用户名: 密码: 验证码:
TRIP钢板成形性能和回弹特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
利用变形过程中相变诱发塑性(Transformation Induced Plasticity,简称TRIP)现象研制的TRIP钢兼具强度高、塑性好的特点,在汽车轻量化过程中显示出了广阔的应用前景。作为一种新型钢板,特殊的化学成分设计和轧制工艺使TRIP钢在室温下含有亚稳态奥氏体组织,在塑性变形过程中会发生向马氏体的转变,产生局部硬化,从而带来材料塑性的提高。相变诱发塑性效应赋予TRIP钢良好力学性能,改善了TRIP钢的成形性能,然而TRIP钢具有良好成形性能的同时回弹也很严重,且由于相变的影响导致用传统的线性弹性卸载预测TRIP钢的回弹精度不高,因此研究TRIP钢在塑性变形过程中的相变行为,弄清TRIP效应改善成形的机理,提高TRIP钢回弹的预测精度,对推广TRIP钢板的工程应用、缩短新产品开发周期有着重要的理论意义和实际价值。
     本文在借鉴和吸收国内外先进成果的基础上针对TRIP钢的相变行为、硬化特性、成形性能和回弹特性等进行了较为系统的研究。首先是建立基于应变路径的TRIP钢相变动力学模型,使其更适应于在板料成形中的应用;在此基础上利用平均场理论建立TRIP钢流动力学模型,分析残余奥氏体体积含量和稳定性对硬化特性的影响;然后实现冲压过程中残余奥氏体转变量分布的计算机预报,揭示TRIP钢具有良好成形性能的机理,并针对TRIP钢的成形工艺进行了优化;最后考虑TRIP钢变形中由于相变导致弹性模量的变化,建立弹性模量演化模型以实现TRIP钢的非线性弹性卸载,提高了TRIP钢回弹的预测精度,并通过稳健设计制定合适工艺,降低TRIP钢回弹对外部噪声因素的敏感性。本文的主要研究内容如下:
     (1)基于应力状态和应变路径的马氏体动力学模型
     遵循从简单到复杂的科学研究方法,选择典型的单调加载模式实验,获得残余奥氏体体积含量与应变量的定量关系,通过应力三轴水平参数来表征应力状态,建立了基于应力状态的马氏体相变动力学模型;并推导了应力三轴水平和应变路径的关系,建立了基于应变路径的马氏体动力学模型。马氏体动力学模型是后续力学模型的基础。
     (2) TRIP钢的流动力学模型和力学特性研究
     结合第二章建立的TRIP钢相变动力学模型,在分析TRIP钢各微观相的弹塑性变形行为基础上,利用Hill自洽理论和平均场理论推导了TRIP钢的流动力学模型,并依据所建立的力学模型研究TRIP效应影响下的TRIP钢的特殊硬化行为,分析TRIP钢中残余奥氏体初始体积含量和稳定性对TRIP钢硬化特性的影响规律。该模型是进行TRIP钢成形性能仿真研究的基础。
     (3) TRIP钢成形性能和工艺优化研究
     通过实现相变在TRIP钢冲压零件中分布的计算机预报,指出在零件危险部位由于相变量多而降低材料层错密度,降低了材料发生破裂的概率,而且由于相变强化作用,零件危险部位产生局部硬化而减小TRIP钢的局部减薄率,揭示了TRIP钢具有良好成形性能的机理;在可描述相变诱发塑性特点的成形极限预测准则基础上,计算TRIP型多相钢的最大拉深高度,与无TRIP效应时的最大拉深高度进行对比研究TRIP效应影响成形性能的程度;接着分析冲压工艺条件对TRIP钢相变的影响,找出决定TRIP效应大小的工艺因素,为工艺优化提供铺垫;最后针对杯形件拉深进行随时间变压边力优化和毛坯尺寸优化,针对盒形件拉深的随位置变化的压边力优化和毛坯形状优化,实验结果表明优化解不仅可以避免零件成形缺陷还可以保留足够的残余奥氏体来提高零件的后续变形能力,可以指导TRIP钢的成形工艺。
     (4)基于非线性弹性卸载的TRIP钢回弹预测和稳健控制
     为了弥补传统的有限元法(认为弹性模量不变)对TRIP钢回弹预测精度低的不足,首先研究了TRIP钢弹性模量随新生相体积份数变化的规律,建立TRIP钢弹性模量演化模型;把弹性模量变化历史引入仿真过程可以极大提高TRIP钢回弹的预测精度;在精度满足的条件下,通过模拟和优化设计方法的组合进行了变压边力优化控制回弹大小,通过稳健设计方法控制TRIP钢回弹波动,建立基于非线性弹性卸载的TRIP钢回弹控制的新方法,以提高零件的尺寸精度,降低生产成本。
TRIP steel, in which occurs the transformation induced plasticity phenomena, has not only high strength but also good plasticity. TRIP steel has been given more attention by the international steel and auto industry in order to applying it more widely in the light auto’s body project. As a kind of new type steel, the TRIP steel contains retained austenite in the room temperature because of special chemical components design and rolling technique. The retained austenite is unstable to transform to martensite during deformation. The new martensite phase has higher work hardening ability than the retained austenite, which can increase the material’s plasticity. The TRIP effect gives TRIP steel excellent mechanical property to improve the deep drawing ability. However, springback for TRIP steel is more complicated due to volume inflation and phase transformation hardening caused by the transformation from retained austenite to martensite. It’s difficult to predict accurately the springback of TRIP steel adopting traditional FEM. It can extend the use field and proportion and shorten the time of new product design if the prediction and controlling of the springback of the TRIP steel are resolved satisfactorily.
