioia. Predicting Ice and Snow Loads for TransmissionLine [C]. Proceedings of the First IWAIS,1983:
    [99] L. Makkonen. Modeling power line icing in freezing precipitation [C]. The7th InternationalWorkshop on Atmospheric Icing of Structures, Quebec, Canada,1996:
    [100] K. Savadjiev, M. Farzaneh. Modeling of icing and ice shedding on overhead power linesbased on statistical analysis of meteorological data[J]. Power Delivery, IEEE Transactions on,2004,19(2):715-721.
    [101]中华人民共和国电力行业标准.重覆冰架空输电线路设计技术规程[S].北京,中华人民共和国国家能源局,2009.
    [102]陈凌.旋转圆柱体覆冰增长模型与线路覆冰参数预测方法研究[D].重庆:重庆大学.2011.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700