     Based on the comparison and evaluation of TRIP steel research in the world, the transformation, work hardening character, deep drawing ability and springback are investigated systemically. The martensitic transformation kinetics basing on the strain road and the multiphase TRIP steel’s flow stress model are developed at first. And then they are introduced in the FEM model to predict the evolution of transformed retained austenite, the mechanical properties and the deep drawing ability for TRIP steel. At last the evolution of Young’s modulus with transformation during deformation is investigated, and the prediction of springback considering for the varying Young’s has higher precision than the traditional FEM regarding the Young’s modulus as constant. To fulfill the above research objectives, the following five aspects of efforts are performed:
     (1) Modeling the martensitic transformation kinetics basing on strain road
     The monotonic loading test, which represents stress-stain states in sheet steel forming, includes single shear, uniaxial tension, plane strain and equal stretching tests. The relation between the volume fraction of retained austenite and plastic strain in deferent loading mode can be obtained by the experimental results. The macro stress states are expressed by the stress triaxiality. Then the model of martensitic transformation kinetics basing on macro stress state is developed. The stress triaxiality is deduced to the strain road by the relative plastic theory, when the model of martensitic transformation kinetics basing on strain road is brought forward to apply in the sheet steel forming. The martensitic transformation kinetics is groundwork to model the mechanical property of TRIP steel.
     (2) Flowing stress modeling and mechanical characteristics of TRIP steel
     The mechanical characteristics of TRIP steel are very deferent from the traditional high strength steel’s because of TRIP effect. Combined the transformation kinetics, a micromechanical model is developed by the mean field theory. The stress-strain relation, special work hardening, necking and forming limited curve of the TRIP steel are investigated by the mechanical model. And effect of the volume fraction and stability of the retained austenite on the mechanical behavior of the TRIP steel is analyzed. An accurate mechanical model is a base for the FEM.
     (3) FEM analyses and process optimization for TRIP steel sheet forming
     To make clear the reason that the TRIP steel has a good drawability, the computer prediction for the evolution of transformation is carried out. The transformation is more rapid at the corner than at the else positions. The mechanical driving force of transformation comes from accumulated strain energy. Upon strain-induced transformation, this energy is absorbed and dislocation pile-up is relaxed. Therefore the crack probability decreases. On another hand, the local thincking is smaller for TRIP steel than traditional high strength steel. Basing on M-K theory, FLD is established taking account for the TRIP effect to evaluate deep forming ability for TRIP steel. Comparison of the utmost depth between that considering TRIP effect and without TRIP effect is utilized to indicate the deep forming improving action. The effect of process factors on transformation of TRIP steel is analyzed and the main factor influent on transformation is determined. An approximate modeling method is developed to optimize forming process, involving design of experiment, adaptive response surface method and solution strategy. Then two examples, optimization of forming process for a cup and optimization of forming process for a rectangle, are given aiming to safety FLC and certain amount retained austenite. Through comparison with the experimental results, not only the wrinkling can be avoided, but also the retained austenite has enough to ensure subsequent deformation after optimization. The optimization procedure contributes to the application of TRIP steel sheet forming.
     (4) Prediction and robust controlling for the springback of TRIP steel
     The predict precision was very low for springback of TRIP steel calculated by linear elastic removing loading. To solve the problem, the Young’s modulus evolution with new transformed martensitic volume fraction has been studied by experiments. Taking into account the variation of Young’s modulus for TRIP steels in springback simulation, the prediction is accord better with experiments than that using traditional FEM. Under the condition of ensure predict precision, varying blank holding force is optimized by the way combining FEM and optimization method to control the springback. To reducing the fluctuating springback, engineering robust design has been used in application. The optimization and robust design basing on computer simulation provides new means for enhancing the part shape reliable.
引文
[1]羊秋林等,汽车用轻量化材料,北京,机械工业出版社,1991.
    [2]马鸣图, Shi M F,先进的高强度钢及其在汽车工业中的应用,钢铁,2004,39(7):68-72.
    [3]邓文英,汽车轻量化材料的应用,重型汽车,2000,4:16-18.
    [4] Zachkey V F, Parker E R, Fahr D, et al., The enhancement of ductility on high-strength steel, Trans. of ASM, 1967,60(2):252-258.
    [5] Rigsbee J M, Vander P J, Trend in formable HSLA and Dual-phase steels, ed. by Davenport A T, TMS-AIME, Warrendale, PA, 1977: 56-86.
    [6] Yi J J, Yu K J, Kim I S, et al., Role of retained austenite on the deformation of a Fe-0.07C-1.8Mn-1.4Si dual-phase steel, Metall. Trans. A, 1983,14A: 1479-1504
    [7] Sachdev A K, Wagoner R H, Uniaxial strain work hardening at a large strain in several sheet steels, J. Appl. Metalworking, 1983, 3: 32-37.
    [8] Goel N C, Sangal S, Tangri K, A theoretical model for the flow behavior of commercial dual-phase steels containing metastable retained austenite: Part I. Derivation of flow curve equations, Metall. & Mat.Trans., 1985, 16A(11): 2013-2021.
    [9] Sangal S, Goel N C, Tangri K, A theoretical model for the flow behavior of commercial dual-phase steels containing metastable retained austenite: Part II. Calculation of flow curves, Metall. & Mat.Trans., 1985, 16A(11): 2023-2029.
    [10] Mahmoud Y Demeri, High strength and stainless steels for automotive applications, The Mineral Metals & Materails Society, 2001: 83-95.
    [11]朱铮,汽车用高强度钢板的开发应用和发展前景,钢铁,2000, 35(1): 66-70.
    [12]康永林,国内外汽车板的现状、需求和发展趋势,中国冶金,2003,67(6):18-23.
    [13] Jacques P, Furnemont Q, Pardoen T et al. On the role of martensitic transformation on damage and cracking resistance in TRIP-assisted multiphase steels, Acta materialia, 2001, 49(1):139-152.
    [14] Asamura T, Proceedings of International Symposium on Modern LC and ULC Sheet Steel for Cold Forming: Processing and Properties, GFM, Achen Germany,1998:1-4.
    [15] Andersson A, Numerical and experimental evaluation of springback in a front side member, Journal of Materials Processing Technology, 2005,169:352–356.
    [16] Havranek, Wrinkling limiting of tapered pressing, J. Aust. Inst. Met, 1975, 20(2):114-119.
    [17] Yossifon S. Sweeney K. Ahmetaoglu M, al et, On the acceptable blank-holder force range in the deep-drawing process, J. Mat. Proc. Tech.., 1992, 33:175-194.
    [18] Wang Y W, Ali Sacedy S, Majlessi S A, al et., Strain path effects on the modified FLD caused byvariable blank holder force, SAE Trans. Material & Manufacturing, 1995, (No.950695): 522-531.
    [19] Hayami S, Tunkawa T, A family of high strength cold rolled steels, Microalloying, Vanitech, 1975, 2:78-87.
    [20] Masumura O, Sakuma Y, Takechi H, Enhancement of elongation by retained austenite in intercritical annealed 0.4C-1.5Si-0.8Mn steel, Trans Iron Steel Inst Jpn , 1987, 27(7): 570-579.
    [21] Masumura O , Sakuma Y , Takechi H, TRIP and its kinetic aspects in austempered 0.4C-1.5Si-0.8Mn steel, Scripta Metall, 1987,21(10):1301-1306.
    [22] Chen H C , Era H, Shimizu M, Effect of phosphorus on the formation of retained austenite and mechanical properties in silicon-containing low-carbon steel sheet, Metall Trans A , 1989, 20A(3):437-445.
    [23] Sakuma Y, Matlock D, Krauss K, Intercritically annealed and isothermally transformed 0.15 pct C steels containing 1.2 pct Si-1.5 pct Mn and 4 pct Ni: Part I. Transformation, microstructure, and room-temperature mechanical properties. Metall. Trans. A 1992,23: 1221–1232.
    [24] Sakuma Y, Kawano O, Next-generation high-strength sheet steel utilizing transformation induced plasticity TRIP effect, Nippon Steel Technical Report, 1995,64:20-25
    [25]关小军,周家娟,王作成,一种新型汽车用钢—相变诱发塑性钢,特殊钢,2000,21(2):27-30.
    [26]刘云旭,金属热处理原理,北京,机械工程出版社,1981.
    [27] Maxwell P C, Goldberg A, Shyne J G, Stress-assisted and strain induced martensite in Fe-Ni-C alloys, Metall. Trans.,1974,4:1305-1317.
    [28] Bhandarkar D, Stability and mechanical properties of some metastable austenitic steels, Met. Trans. 1972, 3:2619-2631.
    [29] Tamura I, Deformation-induced transformation and transformation-induced plasticity in steels, Metal Science, 1982, 16: 245-253.
    [30]徐祖耀,马氏体相变和马氏体,北京,科学出版社,1999.
    [31] Greenwood G W, Johnson R H, The deformation of metals under small stresses during phase transformations. Proceedings of the Royal Society of London A, 1965, 283: 403-422.
    [32] Fischer F D,. A micromechanical model for transformation plasticity in steels, Acta Metall. Mater., 1990, 38:1536-1546.
    [33] Leblond J B, Devaux J, Devaux J C, Mathematical modelling of transformation induced plasticity in steels I. Case of ideal-plastic phases; II. Coupling with strain hardening phenomena. Int. J. Plasticity 1989, 5:551-573.
    [34] Patel J R, Cohen M, Criterion for the action of applied stress in the martensitic transformation, Acta Metall., 1953, 1(5):531-538
    [35] Magee C L,Transformation kinetics, microplasticity and ageing in Fe-31-Ni, PhD thesis, Carnegie Institute of Technology, Pittsburgh, PA. 1966.
    [36] Gautier E, Simon A, Transformation plasticity mechanisms for martensitic transformation of ferrous alloys. In: Lorimer, G.W. (Ed.), Int. Conf. on Phase Transformations '87. The Inst. of Metals, London, 1988, 285-291.
    [37] Gautier E, Zhang X M, Simon A, Role of internal stress state on transformation induced plasticity and transformation mechanisms during the progress of stress induced phase transformation. In: Beck, G., Denis, S., Simon, A. (Eds.), Int. Conf. on Residual Stresses-ICRS 2. Elsevier Applied Sciences, London and New York, 1989, 777-783.
    [38] Fischer F D, Transformation induced plasticity in triaxial loaded steel specimens subjected to a martensitic transformation, Europ. J. Mech. A/Solids, 1992, 11(2), 233-244.
    [39] Fischer, F D, Schloegl S M, The influence of material anisotropy on transformation induced plasticity in steel subject to martensitic transformation, Mech. Mater., 1995, 21, 1-23.
    [40] Olson G B, Cohen M, Kinematics of strain-induced martensitic nucleation, Metall Trans A, 1975, 6:791–795.
    [41] Stringfellow R G, Parks D M, Olson G B, A constitutive model for transformation plasticity accompanying strain-induced martensitic transformation in metastable austenitic steels, Acta Metall, 1992, 40:1703–1716.
    [42] Tomita Y, Iwamoto T, Constitutive modeling of TRIP steel and its application to the improvement of mechanical properties, Int. J. Mech. Sci., 1995, 37(12):1295–1305.
    [43] Iwamoto T, Tsuta T, Tomita Y, Investigation on deformation mode dependence of strain-induced martensitic transformation in TRIP steels and modeling of transformation kinetics. Int J. Mech. Sci., 1998, 40(2-3):173–182.
    [44] Angel T, Deformation of martensite in austenitic stainless steels, effects of deformation, temperature and composition, Journal of the iron and steel institute, 1954, 5:165-174.
    [45] Cherkaoui M, Berveiller M, lemoine X, Couplings between plasticity and martensitic phase transformation: overall behavior of polycrystalline TRIP steels, International Journal of Plasticity, 2000, 16: 1215-1241.
    [46] Cherkaoui M, Berveiller M, Mechanics of Materials Undergoing Martensitic Phase Change: A Micro-Macro Approach for Transformation Induced Plasticity, Angew. Math. Mech., 2000, 80(4): 219-232.
    [47] Miller M P, McDowell D L, Modeling large strain mutiaxial effects in FCC polycrystals, International Journal of Plasticity, 1996, 12(7): 875-902.
    [48] De Cooman B C, Structure-properties relationship in TRIP steels containing carbide-free bainite, Current Opinion in Solid State and Materials Science, 2004, 8: 285–303.
    [49] Johnson C R, Cook W H, Proceedings of the 7th international symposium on ballistics, The Hague, The Netherlands, 1983, 541-547.
    [50] Samek L, De Cooman B C, Van Slycken J, Verleysen P, Degrieck J, Physical metallurgy ofmulti-phase steel for improved passenger car crash-worthiness. Proceedings 6th international conference for mesomechanics. Patras, Greece, 2004, 17-23.
    [51] Verleysen P, Van Slycken J, Degrieck J, Samek L, De Cooman BC. Crash-worthiness of low alloy TRIP steel. In: Proceedings international conference on advanced high strength sheet steel for automotive applications. Winter Park, CO2004, 375-381.
    [52] Perlade A, Bouaziza O, Furnémont Q, A physically based model for TRIP-aided carbon steels behaviour, Mater Sci Eng A, 2003, 356:145-152.
    [53] Iung T, Azuma M, Bouaziz O, et al., A model for the prediction of microstructrure and mechanical properties in cold rolled and annealed TRIP steels, Materials Science Forum, 2003,426-432(5):3849-3854.
    [54] Sugimoto Koh-ichi, Kodayashi Mitsuyuki, Yasuki Shin-ichi, et al., Influence of deformation temperature on the Bauschinger effect of a TRIP-aided dual-phase steel, Materials Transactions, 1995,36(5):632-638.
    [55] Sugimoto Koh-ichi, Sakaki Tsuneaki, Kodayashi Mitsuyuki, Bauschinger effect and internal stress of TRIP-aided dual-phase steels, Journal of the Japan Institute of metals, 1990, 54(12):1344-1349.
    [56] Tomita Y, Iwamoto T, Computational prediction of deformation behavior of TRIP steels under cyclic loading, Inter. J. Mech. Sci., 2001, 43(9):2017-2034.
    [57] Sugimoto Koh-Ichi, Kobayashi Mitsuyuki, Yasuki Shin-Ichi, Cyclic deformation behavior of a transformation-induced plasticity-aided dual-phase steel, Metall. & Mat. Trans. A, 1997,28A(12):2637-2644.
    [58] Thomas H, Shigeru E, Nobuyuki I, et al., Effect of volume fraction of constituent phases on the stress strain relationship of dual phase steels, ISIJ Inter., 1999, 39(3):288-294.
    [59] Tsuchida N, Tomota Y, A microstructure modeling for transformation induced plasticity in steels, Mat. Sci. & Eng., 2000, 285A:345-352.
    [60] Weng G J, The overall elastoplastic stress-strain relations of dual-phase metal, J Mech Phys Solids, 1990;38(3):419-441.
    [61] Li J, Weng G J. A Secant-Viscosity approach to the elastic-visscoplastic behavior of particle-reinforced solids, J Mech Phys Solids, 1997;45:1069-1083.
    [62] Heung Nam Han, Chang Gil Lee, Chang-Seok Oh et al., A model for deformation behavior and mechanically induced martensitic transformation of metastable austenitic steel. Acta Materialia, 2004 52: 5203–5214.
    [63] Chen S H, Wang T C, A new harding law for strain gradient plasticity, Acta Mater., 2000, 48:3997-4005.
    [64] Chen S H, Wang T C, Size effects in the particle-reinforced metal-matrix composites, Acta Mechanica, 2002, 157(1-4):113-127.
    [65] Fleck N A, Hutchinson J W, Phenomenological theary for strain gradient effects in plasticity, J. Mech. & Phys. solids, 1993, 41(12): 1825-1857.
    [66] Fleck N A, Hutchinson J W, Strain gradient plasticity, Advances in Applied Mechanics, 1997, 33:296-358.
    [67] Wei X C, Li L, Fu R Y, Shi W, Effect of microstructure in TRIP steel on its tensile behavior at high strain rate, J Iron & Steel Res. Int., 2003, 10(1):49-54.
    [68]史文,李麟,周媛等,Mn含量对0.15C-0.6Si-MnTRIP钢组织和力学性能的影响,金属热处理,2002,27(8):9-12.
    [69]韦习成,李麟,符仁钰,TRIP钢显微组织与性能关系评述,钢铁研究学报,2001,13(5):71-76.
    [70]韦习成,符仁钰,李麟等,不同应变率下TRIP钢的拉伸性能,上海金属,2002,24(4):32-36.
    [71]李麟,符仁钰,张梅等,相变诱发塑性钢的研究进展,上海金属,22(2):3-8.
    [72] Wei X C, Li L, Fu R Y, et all, On the tensile mechanica property of Si-Mn TRIP steels at high strain rate, Acta Metallurgical Sinca (English letters), 2002, 15(3):285-294.
    [73]江利,崔永丽,邵志杰,高碳硅锰钢TRIP钢低应变速率下的拉深性能,华中科技大学学报(自然科学版),2002,30(8):52-55.
    [74]江利,崔永丽,应变速率对高碳硅锰钢TRIP钢力学性能的影响,机械工程材料,2002, 26(11):34-45.
    [75]李壮,王铁利,曹仁焕等,硅、锰合金元素对TRIP结构钢力学性能的影响,东北大学学报(自然科学板版),1999,20(3):301-305.
    [76]李壮,李伟,应变速率对硅锰系TRIP结构钢力学性能的影响,热加工工艺,2001,4:8-10.
    [77]张旺峰,陈瑜梅,朱金华,一种新型的拉伸应力应变曲线规律研究,西安交通大学学报,1999,30(10):64-67.
    [78] Zhang W F, Chen Y M, Zhu J H, The strain hardening behavior of metastable austenite stainless steel, Rare metals materials and Engineering, 2002, 31(1):22-25.
    [79]余海燕,复杂应变状态下TRIP钢相变诱发塑性行为及其在车身覆盖件中的应用研究,上海交通大学博士学位论文,2005年5月.
    [80] Iwamoto T, Tsuta T, Tomita Y, Investigation on deformation mode dependence of strain-induced martensitic transformation in TRIP steels and modelling of transformation kinetics. International Journal of Mechanical Sciences, 1998, 40:173–182.
    [81] Diani J M, Parks D M, Effects of strain state on the kinetics of strain-induced martensite in steels, Journal of the Mechanics and Physics of Solids, 1998, 46:1613–1635.
    [82] DeMania A D, The influence of martensite transformation on the formability of 304 stainless steel sheet. MSc thesis, Department of Mechanical Engineering, MIT, 1995.
    [83] Lebedev A A, Kosarchuk V V, Influence of phase transformations on the mechanical properties ofaustenitic stainless steels. International Journal of Plasticity, 2000, 16:749–767.
    [84] Sugimoto K, Kanda A, Kikuchi R, et al., Ductility and formability of newly developed high strength low alloy TRIO-aided sheet steels with annealed martensite matrix, ISIJ Int., 2002, 42(8):910-915.
    [85] Sugimoto K, Iida T, Sakaguchi J, et al., Retained austenite characteristics and tensile properties in a TRIP type bainitic sheet steel, ISIJ Int., 2000, 40(9):902-908.
    [86] Sugimoto K, Nakano K, Song S M, et al., Retained austenite characteristics and stretch-flangeability of high strength low alloy TRIP type bainitic sheet steel, ISIJ Int., 2002, 42(4):450-456.
    [87] Nagayama K, Terasaki T, Goto S, et al., Back stress evolution and iso-volume fraction lines in a Cr-Ni-Mo-Al-Ti maraging steel in the process of martensitic transformation, Materials Science & Engineering, 2002, 336A:30-38.
    [88] Nagayama K, Terasaki T, Tanka K, et al., Mechanical properities of a Cr-Ni-Mo-Al-Ti maraging steel in the process of martensitic transformation, Materials Science & Engineering, 2001, 308A:25-27.
    [89] Parks D M, Stringfellow R G, Strain-induce transformation plasticity in metastable austenitic steels, International Symposium on Plasticity and Its Current Application, 1991: 516-522.
    [90] Powell G W, Marshall E R, Backofen V A, Strain hardening of austenitic stainless steel. ASM Transactions. Quarterly ASM Transactions Quarterly, 1958, 50: 478-497.
    [91] Eckart D, Steffen K, Christina S, Properties and application of TRIP-steel in sheet metal forming, Steel Research, 2002, 73 (6+7): 303-308
    [92] Iwamoto T, Tsuta T, Tomita Y. Investigation on deformation mode dependence of strain-induce martensitic transformation in TRIP steels and modeling of transformation kinetics. Int. J. Mech. Sci., 1998, 40(2-3):173-182
    [93] Nagasaka,A., Sugimoto,K.-I., Kobayashi,M., etc, Effects of structure and stability of retained austenite on deep drawability of TRIP-aided dual-phase sheet steels Tetsu-To-Hagane/Journal of the Iron and Steel Institute of Japan, 1999, 85(12):885-890.
    [94] Nagasaka A, Sugimoto,K, Kobayashi, M, Kobayashi, Y, Hashimoto S, Effect of carbon content on deep drawability of TRIP-aided dual-phase sheet steels, Tetsu To Hagane-Journal of The Iron and Steel Institute Of Japan, 2001, 87(9):607-612.
    [95] Sugimoto K, Nagasaka A, Kobayashi M, Hashimoto S, Effects of retained austenite parameters an warm stretch-flangeability in TRIP-aided dual-phase sheet steels, ISIJ International, 1999, 39(1), 56– 63.
    [96] Nagasaka A, Sugimoto K, Kobayashi M, Hashimoto S, Effects of warm forming on deep drawability of a TRIP-aided dual-phase sheet steel, Tetsu To Hagane-Journal of The Iron and Steel Institute of Japan,1999, 5(7):552– 557.
    [97] Nagasaka A, Sugimoto K, Kobayashi M, Shirasawa H, Effects of 2nd-Phase Morphology On Warm STretch-Flangeability of TRIP-aided Dual-Phase Sheet Steels, Tetsu to hagane-Journal of The Iron and Steel Institute of Japan, 1998, 84(3):218–223.
    [98] Hyun D I, Oak S M; Kang S S; Moon Y H, Estimation of Hole Flangeability For High Strength Steel, Plates Journal of Materials Processing Technology, 2002(130-131):9-13.
    [99] Bleck W, Deng Z, Papamantellos K. Proc. Int. Conf. on Advanced Automobile Materials, Beijing, 1997, 47–54.
    [100] Bleck W, Ohlert J, Papamantellos K, Sheet metal forming behaviour and mechanical properties of TRIP steels, Steel Research, 1999, 70(11):472– 479.
    [101] Sugimoto K, Kobayashi M, Hashimoto S, Influences of temperature and strain on ductility in TRIP aided dual-phase steels, Journal of the Japan Institute of Metals, 1990,54(6):657-667.
    [102] Sun P, Li L, Wei X C, Shi W, Effect of temperature on dynamic tensile behavior of TRIP steel, heat Treatment of Metals, 2003, 28(10):11-16.
    [103] Antretter T, Fischer F D, Deformation behavior of elastic-plastic materials containing instantly transformation inclusions, Key Engineering Materials, 2003,177-180:1431-1435.
    [104] Zwaag S, Zhao L, Suzelotte O, et al., Thermal and mechanical stability of retained austenite in aluminum-containing multiphase TRIP steels, ISIJ Intern, 2002, 42(12):1565-1570.
    [105] Choi I D, Bruce D M, Kim S J, et al. Deformation behavior of low carbon TRIP sheet steels at high strain rates, ISIJ Intern., 2002, 42(12):1483-1489.
    [106] Iwamoto T, Tsuta T, Coputational simulation on defomation behavior of CT speciment of TRIP steel under mode I loading for evaluation of facture toughness, International journal of plasticity, 2002, 18(11):1583-1606.
    [107] Chen H C, Era H, Shimizu M, Effect of phosphorus on the formation of retained austenite and mechanical properties in Si-containing low-carbon steel sheet, Metall. Trans. A, 1989, 20 (3): 437-441.
    [108] Jeong,W C, Matlock D K,. Krauss G, Observation of deformation and transformation behavior of retained austenite in a 0.14C-1.2Si-1.5Mn steel with ferrite-bainite-austenite structure, Mater. Sci. Eng. A, 1993,165(1): 1-8.
    [109] Matsumura O., Sakuma Y., Takechi H., Retained austenite in 0.4C-Si-1.2Mn steel sheet intercritically heated and austempered, Trans. ISIJ, 1992, 3 (9):1014-1020.
    [110] Itami A., Takahashi M., Ushioda K., Proceedings of the International。Symposium on Low-Carbon Steels of the 90’, Pittsburgh, ctober 1994, 245-251.
    [111] De Meyer M., Vanderschueren D., De Blauwe K., Cooman B.C.D., 41st MWSP Conference Proceedings, ISS,1999, 483–491.
    [112] Bouet M., Root J., Es-Sadiqi E.,. Yue S:, Microalloying in Steels, Mat. Sci. Forum, 1998, 319:284-286.
    [113] Basuki A, Aernoudt E., Effect of deformation in the intercritical area on the grain refinement of retained austenite of 0.4C TRIP steel , Scripta Materialia , 1999, 40 (9):1003 -1008.
    [114] Jacques P, Cornet X, Harlet Ph, et al. Enhancement of the Mechanical Properties of a Low-Carbon, Low-Silicon Steel by Formation of a Multiphased Microstructure Containing Retained Austenite[J]. Metall and Mater Trans, 1998, 29A (9): 2383-2393.
    [115] Ladriere J H, He X J, M?ssbauer study on retained austenite in an Fe---Mn---C dual-phase steel,Mater. Sci. Eng., 1986, 77:133-138.
    [116] Ali A., Ahmed M., Hashimi F.H., Khan A.Q., Incomplete reaction phenomenon in high strength bainitic steels Metall. Trans. 1993, 24A(10): 2145-2150.
    [117] Bleck W., Hulka K., Papamentellos K., Effect of Niobium on the Mechanical. Properties of TRIP Steel, Mater.Sci. Forum ,1998, 327:. 284–286.
    [118] Cahn J.W., Haasen P., Physcial Metallurgy, Third ed, Elsevier,Amsterdam, 1983.
    [119] Chester F, Jatczak, Retained austenite and its measurement by X-ray diffraction ,SAE800426, 1980, 1657-1675.
    [120] Zhao L, Dijk N H, Bruck E, et al., Magnetic and X-ray diffraction measurement for the determination of retained austenite in TRIP Steels, Mat. Sci. & Engin. A, 2001, 313A:145-152.
    [121] Han H N, Lee C G, Oh C S, et al, A model for deformation behavour and mechanically induced martensitic transformation of metastable austenitic steel, Acta Materialia, 2004, 52:5203-5214.
    [122] Pyshmisnstev I Y, Dc Meye M, Dc Cooman B C, et al, The influence of the stress state on the plasticity of transformation induced plasticity-aided steel, Metall Mater Trans A, 2002, 33A:1659-1665.
    [123] Marketz F, Fischer F D, A micromechanical study on the coupling effect between microplastic deformation and martensitic transformation, Computational Materials Science, 1994, 3:307-325.
    [124] Hill R. Hill R. A self-consistent mechanics of composite materials. J Mech Phys Solids, 1965, 13:213-222.
    [125] Eshelby J D, The determination of the elastic field of an ellipsoidal inclusion and related problems, Proc. Roy. Soc., London, 1957, A241: 376-396.
    [126] Li S F, Micromechanics graduate course notes, Berkeley: Department of Civil and Environmental Engineering, University of California, 2003.
    [127] Kr?ner E, Zur plastischen verformung des Viekristalls, Acta Metall, 1961, 9: 155-170.
    [128] Budiansky B, Wu T T, Theary prediaction of plastic strain of polycrystals, Process, 4th. U.S. Nat. Congr. Appl. Mech. 1962, 1175-1181.
    [129] Hill R, Continuum micro-mechanics of elastoplastic polycrystals, J. Mech. Phys. Solids, 1963\5, 13: 89-101.
    [130] Mori T, Tanaka K, Average Stress in Matrix and Average Enengy of Materials with Misfitting Inclusions, Acta Metall, 1973, 21: 571-574.
    [131] Weng G. J., Chiang C. R. Self-consistent relation in polycrystalline plasticity with a non-uniform matrix. Inter. J. Solids & Struc., 1984, 20(7): 689-698.
    [132] Berveiller M, Zaoui A, An extension of the self-consistent scheme to plastically flowing polycrystrals, J Mech Phys Solids, 1979, 26: 325-40
    [133] Swift H W, Plastic instability under plane stress[J]. J.Mech.Phys.Solids,1952,1(2):1-18.
    [134] Hosford, W. F., Caddell R.M,“Metal Forming: Mechanics and Metallurgy,”2nd Edition, Prentice-. Hall, Inc., Upper Saddle River, NJ, 1993.
    [135] Hill R., On discontinuous plastic states, with special reference to localized necking in thin sheets, Journal of the Mechanics and Physics of Solids 1 1952, 19–30.
    [136] Keeler S. P., Backofen W. A., Plastic instability and fracture in sheets stretched over rigid punches, Transaction of the ASME, 1964, 56: 25-48.
    [137] Keeler S. P., Determination of forming limits un automotive stampings, Sheet Metal Indust., 1965, 42: 683-691.
    [138] Hill R., On discontinuous plastic states with special reference to localized necking in thin sheet. J. Mech. Phys. Solid, 1952, 1: 1-19.
    [139] Marciniak Z. and Kuczynski K., Limit strains in the process of strech-forming sheet metal, Int. J. Mech. Sci., 1967, 9: 609-620.
    [140] Storm S, Rice J. R., Localized necking in Thin Sheets. J. Mech. Phys. Solids, 1975, 23: 421-441.
    [141]孙承志.基于变压边力的薄板冲压成形理论与实验研究.上海交通大学博士学位论文.2004年1月.
    [142] Box G. E. P., Wilson K. G., On the experimental attainment of optimal conditions. Journal of the Royal Statistical Society, 1965: 1-45.
    [143] Myers R. H., Montgonery D. C., Response Surface Methodology Process and Product Optimization Using Designed Experiments, Second ed. John Wiley, New York, 2002.
    [144] Wang G. G., Dong Z. Aitchison P, Adaptive response surface method-a global optimization scheme for computation-intensive design problems, J. Eng. Optimization, 2002, 33(6): 707-734.
    [145] Wang G. G., Adaptive response surface method using inherited Latin hypercube design points, Trans. ASME, J. Mech. Des., 2003, 125: 210-220.
    [146] Kennedy K., Eberhart R., Shi Y., Swarm Intelligence, Morgan Kaufmann Publishers, San Francisco, 2001.
    [147] Kennedy K., Small worlds and mega-minds: effects of neighborhood topology on partical swarm performance, In: Processing of the IEEE Congress of Evolutionary Computation, IEEE Press, 1999, 3: 1931-1938.
    [148] Shi Y, Eberhart R., A modified particle swarm optimization, In: Process of the IEEE conference on Evolutionary Computation, IEEE Press, Scoul, Korea, 2001: 101-106.
    [149] Guo Y. Q., Batoz J. L., Bouabdallah S. B. et al., Recent developments on the analysis andoptimum design of sheet metal forming parts using a simplified inverse approach, Comput. Struct., 2000, 78: 133-148.
    [150] Hillmann M., Kubli W., Optimization of sheet metal forming processes using simulation programs, in: Numisheet 99, Besancon, France, 1999,1: 287–292.
    [151] Andersson A., Numerical and experimental evaluation of springback in a front side member, J. Mat. Proc. Tech., 2005, 169: 352-356.
    [152] Lems W. The change of Young’s modulus after deformation at low temperature and its recovery, Delf, University of delft, 1963.
    [153]臧顺来,郭成.基于非线性弹性卸载的L形弯曲成形回弹研究.中国机械工程,2006, 17:44-47.
    [154]颜林灿,徐秉业.非线性弹性卸载对回弹预测的影响.力学与实践,2002,24(3):41-44.
    [155] Tomota Y, Tokuda H, Adachi Y, et al. Tensile behavior of TRIP-aided multiphase steels studied by in situ neutron diffraction. Acta Materialia 2004;52:5737-5745.
    [156]李雪春,杨玉英,王永志.材料硬化模式对弯曲回弹模拟精度的影响.材料科学与工艺.2002,10(3):277-280.
    [157]陈立周编著.稳健设计.北京:机械工程出版社,1999.12.
    [158]田口玄一著.魏锡路、王和福译.质量工程学概论.北京:中国对外翻译出版公司,1985.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700